
HAL Id: hal-00903307
https://hal.science/hal-00903307v1

Preprint submitted on 11 Nov 2013 (v1), last revised 24 Feb 2015 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical solution of Poisson equation on adaptive
multiresolution grid. Application to streamer discharge

simulations
Max Duarte, Zdenek Bonaventura, Marc Massot, Anne Bourdon

To cite this version:
Max Duarte, Zdenek Bonaventura, Marc Massot, Anne Bourdon. Numerical solution of Poisson
equation on adaptive multiresolution grid. Application to streamer discharge simulations. 2013. �hal-
00903307v1�

https://hal.science/hal-00903307v1
https://hal.archives-ouvertes.fr


Numerical solution of Poisson equation on adaptive

multiresolution grid. Application to streamer discharge

simulations
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Abstract

In this paper we investigate the numerical solution of Poisson equations on adapted struc-

tured grids generated by multiresolution analysis. Such an approach not only involves impor-

tant savings in computational costs, but also allows us to conduct a mathematical description

of the numerical approximations in the context of biorthogonal wavelet decomposition. In

contrast to most adaptive meshing techniques in the literature that solve the corresponding

system of discrete equations level-wise throughout the set of adapted grids, we introduce a new

numerical procedure, mainly based on inter-level operations, to represent in a consistent way

the elliptic operators discretized on the adapted grid. In this way the discrete problem can be

solved at once over the entire computational domain strongly coupling inter-grid relations as a

completely separate process, independent of the mesh generation or any other grid-related data

structure or geometric consideration, while the multiresolution framework guarantees numeri-

cal approximations within an accuracy tolerance. To assess the validity of both the theoretical

estimates as well as the numerical construction of the discrete operators we investigate them

in the context of streamer discharge simulations. The theoretical bounds are thus evaluated in

a simpler configuration with analytical solution that nevertheless mimics the spatial structure

found in this kind of problems; whereas the complete and more complex model is considered

to simulate double-headed streamers with photoionization mechanisms, for which we study the

performance and capabilities of various direct and iterative linear solvers.
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1 Introduction

In numerous scientific applications we have to deal with the numerical solution of elliptic PDEs, like
Poisson equations, in order to address the numerical simulation of physical processes. One major
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example is given, for instance, by the so-called projection methods [12, 45], widely investigated, ex-
tended, and implemented in the literature to solve the incompressible Navier-Stokes equations (see,
e.g., [23] and references therein). In other cases, like in the mathematical modeling of streamer dis-
charges we are considering in this work [4, 28], Poisson equations arise naturally from the governing
equations of the physical phenomenon we want to simulate. In either situation the discretization
of Poisson equations may lead to large systems of equations that need to be solved; a task that,
depending on the size of the problem and the order and complexity of the numerical schemes, can
easily become cumbersome in both CPU time and memory.

Even though many dedicated software packages are available in the literature to solve this kind
of problems, supplementary work proves to be necessary to ease the corresponding computational
efforts which can in many situations become very limiting or even prohibitive to perform compu-
tations. In this context grid adaptation for problems disclosing localized fronts (see, e.g., [7, 6])
is specifically designed to yield high data compression and therefore important savings in com-
putational costs. Among the many adaptive meshing techniques developed in the literature, we
consider in this work adaptive multiresolution schemes based on [24], namely the multiresolution
finite volume scheme introduced in [16]. Besides the inherent advantages of grid adaptation, mul-
tiresolution techniques rely on biorthogonal wavelet decomposition [15], and thus offer a rigorous
mathematical framework for adaptive meshing schemes [13, 35]. In this way not only approxima-
tion errors coming from grid adaptation can be tracked, but general and robust techniques can be
built since the wavelet decomposition is independent of any physical particularity of the problem,
and accounts only for the spatial arrangement of the discrete variables. Adaptive multiresolution
schemes have been successfully implemented for the simulation of compressible fluids modeled by
Euler or Navier-Stokes equations (see, e.g., [36, 10, 17] and references therein), as well as for the
numerical solution of parabolic [42, 11] and stiff parabolic PDEs [21, 20].

Having a set of equations discretized on an adapted grid, a critical aspect throughout the prac-
tical implementation has to do with the way of working with non-uniform discretizations, especially
for elliptic operators that act simultaneously on the whole domain. In the context of embedded
structured grids with a given number of grid-levels, a particular attention must be addressed to
the inter-grid interfaces in order to consistently define the discrete operations there. Otherwise
potential mismatches may lead to substantial differences in the numerical approximations as well
as loss of conservation (see [1] for a detailed discussion). The most common way to handle a set of
adapted grids consists in solving the discrete systems level-wise, that is, considering one grid-level at
a time combined with inter-level operations to synchronize shared interfaces at different grid-levels
as well as overlapped regions. In this way the main idea is to perform successive computations
over partial regions of the whole domain at a uniform mesh resolution, until the problem is entirely
solved on the adapted grid. Some examples can be found, for instance, in [1, 46, 33, 32, 44]. Such
a level-wise approach requires then a sufficiently accurate resolution at coarser levels since they
successively define the boundary conditions for finer grids inside the computational domain. For
intensive computations, iterative linear solvers based on geometric multigrid schemes are usually
implemented, taking also advantage of the multi-mesh representation of the problem [1, 46, 32].

In this paper we consider the numerical solution of Poisson equations on adapted grids generated
by multiresolution analysis. Even though other adaptive wavelet methods were already considered
for elliptic problems (for instance, in [48] in conjunction with geometric multigrid schemes), as far as
we know this is not the case for multiresolution schemes. The mathematical framework of numerical
decomposition on wavelet bases allows us to investigate the influence of data compression on the
accuracy of the approximations obtained on this type of adapted meshes; in particular theoretical
bounds are derived. Our theoretical study is restricted to the specific case of multiresolution finite
volume schemes and Poisson equation, while more details on adaptive wavelet methods for general
elliptic equations can be found in [14]. Instead of solving the discrete equations level-wise through-
out the set of embedded grids, we have conceived a numerical procedure to represent the elliptic
operators discretized directly on the adapted grid. The algorithm relies on a local reconstruc-
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tion of uniform-grid zones at inter-level interfaces by means of multiresolution operations between
consecutive grid-levels that guarantee the conservation and accuracy properties of multiresolution
schemes. This is a general approach that not only yields a compact representation of the problem
thanks to grid adaptation, but also results in a separate algebraic system, completely independent
of any consideration related to the adaptive meshing scheme or its corresponding data structure.
The resulting discrete systems can thus be solved at once over the whole computational domain
by considering an appropriate linear solver. Here we focus our attention on Poisson equations,
however the present technique remains valid for more general elliptic PDEs, like Poisson equations
with non-uniform coefficients, and it could be implemented as well for parabolic PDEs.

In order to investigate the theoretical insights derived in the framework of multiresolution ap-
proximations and to validate the numerical construction of the discrete operators, we carry out some
numerical computations in the context of streamer discharge simulations. Streamer discharges are
highly nonlinear ionization waves [41], at the basis of the filamentary structure of discharges at
atmospheric pressure. These ionizing waves occur as a consequence of the high electric field in-
duced by the fast variations of the net charge density ahead of an electron avalanche with large
amplification. The detailed physics of these discharges reveals an important time-space multi-scale
character [47, 22]. Specifically a large variation of space scales needs to be taken into account
since the Debye length at atmospheric pressure can be as small as a few micrometers, while the
inter-electrode gaps, where discharges propagate, are usually of the order of a few centimeters. Grid
adaptation is therefore highly desirable and were already considered for streamer simulations, for
instance, in [33, 40, 47, 19]; where in particular the elliptic operator was directly discretized on the
non-uniform grid in [47] in a different context for an asynchronous time integration scheme. In this
work we consider first a simplified model with analytical solution that retains the spatial character-
istics of the complete model, to thoroughly assess the theoretical bounds. A more realistic model
of double-headed streamers with photoionization mechanisms is then studied. Finally, we present
a study on the numerical performance of some software packages available in the literature to solve
linear systems, paying a particular attention to algebraic multigrid solvers. In this way this paper
aims at describing the different aspects related to the numerical solution of Poisson equations on
multiresolution grids, from its mathematical description to its effective numerical implementation
along with additional theoretical and practical considerations.

The paper is organized as follows; we present the main theoretical principles of multiresolution
analysis in Section 2, to then consider the specific case of Poisson equations on multiresolution grids.
In Section 3 we recall some of the key aspects of the multiresolution technique considered in this work
and developed in [18, 21]. We then describe the numerical procedure conceived to represent elliptic
operators on multiresolution grids. Numerical results coming from streamer discharge simulations
are investigated in Section 4, where we conclude with a performance study of some dedicated linear
solvers available in the literature.

2 Multiresolution analysis and Poisson equation

Let us briefly recall the general framework of biorthogonal wavelet bases and multiresolution anal-
ysis. A mathematical description of the solution of Poisson equations on multiresolution grids
will be then presented and discussed. More details on wavelet decomposition and multiresolution
techniques for grid adaptation can be found in [13, 35].

2.1 Biorthogonal wavelet decomposition

Let us consider an open domain Ω ⊂ R
d, and two sequences of nested subspaces of L2(Ω):

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, j ∈ N0, (1)
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such that
⋃

j∈N0
Vj =

⋃
j∈N0

Ṽj = L2(Ω). For each pair of subspaces we introduce the sets of scaling

functions: (φj,k)k∈∆j
and (φ̃j,k)k∈∆j

, ∆j ⊂ Z
d, with compact supports of diameter proportional to

2−j , and with the biorthogonal property:

〈φj,k, φ̃j,k′〉 = δk,k′ , k, k′ ∈ ∆j , j ∈ N0, (2)

where the second subscript k indicates the localization 2−jk of φj,k (resp., φ̃j,k) within the subspace

Vj (resp., Ṽj). For a given f ∈ L
2(Ω), we can then define the following projector Pj onto Vj ⊂ L

2(Ω):

Pjf :=
∑

k∈∆j

〈f, φ̃j,k〉φj,k. (3)

It can thus be seen that the base (φj,k)k∈∆j
, together with (3), defines an approximation space Vj of

resolution 2−j in L2(Ω). The same follows for (φ̃j,k)k∈∆j
and Ṽj , considering the adjoint projector

P̃j onto Ṽj .

Based on the definition of (φj,k, φ̃j,k), we can construct a pair of biorthogonal wavelets: ψj,k

and ψ̃j,k, with the pairwise biorthogonality property:

〈ψj,k, ψ̃j′,k′〉 = δ(j,k),(j′,k′), k, k′ ∈ ∆j , j, j
′ ∈ N0, (4)

such that
〈φj,k, ψ̃j,k′〉 = 〈φ̃j,k, ψj,k′〉 = 0. (5)

The pairs (φj,k, ψj,k) and (φ̃j,k, ψ̃j,k) are usually known as, respectively, the primal and the dual
scaling function and wavelet. The nestedness of the approximation spaces (1) involves that

PjPj+1 = Pj , P̃jP̃j+1 = P̃j , (6)

and we can thus define the projection

Qjf = (Pj+1 − Pj)f =
∑

k∈∆j

〈f, ψ̃j,k〉ψj,k, (7)

onto the complement space Wj = Vj+1 ∩ Ṽ
⊥
j , known as the wavelet space, spanned by the base

(ψj,k)k∈∆j
. Projector Q̃j := P̃j+1 − P̃j onto W̃j = Ṽj+1 ∩ V

⊥
j is similarly defined.

The projection Pjf , defined in (3), resolves function f up to the scale 2−j , while finer details
are discarded. For two successive spaces: Vj+1 and Vj , the representation at scale 2−(j+1): Pj+1f ,
can be thus reconstructed from a coarser one at 2−j : Pjf , by adding according to (7) the omitted
information when going from a coarse to a finer scale: Qjf . Iterating from a given J > 0 induces
then the following multi-scale representation:

PJf = PJ−1f + [PJf − PJ−1f ] = . . . = P0f +

J−1∑

j=0

Qjf, (8)

which similarly leads to the following wavelet decomposition of L2(Ω):

f = P0f +

∞∑

j=0

Qjf. (9)
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2.2 Multiresolution analysis

Following the multiresolution finite volume scheme of [16], let us build a set of nested dyadic grids
over Ω ⊂ R

d. With the abbreviated notation: Ωγ := Ωj,k, we consider regular disjoint partitions

(Ωγ)γ∈Sj
of Ω such that

⋃
γ∈Sj

Ωγ = Ω, for j = 0, 1, . . . , J . Since each Ωγ , γ ∈ Sj , is in general the

union of a finite number of cells Ωµ, µ ∈ Sj+1, (2
d cells in the dyadic case) the sets Sj and Sj+1

represent consecutive embedded grids over Ω. We thus denote |γ| := j if γ ∈ Sj , while subscript
k ∈ ∆j corresponds to the position of the cell within Sj . For instance, in Cartesian coordinates we
consider the univariate dyadic intervals in R:

Ωγ = Ωj,k :=]2−jk, 2−j(k + 1)[, γ ∈ Sj := {(j, k) s.t. j ∈ (0, 1, . . . , J), k ∈ Z}, (10)

and the same follows for higher dimensions.
Defining the dual scaling function φ̃γ in (3) as

φ̃γ := |Ωγ |
−1χΩγ

, (11)

we denote fj := (fγ)γ∈Sj
, with fγ := 〈f, φ̃γ〉, as the spatial representation of f(x), x ∈ Ω, on

the grid Sj . Notice that fγ is no other than the cell-average of f : Ω → L2(Ω) in Ωγ , scaled by
|Ωγ |; fj is hence equivalent to a finite volume representation of resolution 2−j of f . For consecutive
grid-levels the following representations of fj+1 := Pj+1f ∈ Vj+1 are thus perfectly equivalent,

fj+1 =
∑

|µ|=j+1

fµφµ =
∑

|γ|=j

fγφγ +
∑

|γ|=j

dγψγ , (12)

following (7), where the set of details: (dγ)γ∈Sj
, dγ := 〈f, ψ̃γ〉, gathers the wavelet coefficients in

the wavelet space Wj .

Now, for a given scaling function φ̃λ at level j: |λ| = j, applying 〈·, φ̃λ〉 term-wise to (12) and
considering the biorthogonality properties (2) and (5) yield

∑

|µ|=|λ|+1

fµ〈φµ, φ̃λ〉 = fλ; (13)

and we can hence define a fine-to-coarse operation given by

fλ = |Ωλ|
−1

∑

|µ|=|λ|+1,Ωµ⊂Ωλ

|Ωµ|fµ, (14)

as an immediate consequence of (11) into (13). Similarly, by applying 〈·, φ̃λ〉 term-wise to (12), this
time with |λ| = j + 1, a coarse-to-fine operation can be defined by evaluating

fλ =
∑

Σγ∩Σλ 6=∅

fγ〈φγ , φ̃λ〉+
∑

Σγ∩Σλ 6=∅

dγ〈ψγ , φ̃λ〉, |λ| = |γ|+ 1, (15)

where Σγ := suppψ̃γ . Data between consecutive levels are thus uniquely related by inter-grid
operations, (14) and (15), where the coefficients, known as masks, do not depend on data but only
on the definition of the compactly supported wavelets and scaling functions.

Following [14], we can equivalently construct the details as

dµ = 〈f, ψ̃µ〉 = fµ − f̂µ, (16)

with
f̂µ :=

∑

Σγ∩Σµ 6=∅

fγ〈φγ , φ̃µ〉 =
∑

γ∈RI(µ)

βµ,γfγ , |µ| = |γ|+ 1, (17)
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for a set of coefficients (βµ,γ)γ∈RI(µ) and RI(µ) := {γ s.t.(|γ| = |µ| − 1∧Σγ ∩Σµ 6= ∅)}, such that

fγ = |Ωγ |
−1

∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|f̂µ, (18)

as a result of applying the fine-to-coarse operation (14) to (15). The latter procedure amounts to

define a box wavelet ψ̃µ of order β, resulting from the combination of B-splines of order 1 defined
by the dual scaling function (11):

ψ̃µ := φ̃µ −
∑

γ∈RI(µ)

βµ,γ φ̃γ , (19)

after introducing (11) and (17) into (16). Hence, f̂µ is an approximation of order β to fµ in (17)
based on the values fγ , |γ| = |µ| − 1, contained in a stencil RI(µ) around Ωµ.

From (12), a one-to-one correspondence is obtained between fj+1 and fj , by additionally con-
sidering the wavelet coefficients (dγ)γ∈Sj

; and the same holds for the multi-scale representation
(8) that considers f0 and the sets (dγ)γ∈Sj′

, j′ = 0, . . . , j, to obtain fj+1. However, based on the
construction (16) we consider instead the array dj+1 = (dµ)µ∈∇j+1

, where the set ∇j+1 ⊂ Sj+1

is obtained by removing for each γ ∈ Sj , one µ ∈ Sj+1 such that Ωµ ⊂ Ωγ . In this way we keep
the one-to-one correspondence taking into account that the details involve the additional relation:∑

|µ|=|γ|+1,Ωµ⊂Ωγ
dµ = 0, according to (18) and (16). We can thus write that

fj+1 ←→ (fj ,dj+1), (20)

and by iterating this decomposition, we finally obtain a multi-scale representation of fJ in terms of
mJ := (f0,d1,d2, · · · ,dJ):

M : fJ 7−→mJ , (21)

and similarly, its inverseM−1.
Given a set of indices Λ ⊂ ∇J , where ∇J :=

⋃J
j=0∇j with ∇0 := S0, we define a thresholding

operator TΛ, that leaves unchanged the components dλ of mJ if λ ∈ Λ, and replaces it by 0,
otherwise. Defining the level-dependent threshold values (ǫ0, ǫ1, . . . , ǫJ), the set Λ is hence given by

λ ∈ Λ if ‖dλ‖Lp ≥ ǫ|λ|. (22)

Applying TΛ on the multi-scale decompositionmJ of fJ amounts then to building the multiresolution
approximation AΛfJ of fJ , where the operator AΛ is given by

AΛ :=M−1TΛM, (23)

in which all details of a certain level of regularity have been discarded.

2.3 Multiresolution error estimate

Taking into account the wavelet decomposition (9),

f =
∞∑

j=−1

∑

|λ|=j

〈f, ψ̃λ〉ψλ, (24)

where ψ−1,k := φ0,k and ψ̃−1,k := φ̃0,k, we can construct the array ΨJ,λ, |λ| ≤ J , that corresponds

to the primal wavelets ψλ cell-averaged at level J , i.e., ΨJ,λ := (〈ψλ, φ̃γ〉)γ∈SJ
. Based on [16], we

define the following normalized ℓ2-norm:

‖fJ‖
2
2 := 2−dJ

∑

λ∈SJ

(fλ)
2, (25)
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which corresponds to the L2-norm of a piecewise constant function. For compactly supported
wavelets, there is a constant C > 0 such that

‖ΨJ,λ‖2 ≤ C‖ψλ‖L2 ≤ C2−d|λ|/2, (26)

and for the multiresolution approximation, we have that

‖fJ −AΛfJ‖
2
2 = ‖dλΨJ,λ|λ/∈Λ‖

2
2 ≤ C

∑

λ/∈Λ

‖dλ‖
2
L22−d|λ| = C

∑

‖dλ‖L2≤ǫ|λ|

‖dλ‖
2
L22−d|λ|, (27)

since only some of the component of fJ−AΛfJ are non-zero, namely those corresponding to discarded
details, and hence the approximation error is bounded by their sum. Considering a level-wise
threshold parameter: ǫj := 2dj/2ǫ, the next bound follows (where #(·) returns the cardinality of a
set):

‖fJ −AΛfJ‖
2
2 ≤ C#(∇J)ǫ2 = C#(SJ)ǫ

2 ≤ C2dJǫ2, (28)

with the cautious assumption that ‖dλ‖L2 = ǫ|λ| for all dλ such that λ /∈ Λ, even though they might
be much smaller than ǫ|λ|, as well as for the remaining components of fJ −AΛfJ , even though they

are zero. Choosing ǫ := 2−dJ/2ηMR then yields

‖fJ −AΛfJ‖2 ≤ CηMR, (29)

with the level-dependent threshold values:

ǫj = 2d(j−J)/2ηMR, j = 0, 1, . . . , J. (30)

Bound (29) is similarly shown in [16] for both a uniform and ℓ1 norms.

2.4 Poisson equation on multiresolution grids

Given V ∈ H2(Ω) and f ∈ L2(Ω) that verify the following Poisson equation:

∂2
x
V = f, (31)

with x ∈ Ω, we have that
fJ = (〈f, φ̃γ〉)γ∈SJ

= (〈∂2
x
V, φ̃γ〉)γ∈SJ

. (32)

Considering that fJ ∈ R
n, n = #(SJ), and the space of square matrices of size n: Mn(R), let us

introduce an operator A ∈Mn(R) such that following (32),

fJ = AVJ +O ([diam(Ωγ |γ∈SJ
)]
α
) , (33)

with VJ := (〈V, φ̃γ〉)γ∈SJ
∈ R

n. Notice that this operator A is no other than a spatial discretization
of the Laplace operator. It is therefore a positive definite, and hence non-singular matrix assuming
appropriate boundary conditions at x ∈ ∂Ω for the Poisson equation (31). In particular following
(33), the unique solution Vd ∈ R

n of system AVd = fJ is an approximation of order α to VJ .
Within this framework, the next theorem can be proved.

Theorem 1. Let A be a positive definite matrix inMn(R) that verifies (33), and f ǫJ := AΛfJ . For
Vǫ ∈ R

n such that AVǫ = f ǫJ , there is a constant c > 0 for which

‖Vǫ −VJ‖2 ≤ c ((∆x)
α + ηMR) , (34)

where ∆x := diam(Ωγ |γ∈SJ
).

Proof. Proof follows straightforwardly by considering system Ax = b with x = Vǫ − Vd and
b = f ǫJ − f ǫJ , together with (33) and bound (29).
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Given a spatial discretization of order α, the exact solution VJ of the Poisson equation can
be therefore approximated according to a prescribed tolerance ηMR, even if the multiresolution
analysis acts on the right-hand side function. In particular it follows that the exact solution Vd of
the discrete Poisson equation AVd = fJ is approximated by Vǫ in the same way f ǫJ does for fJ :

‖Vd −Vǫ‖2 ≤ CηMR. (35)

Notice however that in a practical implementation the Laplacian will be discretized on an adapted
grid, and hence we will not be solving system AVǫ = f ǫJ . However the next corollary establishes a
necessary condition to guarantee the same numerical behavior described in Theorem 1.

Corollary 1. Let Ã be a positive definite matrix inMn(R) such that for any x ∈ R
n,

‖(A− Ã)x‖2 ≤ CηMR. (36)

For Ṽ ∈ R
n such that ÃṼ = f ǫJ , there is a constant c > 0 for which

‖Ṽ −VJ‖2 ≤ c ((∆x)
α + ηMR) . (37)

Operator Ã corresponds to the Laplacian discretized on an adapted grid and projected onto
the SJ -grid. By applying the multiresolution analysis on the right-hand side function, and solving
the discrete Poisson equation on the corresponding adapted grid, we obtain a solution Ṽ that also
verifies

‖Vd − Ṽ‖2 ≤ CηMR, (38)

as long as (36) is valid. Even though condition (36) seems to be quite strong, in practice we are only
interested in the set of arrays x ∈ R

n that reasonably approximate the solution V of a given Poisson
equation (31). In this case property (36) is very likely satisfied and perhaps even overestimated,

since Ã has been built based on the less regular function f , with respect to the actual solution V .

3 Numerical implementation

We describe in this section the numerical technique conceived to construct a Poisson solver within
the present multiresolution framework. We consider the multiresolution implementation presented
in [21]; for the sake of completeness some key aspects of this particular implementation will be first
recalled, while more details and references can be found in [18].

3.1 Construction of multiresolution grids

The adapted grid is composed of a set of nested dyadic grids: Sj , j = 0, 1, . . . , J , from the coarsest
to the finest, generated by refining recursively a given cell, depending on the local regularity of
the function f in the Poisson equation (31). These grids are implemented in a multi-dimensional
and Cartesian finite volume framework. Data compression is achieved by discarding the cells whose
details are not in Λ according to (22). However, a graded tree Λǫ is considered in practice, instead
of Λ, because a certain data structure must be respected in order to carry out the multiresolution
transformM in (21) (see [16] for more details). Notice that Λ ⊂ Λǫ, and error estimates like (29)
follows straightforwardly with AΛǫ

instead of AΛ. Nevertheless, for the ease of reading we will keep
the notation Λ in the following to refer to a graded tree.

A graded tree-structure is used to represent data in the computer memory (see also [42]). Re-
calling the standard tree-structure terminology: if Ωµ ⊂ Ωγ with |µ| = |γ|+ 1, we say that Ωµ is a
child of Ωγ , and that Ωγ is the parent of Ωµ. We thus define the leaves L(Λ) of a tree Λ as the set of
cells Ωλ, λ ∈ L(Λ), such that Ωλ has no children in Λ. The sets ∇j , j = 0, 1, . . . , J , are distributed
in NR graded trees Λr, r = 1, . . . , NR, where NR := NRxNRyNRz, and NRx, NRy, and NRz stand
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for the number of graded trees or roots per direction. Denoting by R(Λr) the set that contains the
graded tree Λr plus the missing cells Ωλ in the construction of sets ∇j , we similarly have that grid
indices Sj , j = 0, 1, . . . , J , are distributed in NR sets R(Λr). The adapted grid is thus given by

sets L(Λr), r = 1, . . . , NR, with a total number of cells: NL =
∑NR

r=1 #(L(Λr)). If no adaptation is
required: maxNL = #(SJ) = NRxNRyNRz2

dJ , that is, the size of the finest grid. Ghost cells called
phantoms are added to the adapted grid at level interfaces, in order to always compute numerical
fluxes at the highest grid-level between two neighboring cells [42].

Input parameters for the multiresolution implementation are: the maximum grid-level J , cor-
responding to the finest spatial discretization; the number of roots per direction NRx, NRy, and
NRz; and the threshold parameter ηMR, which defines the numerical accuracy of the compressed
representations following (29).

3.2 Construction of the discrete Laplace operator

Introducing the set IL := {1, 2, . . . , NL} ⊂ Z, we define a bijective function h : D(h)→ IL, with

D(h) :=

NR⋃

r=1

L(Λr). (39)

The set ΘL := (Ωλ)h(λ)∈IL corresponds then to the adapted grid, defined by the leaves of the
tree representation. Taking into account the finite volume framework defined by the dual scaling
function φ̃γ in (11), let us consider for a given function u(x) ∈ H2(Ω), and for each γ such that
γ ∈ D(h), the following numerical approximation:

〈∂2
x
u, φ̃γ〉 = |Ωγ |

−1
∑

µ

|Γγ,µ|Fγ,µ +O ([diam(Ωγ ]
α
) , γ ∈ D(h), (40)

where the sum is made over all µ 6= γ such that the interface Γγ,µ := Ωγ ∩ Ωµ is not trivial, and
Fγ,µ accounts for the flux across each interface. Moreover, we can represent the flux computations
by

|Ωγ |
−1|Γγ,µ|Fγ,µ =

∑

λ∈RF (γ)

αγ,λuλ, (41)

where the stencil RF (γ) ⊂ S|γ| and the set of coefficients (αγ,λ)λ∈RF (γ) set the order α of the
approximation. If the same scheme is considered throughout a given Sj , then for any µ 6= γ
such that |γ| = |µ| = j, the set of coefficients (αγ,λ)λ∈RF (γ) and (αµ,λ)λ∈RF (µ) are constant and
component-wise equals.

The discrete Laplacian A = (ai,k)i,k∈IL on a uniform grid SJ , #(SJ) = NL, is hence computed
by setting for each i ∈ IL, γ = h−1(i),

ah(γ),h(λ) = αγ,λ, ∀λ ∈ RF (γ), (42)

and
ah(γ),k = 0, ∀k ∈ IL s.t. h−1(k) /∈ RF (γ). (43)

The finite volume flux representation (41) establishes that for a given interface Γγ,µ, the following
conservation property is verified: Fγ,µ + Fµ,γ = 0. Computing the flux Fγ,µ for Ωγ amounts to
evaluate also Fµ,γ for the neighboring cell Ωµ. Let us denote F

+
γ,µ as the right flux for Ωγ , and F

−
µ,γ

as the left flux for Ωµ, along the normal direction to Γγ,µ. Similarly, R+
F (γ) stands for the stencil

required to compute F+
γ,µ, and naturally R−

F (µ) ≡ R+
F (γ). Fluxes can therefore be computed only

once at each interface and the same property is exploited to save computations while constructing
operator A: for each i ∈ IL, γ = h−1(i),

ah(γ),h(λ) = αγ,λ, ∀λ ∈ R+
F (γ), (44)
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instead of (42), and

ah(µ),h(λ) = −ah(γ),h(λ), Ωγ ∩ Ωµ 6= ∅, ∀λ ∈ R+
F (γ). (45)

The sparsity of the resulting matrix depends directly on the stencil R+
F (·), related to the flux

computation scheme, while the computational complexity of the procedure is of O(#(SJ)).

We are nevertheless interested in building the Laplacian Ã = (ãi,k)i,k∈IL represented on a
multiresolution adapted grid, meaning that NL < #(SJ). The principle is the same, as we construct

Ã by computing its elements following (43), (44), and (45), with ãi,k instead of ai,k. Notice that
for a given γ such that |γ| = j, all fluxes are computed at the same grid Sj in (41). In the case
of adapted grids, the latter involves that fluxes are computed on a locally uniform grid defined
by RF (γ). Ghost cells are thus locally introduced so that for a given γ all cells λ 6= γ such that
λ ∈ RF (γ) are available. Given an adapted tree Λr, let us denote by P(Λr) the set of phantoms
related to the tree Λr; that is, all cells with index λ such that for every leaf Ωγ in ΘL, λ ∈ RF (γ) but
λ /∈ R(Λr). Notice that by construction a phantom is always a child of a leaf. The variable values
on these ghost cells are then computed based on the cells contained in the adapted representation
R(Λr). Using the inter-level operation (17), variables at phantoms are defined by

ûµ =
∑

|µ|=|γ|+1,γ∈RI(µ)

βµ,γuγ , (46)

where the stencil RI(µ) ⊂ S|µ|−1 and the coefficients (βµ,γ)γ∈RI(µ) are defined by the β vanishing
moments of the compactly supported dual wavelet. In practice (46) corresponds to a polynomial
interpolation of order β with the particular property that the inter-level operation (14) is verified
[16]:

uγ = |Ωγ |
−1

∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|ûµ. (47)

Recalling that a phantom stands at the place of a discarded cell, whose detail was computed based
on the same inter-level operations, we have that ûµ involves an approximation error of O(ǫ|µ|),
according to (16), and the multiresolution error framework remains perfectly valid. Moreover, this
construction guarantees a consistent and conservative representation at inter-grid interfaces.

To summarize, given a certain leaf Ωγ , for each λ such that λ ∈ RF (γ), there are three possibil-
ities:

1. Cell Ωλ is a leaf and thus belongs to the adapted grid, i.e.,

λ ∈

NR⋃

r=1

L(Λr); (48)

2. Cell Ωλ is a phantom, i.e.,

λ ∈

NR⋃

r=1

P(Λr); (49)

3. Cell Ωλ belongs to the set of adapted grids but it is not a leaf, i.e.,

λ ∈

NR⋃

r=1

R(Λr) ∧ λ /∈

NR⋃

r=1

L(Λr). (50)

Operator Ã is then a matrix in Mn(R), n = NL, with NL much smaller than #(SJ), whose
coefficients (ãi,k)i,k∈IL are computed following (43)–(45) with ãi,k instead of ai,k, whenever (48) is
verified, together with the coefficients defined by the inter-level operation (46) (resp., (14)) when
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(49) (resp., (50)) is verified. Additionally, if a leaf Ωγ shares an interface Γγ,µ with a leaf of higher
resolution, coefficients ãh(γ),k are defined considering the weighted sum (47) of the coefficients
computed for the corresponding phantoms, children of Ωγ , at Γγ,µ. The latter is equivalent to
saying that at inter-level interfaces the matrix coefficients are always evaluated at the highest
resolution. For the sake of completeness, the complete scheme to construct the discrete Laplacian is
detailed in Appendix A. The algorithm, with computational complexity O(NL), considers several
multiplications and combinations of constant coefficients, based on the ideas previously exposed,
in such a way that we solve for the variables defined only on the adapted grid (the leaves) but

strongly coupling inter-grid relationships. In practice operator Ã is stored using a standard CSR
(Compressed Sparse Row) format for sparse matrices.

4 Streamer discharge simulations

Classical fluid model for streamers in air at atmospheric pressure is given by drift-diffusion equations
consistently coupled with a Poisson equation [4, 28]:

∂tne + ∂x · (ne ve)− ∂x · (De ∂xne) = neνi − ne(νa2 + νa3)− nenpβep + nnγ + Sph,

∂tnp + ∂x · (npvp)− ∂x · (Dp ∂xnp) = neνi − nenpβep − nnnpβnp + Sph,

∂tnn + ∂x · (nnvn)− ∂x · (Dn ∂xnn) = ne(νa2 + νa3)− nnnpβnp − nnγ,





(51)

ε0 ∂x ·E = −qe(np − nn − ne), E = −∂xφ, (52)

where x ∈ R
d, ni is the density of charged species i (e: electrons, p: positive ions, n: negative ions), φ

and E stand, respectively, for the electric potential and field, and vi = µiE is the drift velocity. We
denote by Di and µi the diffusion coefficient and the mobility of charged species i, qe is the absolute
value of the electron charge, and ε0 is the permittivity of free space. Moreover, νi is the impact
ionization coefficient, νa2 and νa3 are the two-body and three-body electron attachment coefficients,
βep and βnp are, respectively, the electron–positive ion and negative–positive ion recombination
coefficients, and γ is the detachment coefficient. All these coefficients depend on the local reduced
electric field E/Na, and thus vary in time and space, where E = |E| is the electric field magnitude,
and Na is the air neutral density. For test studies presented in this paper, the transport parameters
for air are taken from [34]; detachment and attachment coefficients, respectively, from [5, 27]; and
other reaction rates, also from [34]. Diffusion coefficients for ions are derived from mobilities using
classical Einstein relations.

For positive streamers a sufficient number of seed-electrons needs to be present in front of the
streamer head as the direction of electron motion is opposed to the streamer propagation (see [9]
and references therein). Photoionization is in general an accepted mechanism to produce such seed-
electrons in nitrogen-oxygen mixtures; it is therefore introduced into the drift-diffusion system (51)
as a source term, Sph, that needs to be evaluated in general at each timestep for all points of the
computational domain. Computation of Sph is detailed in Appendix B, which requires the iterative
solution of six elliptic equations given by (58), with boundary conditions (59). Iterating three times
amounts then to solve 18 Poisson-like equations.

In what follows we will first assess the theoretical validity of the mathematical description
conducted in §2.4 and the numerical implementation described in §3.2, for the numerical solution
of Poisson equations on multiresolution adapted grids. This study will be conducted on a simplified
model, with known analytical solution, that mimics the spatial configuration typically found in
streamer discharges. In a second part we will present double-headed streamer simulations, modeled
by (51)–(52), for which we will evaluate the performance of different linear solvers implemented to
solve the Poisson equations discretized on multiresolution grids.
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4.1 Numerical validation

We investigate the validity of bound (37) and thus (38); that is, the solution of a Poisson equation
discretized on a multiresolution adapted grid is an approximation of O(ηMR) of the exact solution
computed on a uniform grid of equal (finest) resolution, where ηMR is the accuracy parameter
used by the multiresolution analysis on the right-hand side of the Poisson equation. Given a set of
constant parameters: a, b, and σ, let us consider the exponential function φ(x), on a two-dimensional
domain Ω ⊂ R

2,

φ(x) = g(x) + b = a exp
(
−|x|2/σ2

)
+ b, x = (x, y) ∈ Ω (53)

that verifies the following Poisson equation:

∂2
x
φ(x) = ρ(x), ρ(x) =

4

σ2

(
|x|2

σ2
− 1

)
g(x), x ∈ Ω, (54)

with boundary conditions,
φ(x) = g(x) + b, x ∈ ∂Ω. (55)

Using a standard, second-order centered scheme, we discretize equation (54) on the region: [−0.5, 0.5]×
[−0.5, 0.5], and consider the set of parameters: a = 10, b = 20, and σ = 0.005. The value of σ has
been chosen such that function ρ(x) exhibits similar steep gradients as those found in a developed
streamer head modeled by (51)–(52). Since g(x) decays rapidly toward the boundaries, we consider
Dirichlet boundary conditions in (55): φ(x) = b, whereas symmetric boundary conditions are taken
at y = 0, in order to consider only half of the computational domain: [−0.5, 0.5]× [0, 0.5].

Figure 1 shows normalized L2-errors between the analytical solution (53) and the numerical
solution of the Poisson equation (54) discretized on an adapted grid, obtained with several threshold
values ηMR. The resulting linear systems were solved using MUMPS [3, 2], a direct linear system
solver. The finest spatial discretization is denoted by ∆x, and it is set by the choice of the maximum
level J in the multiresolution analysis and the number of roots per direction: NRx and NRy. In
this case, ∆x = 1/(NRx2

J), with J = 5, 6, . . . , 13, NRx = 10, and NRy = 5. For streamer discharge
simulations an accurate resolution of the electric field, E = −∂xφ, is essential for good physical
descriptions. Therefore we have also computed E with a second order, centered approximation,
and compared it against its analytical counterpart: E = 2x g(x)/σ2. In both cases, for φ and
E, the numerical errors behave like a second order spatial approximation even if the solutions
are computed on an adapted grid, especially for relatively coarse discretizations or sufficiently
fine multiresolution threshold values. For finer resolutions, the numerical errors coming from the
adaptive multiresolution become more dominant, and the numerical errors are effectively bounded
by the threshold parameter ηMR. Bounds (37) and (38) prove then to describe accurately the
behavior of the numerical approximations when solving a Poisson equation on a multiresolution
adapted grid.

These tests allow us also to verify that the discrete Laplacian is consistently constructed, fol-
lowing the procedure established in §3.2, and correctly implemented in practice. The matrix rep-
resentation Ã is shown in Figure 2(a). Notice that matrix Ã cannot be symmetric, unless no grid

adaptation is performed. However Ã is in general quasi-symmetric; for instance, for this particular
problem approximately 89% of symmetry is retrieved in terms of non-zero elements of the matrix.
Figure 2(b) illustrates the computational complexity of the matrix construction, which behaves like
O(NL). The different measures were obtained performing several computations with different finest
grid-levels J ∈ [9, . . . , 13], and multiresolution parameters ηMR ∈ [10−2, . . . , 10−9]. We have also
indicated in Figure 2(b) the CPU times to solve the resulting linear system with MUMPS, as well
as with an algebraic multigrid solver: AGMG [38, 37, 39] (with tolerances set to 10−9), which also
have computational complexity of O(NL). Finally, we have also verified that building the matrix
representation behaves the same way for the more complex streamer configuration presented in the
following.



POISSON EQUATION ON ADAPTIVE MULTIRESOLUTION GRID 13

Figure 1: L2-errors between analytical and numerical solutions φ of Poisson equation (54) (a) and
component Ex of E = −∂xφ (b), for several threshold values ηMR.

Figure 2: Matrix construction and solution: (a) discrete Laplacian Ã on a multiresolution grid; and

(b) CPU times to build Ã and solve the corresponding linear systems for several numbers of cells
(slopes of data fits are indicated).

4.2 Performance of linear solvers

We present in what follows a brief study on the performance of several software packages currently
available in the literature to solve linear systems of general type: Ax = b, stemmed in our case
from the discretization of a Poisson equation on a multiresolution adapted grid. Two groups of
linear solvers were considered: direct and iterative solvers. Direct methods to solve sparse linear
systems of type Ax = b, involves in general two separate phases: 1) factorization of the system
matrix A, and 2) solution by forward elimination followed by backward substitution to obtain the
solution for a given right-hand side b. Main advantages of direct methods are their generality and
robustness. Furthermore, direct methods provide an efficient way to solve multiple systems sharing
the same system matrix A, but different right-hand sides b, since the most expensive phase, the
factorization, needs to be computed only once. On the other hand the main limitation of direct
methods is the amount of memory required to store the factorization matrices that may have many
(10–100 times) more elements than the original matrix, and may become constraining for large
two-dimensional problems and even prohibitive for three-dimensional configurations.
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The need of iterative solvers then naturally arises as they exhibit relatively modest memory
requirements. However the choice of appropriate algorithms, as well as a fine-tuning of solver
parameters to particular linear systems are essential for a satisfactory performance. The number of
iterations may also be substantially decreased with a good initial guess of the solution. This feature
is somehow exploited in time evolving problems, such as the streamer propagation presented in
this paper, because the previous solution may serve well as an initial guess for the current time
step. Additionally, in our case the system matrix A changes practically every time step due to
grid adaptation, iterative solvers are hence favored over direct ones which would require costly
factorizations of A at each time step. A promising class of iterative methods are multigrid solvers
capable to solve sparse linear system of size N with a computational complexity of O(N). In
particular algebraic multigrid methods (AMG) do not require an explicit grid geometry and work
directly on matrix entries. They are therefore well-suited to our purposes since system Ax =
b, coming form a discrete Poisson equation on a multiresolution grid, has completely lost any
reminiscence of its original geometric layout.

4.2.1 Test configuration

Let us consider the propagation of a double-headed streamer at atmospheric pressure. In this
configuration positive and negative streamers emerge from an initial germ of charged species. Drift-
diffusion equations (51) together with Poisson equation (52) are solved following the time-space
adaptive scheme introduced in [19]. The latter is based on a decoupled numerical solution of
(51) and (52) in such a way that each problem is solved separately by a dedicated solver. Both
numerical approximations are assembled according to a second order scheme in time. The latter
also considers a time-stepping procedure with error control such that a prescribed accuracy ηT is
attained. Variables are represented at cell centers, except for the electric field and the velocities
which are staggered, while the entire problem is solved on an adapted grid dynamically obtained by
multiresolution analysis. This numerical technique with the present Laplacian representation was
successfully considered in [8] for the study and simulation of interacting streamers.

Numerical simulations in the present study were carried out for a space-time accuracy tolerance
of ηMR = ηT = 10−4, with a space resolution of 3.9µm, corresponding to a finest grid level:
J = 8, with NRx = 10, and NRy = 3. This set of parameters guarantees a sufficiently fine, time-
space representation of the physics, and numerical results disclosing practically the same behavior
with higher spatial resolutions and tighter accuracy tolerances. The computational domain is
given by [−0.5, 0.5] × [0, 0.3] cm, in a Cartesian configuration. A homogeneous electric field E =
(48.0, 0) kV/cm is introduced via Dirichlet boundary conditions for the Poisson equation at x =
±0.5 cm, whilst Neumann boundary conditions are applied at y = 0.3 cm. A plane of symmetry
is imposed at y = 0, thus only one half of the streamer is actually simulated. The double-headed
streamer is initiated by placing a Gaussian plasma cloud so that the initial conditions for the
transport equations (51) are given by

np(x, 0) = ne(x, 0) = nmax exp
(
−|x|2/σ2

)
+ n0p,e, nn(x, 0) = n0n, (56)

with σ = 0.02 cm, nmax = 1013 cm−3, and a small homogeneous pre-ionization background of n0n,e =
5 × 10−5 cm−3 and n0p = 10−4 cm−3. All tests were conducted starting from the same solution
at 3.0 ns, when the double-headed streamer is already well developed, but no interference with the
boundaries is evidenced. The electron density, the net charge species density: nch = np − nn − ne,
the magnitude of the electric field, and the levels of the adapted grid for the double-headed streamer
at 3.0 ns are presented in Figure 3. The total number of cells is of 197784, distributed over five
grid-levels from a resolution of 62.5µm at level j = 4, up to 3.9µm at J = 8; a data compression
of about 10% is thus achieved with respect to a uniform grid with the finest spatial resolution.
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Figure 3: Double-headed streamer at 3.0 ns: (a) electron density, ne; (b) net charged-species density,
nch; (c) magnitude of the electric field, E = |E|; and (d) grid-levels of the adapted mesh. Only
part of the computational domain is shown.

4.2.2 Analysis of results

We have considered both direct and iterative solvers, readily available in various software packages;
some of the main characteristics of each one of them are described in Appendix C. Most of present
day linear solvers are developed with a special attention on enhanced parallel capabilities. Never-
theless, thanks to significant data compression achieved by multiresolution adaptation, the linear
systems under consideration have typically about 105 unknowns with approximately 106 non-zero
elements in the system matrix; therefore to simplify our study we have focused our attention on
sequential performance of these solvers. We have performed the numerical experiments on anila,
a two-processor computer installed at Masaryk University. Each processor is an Intel Xeon CPU
E5410 @ 2.33GHz with a total available computer memory of 24 GB. The computer runs on a 64-bit
version of Fedora 18 GNU/Linux system. All codes with the various linear solvers were compiled
using compilers from GCC (version 4.7.2). Memory requirements of each solver were obtained by
tracing the memory profiles of running programs with top command, executed in batch mode with
a delay-time interval set to 0.01 s. In order to discriminate memory requirements for the linear
solvers from the overall program memory usage, a reference program was executed in which calls
to the solver were replaced by FORTRAN (GNU extension) SLEEP command.

Table 1 gathers computation data obtained with two direct solvers: MUMPS [3] and PaStiX
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Table 1: Direct solvers: CPU computing time, L2-error of φ and |E| with respect to solutions
computed with MUMPS, and memory requirements for each solver.

MUMPS Memory: 193 MB

CPU(s) L2-error φ L2-error |E|

3.96 0 0

PaStiX Memory: 259 MB

CPU(s) L2 error φ L2 error |E|

5.38 1.84×10−13 1.45×10−12

[25], in terms of CPU time and memory usage. The total number of unknowns for the Poisson
equations considered in this problem is given by the number of cells considered, 197784 in this case,
while the discrete Laplacian has 1078534 non-zero entries. In what follows we consider as reference
solution the solution to the Poisson equation (52), φ, computed with MUMPS. As before we also
analyze the approximation to the electric field: E = −∂xφ. Both solvers yield practically the same
solution, while better performances are obtained with MUMPS in terms of both CPU time and
memory for this particular problem. Data for three iterative solvers are presented in Table 2, for
two algebraic multigrid solvers: AGMG [38] and BoomerAMG [26] (contained in the hypre library),
and for GMRES [43], preconditioned with BoomerAMG (also contained in hypre ). In all cases a
fine-tuning of computing parameters have been previously carried out, so that Table 2 includes the
best performances obtained with each of these solvers for this particular problem. A key parameter
for iterative solvers is given by the relative and absolute tolerances, that in particular serve as
stopping criteria to the iterative procedures. In this study we have set both tolerances equal to
an accuracy tolerance, denoted as tol. To improve the numerical performances, the initial guess
corresponds to the solution computed during the previous time step. For tolerances higher or equal
to 10−5, convergence is attained right-away with the initial guess for all three solvers. In all cases
better performances are obtained with these iterative solvers with respect to direct ones, even with
very fine accuracy tolerances, tol. Even though GMRES converges in a less number of iterations
for different values of tol, with respect to the algebraic multigrid solvers, it does not yield faster
computations, taking into account that for this problem preconditioning is the most expensive part.
BoomerAMG and GMRES/BoomerAMG therefore involve similar computing times.

Considering the solution obtained with MUMPS as the reference solution, all these iterative
solvers scale well in terms of the accuracy of the approximations, set by the tolerance parameter
tol. Notice that these numerical errors must be taken into account when using iterative solvers, in
particular into bounds (37) and (38). The criterion adopted in this work is that numerical errors
coming from the solution of the linear systems must be smaller than the multiresolution ones, so
that (37) and (38) remain valid. The latter could be enforced by setting in general: tol < ηMR, while
in this particular case a safer choice might be given by tol ≤ 10−3 × ηMR, according to the values
contained in Table 2. Among the solvers tested in this study, AGMG revealed itself as the most
performing package both in terms of CPU time and memory requirements to solve this particular
problem. However it is important to remark that the overall performance of all these solvers are
clearly problem-dependent. In this regard the hypre library provides a user-friendly and unified
interface to various solution schemes, very appropriate to handle different types of problems.

5 Concluding remarks

In this paper we have presented a brief, yet complete study on the numerical solution of Poisson
equations on adapted grids generated by multiresolution analysis. Recalling some of the the main
theoretical principles that lie beneath biorthogonal wavelet decomposition, we have recast numerical
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Table 2: Iterative solvers: number of iterations (#iter) for relative tolerances: tol = 10−6, . . . , 10−14,
CPU computing time, L2-error of φ and |E| with respect to solutions computed with MUMPS, and
memory requirements for each solver.

AGMG Memory: 82 MB

tol #iter CPU(s) L2-error φ L2-error |E|

10−6 3 0.50 1.65×10−5 1.40×10−4

10−7 4 0.55 1.20×10−5 2.94×10−5

10−8 8 0.78 1.80×10−6 4.20×10−6

10−9 10 0.89 1.43×10−7 4.10×10−7

10−10 14 1.10 2.03×10−8 4.74×10−8

10−11 16 1.21 2.24×10−9 7.44×10−9

10−12 19 1.38 2.09×10−11 9.65×10−11

10−13 20 1.43 1.28×10−11 3.68×10−11

10−14 24 1.64 1.59×10−12 3.86×10−12

hypre BoomerAMG Memory: 100 MB

tol #iter CPU(s) L2 error φ L2 error |E|

10−6 3 1.23 7.36×10−4 2.46×10−3

10−7 6 1.51 1.81×10−5 5.99×10−5

10−8 8 1.71 3.97×10−6 1.63×10−5

10−9 11 1.98 9.56×10−8 7.44×10−7

10−10 14 2.27 9.04×10−9 9.87×10−8

10−11 17 2.55 5.45×10−10 5.18×10−9

10−12 20 2.83 6.24×10−11 1.02×10−9

10−13 24 3.21 6.28×10−12 2.58×10−11

10−14 27 3.52 4.73×10−13 3.84×10−12

hypre BoomerAMG + GMRES Memory: 146 MB

tol #iter CPU(s) L2 error φ L2 error |E|

10−6 2 1.24 9.09×10−4 2.36×10−3

10−7 5 1.57 2.65×10−5 1.28×10−4

10−8 8 1.90 1.15×10−6 1.49×10−5

10−9 10 2.13 6.19×10−8 8.56×10−7

10−10 12 2.34 4.32×10−9 6.09×10−8

10−11 14 2.58 5.77×10−10 3.33×10−9

10−12 15 2.69 3.58×10−10 8.20×10−10

10−13 17 2.93 3.57×10−11 7.10×10−11

10−14 19 3.15 3.13×10−12 7.73×10−12

estimates on multiresolution approximations for Poisson equations represented on adapted grids.
On this basis and in order to guarantee the consistency with the multiresolution framework, we have
developed a numerical procedure to represent the discrete Laplace operator on the adapted grid, by
reconstructing locally uniform-grid regions at inter-grid interfaces by means of ghost cells and inter-
level operations. This approach constitutes a new alternative to the standard level-wise, numerical
solution of Poisson equations considered in most of the adaptive mesh refinement techniques in the
literature. In this way the numerical solution of Poisson equations leads to considering a linear
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system, completely independent of the grid generation or any other grid-related data structure or
geometric consideration, while the multiresolution framework guarantees numerical approximations
within an accuracy tolerance, as well as consistency and conservation properties throughout the set
of grids.

To assess the validity of these theoretical and numerical developments, we have investigated
them in the context of the numerical simulation of streamer discharges; a field that involves an
intensive use of Poisson solvers and for which, accurate solutions of Poisson equations are essential
to the correct reproduction of the physics. In a first step we have thoroughly evaluated the theoret-
ical bounds previously derived, in a simpler configuration with analytical solution. Then, a much
more complex and complete model was considered to simulate the propagation of a double-headed
streamer discharge in air at atmospheric pressure. We have thus conducted a study on the perfor-
mance and capabilities of various direct and iterative linear solvers for this problem, that allows us
to further validate the current implementation and serves as well as a guide for other applications.
In particular we have evaluated the potentialities of algebraic multigrid solvers, well-suited to this
kind of implementations with no geometric counterpart.

Further developments include optimizing the numerical construction of the discrete Laplace op-
erators by conceiving, for instance, better data structures; or in the context of time dependent
problems, by updating only the matrix entries modified by the grid adaptation. Taking into ac-
count that in this implementation solving these linear problems becomes a separate aspect from the
multiresolution analysis, parallel computing capabilities may be directly inherited from the soft-
ware packages available in the literature. However, an intelligent conjunction with multiresolution
parallelism must be sought to achieve overall satisfactory results. These issues constitute particular
topics of our current research.
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Agency - ANR Blancs): Séchelles (project leader S. Descombes - 2009-2013) and by a DIGITEO
RTRA project: MUSE (project leader M. Massot - 2010-2014). Z. B. acknowledges support from
project CZ.1.05/ 2.1.00/03.0086, funded by the European Regional Development Fund, and support
of Ecole Centrale Paris.

A Pseudo-code of the algorithm

Computing the multiresolution representation f ǫJ ∈ R
n, n = NL, defines an adapted grid given by the

set of leaves: ΘL = (Ωλ)h(λ)∈IL of size NL. The algorithm to construct the discrete Laplacian: Ã ∈
Mn(R), can be schematically described as follows, in a Cartesian framework where interfaces are
given by Γd′

γ,µ, d
′ = 1, . . . , d. This scheme supports space discretizations and compactly supported

wavelets of arbitrary order.

for i = 1→ NL do

Current leaf: Ωγ s.t. γ = h−1(i).
for d′ = 1→ d do

Current neighbor: Ωµ s.t. Γd′

γ,µ = Ωγ ∩ Ωµ.
if µ ∈ D(h) then {Ωµ is a leaf, i.e., (48).}
i′ = h(µ).
for λ ∈ R+

F (γ) do
if λ ∈ D(h) then {Ωλ is a leaf, i.e., (48).}
k = h(λ).
ãi,k = ãi,k + αγ,λ.
ãi′,k = ãi′,k − αγ,λ.
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else if λ ∈
⋃NR

r=1 P(Λr) then {Ωλ is a phantom, i.e., (49).}

for λ̂ s.t. λ̂ ∈ RI(λ) do

if λ̂ ∈ D(h) then {Ωλ̂ is a leaf, i.e., (48).}

k = h(λ̂).
ãi,k = ãi,k + βλ,λ̂αγ,λ.

ãi′,k = ãi′,k − βλ,λ̂αγ,λ.

else {Ωλ̂ is within the tree, i.e., (50).}

for λ̂′ s.t. Ωλ̂′ ⊂ Ωλ̂ do

if λ̂′ ∈ D(h) then {Ωλ̂′ is a leaf, i.e., (48).}

k = h(λ̂′).
ãi,k = ãi,k + |Ωλ̂|

−1|Ωλ̂′ |βλ,λ̂αγ,λ.

ãi′,k = ãi′,k − |Ωλ̂|
−1|Ωλ̂′ |βλ,λ̂αγ,λ.

else

for λ̂′′ s.t. Ωλ̂′′ ⊂ Ωλ̂′ do

if λ̂′′ ∈ D(h) then {Ωλ̂′′ is a leaf, i.e., (48).}

k = h(λ̂′′).
ãi,k = ãi,k + |Ωλ̂|

−1|Ωλ̂′′ |βλ,λ̂αγ,λ.

ãi′,k = ãi′,k − |Ωλ̂|
−1|Ωλ̂′′ |βλ,λ̂αγ,λ.

else

Continue up to leaves.
end if

end for

end if

end for

end if

end for

else {Ωλ is within the tree, i.e., (50).}
for λ′ s.t. Ωλ′ ⊂ Ωλ do

if λ′ ∈ D(h) then {Ωλ′ is a leaf, i.e., (48).}
k = h(λ′).
ãi,k = ãi,k + |Ωλ|

−1|Ωλ′ |αγ,λ.
ãi′,k = ãi′,k − |Ωλ|

−1|Ωλ′ |αγ,λ.
else

Continue up to leaves.
end if

end for

end if

end for

else if µ ∈
⋃NR

r=1 P(Λr) then {Ωµ is a phantom, i.e., (49).}
for λ ∈ R+

F (γ) do
if λ ∈ D(h) then {Ωλ is a leaf, i.e., (48).}
k = h(λ).
ãi,k = ãi,k + αγ,λ.
for µ̂ s.t. Ωµ ⊂ Ωµ̂ ∧ Ωγ ∩ Ωµ̂ 6= ∅ do

i′ = h(µ̂).
ãi′,k = ãi′,k − |Ωµ̂|

−1|Ωµ|αγ,λ.
end for

else if λ ∈
⋃NR

r=1 P(Λr) then {Ωλ is a phantom, i.e., (49).}

for λ̂ s.t. λ̂ ∈ RI(λ) do
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if λ̂ ∈ D(h) then {Ωλ̂ is a leaf, i.e., (48).}

k = h(λ̂).
ãi,k = ãi,k + βλ,λ̂αγ,λ.

for µ̂ s.t. Ωµ ⊂ Ωµ̂ ∧ Ωγ ∩ Ωµ̂ 6= ∅ do

i′ = h(µ̂).
ãi′,k = ãi′,k − |Ωµ̂|

−1|Ωµ|βλ,λ̂αγ,λ.
end for

else {Ωλ̂ is within the tree, i.e., (50).}
Continue up to leaves.

end if

end for

else {Ωλ is within the tree, i.e., (50).}
Continue up to leaves.

end if

end for

else {Ωµ is within the tree, i.e., (50).}
for γ̂ s.t. Ωγ̂ ⊂ Ωγ ∧ Ωγ̂ ∩ Ωµ 6= ∅ do

Current neighbor: Ωµ′ s.t. Ωµ′ ⊂ Ωµ ∧ Γd′

γ̂,µ′ = Ωγ̂ ∩ Ωµ′ .
Ωµ′ is a leaf: i′ = h(µ′).
for λ ∈ R+

F (γ̂) do
if λ ∈ D(h) then {Ωλ is a leaf, i.e., (48).}
k = h(λ).
ãi,k = ãi,k + |Ωγ |

−1|Ωγ̂ |αγ̂,λ.
ãi′,k = ãi′,k − αγ̂,λ.

else if λ ∈
⋃NR

r=1 P(Λr) then {Ωλ is a phantom, i.e., (49).}

for λ̂ s.t. λ̂ ∈ RI(λ) do

if λ̂ ∈ D(h) then {Ωλ̂ is a leaf, i.e., (48).}

k = h(λ̂).
ãi,k = ãi,k + |Ωγ |

−1|Ωγ̂ |βλ,λ̂αγ̂,λ.

ãi′,k = ãi′,k − βλ,λ̂αγ̂,λ.

else {Ωλ̂ is within the tree, i.e., (50).}
Continue up to leaves.

end if

end for

else {Ωλ is within the tree, i.e., (50).}
Continue up to leaves.

end if

end for

end for

end if

end for

end for

B Photoionization model

The photoionization source term, Sph, is evaluated using the three-group SP3 model developed in [9]
with Larsen’s boundary conditions [29, 30]. This model considers Ng = 3 effective monochromatic
radiative transfer equations. As no scattering of photons is taken into account and since the time
scale of photon propagation is considered short with respect to the streamer propagation, at each
instant of the streamer simulation the photon distribution function Ψl(x,Ω), at position x and
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direction Ω, fulfills a radiative transfer equation of the form:

Ω · ∂xΨl(x,Ω) + λlpO2
Ψl(x,Ω) =

1

4π

pq
p+ pq

(
ξ
νu
νi

)
νine
c ξ

, (57)

where l ∈ {1, . . . , Ng} indicates discrete wavelengths, λl is the absorption coefficient, pO2
is the

partial pressure of molecular oxygen (150Torr at atmospheric pressure), p is the total pressure,
pq = 30Torr is the quenching pressure, ξ = 0.1 is the photoionization efficiency, νu is the effective
excitation coefficient for N2 states responsible for ionizing radiation, and νi and ne are previously
introduced ionization coefficient and electron density. The term (ξνu/νi) is given as a function of
the reduced electric field in [49, 31]. Finally, c stands for the speed of light. Let us emphasize that
monochromatic equations (57) have different absorption coefficients, but they all have the same
source term that depends on the local reduced electric field E/Na, varying therefore in time and
space.

The SP3 approximation of (57) leads to a set of two elliptic equations for functions φ1,l(x) and
φ2,l(x) [29]:

∂2
x
φ1,l(x)−

λ2l p
2
O2

κ21
φ1,l(x) = −

λlpO2

κ21

pq
p+ pq

(
ξ
νu
νi

)
νine

c ξ
,

∂2
x
φ2,l(x)−

λ2l p
2
O2

κ22
φ2,l(x) = −

λlpO2

κ22

pq
p+ pq

(
ξ
νu
νi

)
νine

c ξ
,





(58)

with κ1,2 = (1/7)(3± 2
√

6/5). Equations (58) are coupled through the boundary condition. On a
boundary surface with neither reflection nor emission, functions φ1,l(x) and φ2,l(x) must verify the
following conditions [29, 30]:

∂xφ1,l(x) · ns = −λlpO2
α1φ1,l(x)− λlpO2

β2φ2,l(x),

∂xφ2,l(x) · ns = −λlpO2
α2φ2,l(x)− λlpO2

β1φ1,l(x),

}
(59)

where ns is the outward unit normal to the boundary surface, α1,2 = (5/96)(34 ± 11
√
6/5), and

β1,2 = (5/96)(2 ±
√
6/5). Because 0 < β1,2 ≪ α1,2, the coupling in (58) is weak. A simple

strategy to solve (58) together with the boundary conditions (59) consist in solving the equations
independently, that is, with β1,2 = 0, to then iterate and correct the initial approximations with the
inclusion of the β1,2 coefficients. Convergence is attained very rapidly after few iterations (typically
three). The isotropic part of the photon distribution function Ψl(x) is then written as a linear
combination of φ1,l(x) and φ2,l(x) [29]:

Ψl(x) =
γ2φ1,l(x)− γ1φ2,l(x)

γ2 − γ1
, (60)

with γ1,2 = (5/7)(1± 3
√
5/6). The photoionization source term Sph(x) can be finally calculated as

[9]:

Sph(x) =

Ng∑

l=1

AlξpO2
cΨl(x), (61)

where parameters Al, together with λl, are given in Table 3.

C Software packages

In this paper we have considered the following packages:
MUMPS (release 4.10.0), direct solver: MUMPS stands for MUltifrontal Massively Parallel

Solver1 [3, 2], a package to solve linear systems of equations, where the system matrix A is a square

1MUMPS home page: http://graal.ens-lyon.fr/MUMPS/
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Table 3: Parameters for three group photoionization model [9].

l Al [cm
−1 Torr−1] λl[cm

−1 Torr−1]
1 0.0067 0.0447
2 0.0346 0.1121
3 0.3059 0.5994

sparse matrix that can be either non-symmetric, symmetric positive definite, or general symmetric.
MUMPS implements a direct method based on a multifrontal approach which performs a direct
LU -factorization: A = LU, where L is a lower triangular matrix and U an upper triangular one.
If the matrix is symmetric then the factorization: A = LDLT , is performed, where D is a block
diagonal matrix with blocks of order 1 or 2 on the diagonal. MUMPS is distributed as a public
domain software.

PaStiX (release 5.2), direct solver: PaStiX2 is a parallel, multi-threaded library for the solution
of large linear systems of equations [25]. For non-symmetric matrices, an LU -decomposition is
performed; if the system matrix A is symmetric, positive-definite it uses Cholesky (A = LLT ) or
Cholesky-Crout (A = LDLT ) factorization. PaStiX is distributed under the CeCILL-C license3.

hypre (release 2.8.0b), iterative solver: hypre is a software library of high performance precon-
ditioners and solvers for the solution of large, sparse linear systems of equations on massively par-
allel computing architectures4. The library provides advanced parallel preconditioners and parallel
multigrid solvers for both structured and unstructured grid setups through a variety of conceptual
interfaces, each of them appropriate to a different class of problem. Through the Linear-Algebraic
System Interface we have access to BoomerAMG [26], an algebraic multigrid solver that may be
also used as a preconditioner for GMRES [43]. hypre is a free software, distributed under the terms
of the GNU Lesser General Public License5.

AGMG (release 3.1.1), iterative solver: AGMG6 is an implementation of the algebraic multigrid
method developed in [38, 37, 39]. This method solves systems of linear equations, and it is in
particular expected to be efficient for large systems arising from the discretization of scalar second
order elliptic PDEs. It is purely algebraic, no information has to be supplied besides the system
matrix and the right-hand side array. Version 3.1.1 (11/2011) was released under GNU GPLv3 (or
later) license.
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