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Introduction

One of the most remarkable results in probabilistic symmetries is the de Finetti's theorem [START_REF] De | Funzione caratteristica di un fenomeno aleatorio[END_REF], which states that the law of any exchangeable sequence valued in a finite state space is in fact a mixture of i.i.d. sequences. This theorem has a geometrical interpretation via Choquet's theorem. More precisely, the subspace of exchangeable probabilities forms a convex, and those probabilities given by i.i.d. sequences are exactly the extreme points of the convex [START_REF] Aldous | Exchangeability and related topics[END_REF].

In the 1920s, W.E. Johnson [START_REF] Sandy | We johnson's" sufficientness" postulate[END_REF] conjectured that, under some technical conditions, if a process X n is exchangeable and P(X n+1 = i|X 0 , . . . , X n ) depends only on the number of times i occurs and the total steps n, then X n is nothing but the famous Polya urn: drawing balls uniformly from an urn and put back one additional ball with same color as the drawn one. This is a process with linear reinforcement. In term of random walk, the natural counterpart of Polya urn is the edge reinforced random walk (ERRW). Diaconis conjectured that this process have the same characterization as Polya urn. In [START_REF] Silke | How edge-reinforced random walk arises naturally[END_REF] S.W.W.Rolles have shown that both conjectures are true under technical conditions.

The vertex reinforced jump process (VRJP) is a linearly reinforced process in continuous time. In a recent paper, Sabot and Tarres [START_REF] Sabot | Edge-reinforced random walk, vertexreinforced jump process and the supersymmetric hyperbolic sigma model[END_REF] have shown that ERRW is a mixture of VRJP, which indicates that the VRJP are building blocks of ERRW, thus should share a similar characterization. This paper gives this characterization (Theorem 4), as a counterpart of Rolles' result; namely, the only continuous time process which is partially exchangeable and the transition probability depends only on neighbor local times is VRJP, under technical conditions.

Let us first recall the definition of ERRW, let G = (V, E) be a locally finite undirected graph without direct loops (edges with one endpoint). Let Z n denote the location of the random process at time n. Let a e > 0, e ∈ E. For n ∈ N, define w n (e), the weight of edge e at time n, by if {Z n , v} ∈ E 0 otherwise. Now let us introduce some definitions before stating Rolles' result. Again G = (V, E) is a locally finite undirected graph without direct loops, with its vertex set V and edge set E. Denote i ∼ j if {i, j} ∈ E. Following Rolles, we call (Z n ) n≥0 a nearest neighbor random walk on G, if it is a discrete time random process (not necessarily Markov) such that successive positions are neighbors.

An admissible path of the random walk is a sequence of vertices of G, denoted π = (v 0 , v 1 , . . . , v n ) such that consecutive vertices are neighbors. The number of visits to vertex i of path π is denoted

N i (π) := #{k : v k = i, k = 0, . . . , n};
Similarly, the number of transition counts in the path π of an oriented edge e = (i, j) is denoted

N e (π) = N i,j (π) := #{k : v k = i, v k+1 = j, k = 0, . . . , n -1}.
Two paths ξ, η are said to be equivalent and denoted ξ ∼ η, if ξ and η start at the same state and the transition counts from i to j of any pair (i, j) are equal for ξ and η, i.e. N i,j (ξ) = N i,j (η) for all (i, j).

Remarks 1. Two equivalent paths necessarily end at the same vertex.

Definition 1. A nearest neighbor random walk is partially exchangeable if any two equivalent paths have the same probability.

Theorem 1 (Diaconis & Freedman [START_REF] Diaconis | de finetti's theorem for markov chains[END_REF]). Let Z n be a recurrent random walk (i.e. with probability one it returns to Z 0 infinitely often), then Z is a mixture of Markov chains if and only if it is partially exchangeable. Moreover, the mixing measure is uniquely determined.

As it turns out that edge reinforced random walk is a mixture of reversible Markov chains, Rolles introduced the following more restrictive notion of partial exchangeability: for π = (v 0 , . . . , v n ) and e = (i, j) let Ñe (π) := #{k :

v k = i, v k+1 = j or v k = j, v k+1 = i, k = 0, . . . , n -1}.
Definition 2. A nearest neighbor random walk is partially exchangeable in a reversible sense if it satisfies the following: for any two paths ξ, η, if Ñe (ξ) = Ñe (η) for all e ∈ E, then ξ and η have the same probability.

In [START_REF] Silke | How edge-reinforced random walk arises naturally[END_REF] Theorem 1.1, Rolles proved that if a nearest neighbor random walk is recurrent and partially exchangeable in a reversible sense, then it is a mixture of reversible Markov chain.

Rolles' main result in [START_REF] Silke | How edge-reinforced random walk arises naturally[END_REF] states that, if G = (V, E) is a strongly connected graph and Z n is a nearest neighbor random walk on G such that the following assumptions are satisfied:

1. Z is partially exchangeable in a reversible sense (Definition 2).

2. For all v ∈ V and e ∈ E there exists a function f v,e taking values in [0, 1] such that for all n ≥ 0

P(Z n+1 = v|F n ) = f Zn,e (N Zn (Z 0 , . . . , Z n ), ÑZn,v (Z 0 , . . . , Z n )).
Then Z is an edge reinforced random walk or a Markov chain under some technical conditions (c.f. [START_REF] Silke | How edge-reinforced random walk arises naturally[END_REF] for precision).

Next we define the vertex reinforced jump process X t . Assign positive weights (W e ) e∈E to the edges, the process X t starts at time 0 at some vertex i 0 , if X is at vertex i ∈ V at time t, then, conditioned on the past, the process jumps to a neighbor j of i with rate W i,j (1 + l j (t)), where for e = {i, j}, W i,j = W e and l j (t) is the local time of vertex j at time t:

l j (t) := t 0 1 Xs=j ds.
Theorem 2 (Sabot & Tarres [START_REF] Sabot | Edge-reinforced random walk, vertexreinforced jump process and the supersymmetric hyperbolic sigma model[END_REF]). The ERRW Z n with weights (a e ) is equal in law to the discrete time process associated with a VRJP X t in random independent weights W e ∼ Gamma(a e , 1) And finally, the VRJP X t turns out to be partially exchangeable within a time scale (c.f. next section for the definition of partial exchangeability in continuous times). Let

D(s) = i∈V (l i (s) 2 + 2l i (s)),
then the process Y t = X D -1 (t) is a mixture of Markov processes with an explicit mixing measure, in addition, the mixing measure turns out to be related to a σ-model introduced by Zirnbauer, c.f. [START_REF] Sabot | Edge-reinforced random walk, vertexreinforced jump process and the supersymmetric hyperbolic sigma model[END_REF] Theorem 2.

In this paper we give a counterpart of Rolles' result for VRJP, namely we characterize exchangeable jump processes with local rate functions.

Definitions and results

Definition 3. We call (X t ) t≥0 a nearest neighbor jump process on G, if it is a random process which is right continuous without explosion, and each jump is from some vertex i to one of its neighbors j (i.e. i ∼ j). Definition 4. A nearest neighbor jump process X t is a mixture of Markov jump processes if there exists a probability measure µ on Markov jump processes such that L(X t ) = L(Y t )µ(dY ), where L denotes the law of respective processes. If for µ a.s. the Markov processes are reversible, then the process X t is a mixture of reversible Markov processes.

Freedman introduced the notion of partial exchangeability in continuous time in [START_REF] Da Freedman | De finetti's theorem in continuous time[END_REF].

Definition 5 (Freedman). A continuous process X t is partially exchangeable if for each h > 0, the law of {X nh ; n = 1, 2, • • • } satisfies the following property: for any two paths ξ = (ξ 0 , . . . , ξ l ), η = (η 0 , . . . , η l ) such that ξ ∼ η , P(X 0 = ξ 0 , . . . , X lh = ξ l ) = P(X 0 = η 0 , . . . , X lh = η l ).

We recall the de Finetti's theorem in continuous time showed by Freedman [START_REF] Da Freedman | De finetti's theorem in continuous time[END_REF]. Theorem 3. Let X t be a continuous time process starting at i 0 ∈ G, X t is mixture of Markov jump processes if 1. X t has no fixed points of discontinuity, more precisely, for every t, if t n → t, then P(X tn → X t ) = 1;

2. X t is recurrent;

3. X t is partially exchangeable.

Our main theorem is:

Theorem 4. Let X t be a nearest neighbor jump process on G satisfying the following assumptions:

1. For all i ∈ V , there exists C 2 diffeomorphisms h i such that X is partially exchangeable within the time scale D(s) = i∈V h i (l i (s));

2. G is strongly connected (i.e. any two adjacent vertices are in a cycle);

3. The process, at vertex i at time t, jumps to a neighbor j of i with rate f i,j (l j (t)) for some continuous functions f i,j

Then X is a vertex reinforced jump process within time scale, i.e. there exists another time scale D such that X D-1 (t) is a vertex reinforced jump process.

Remarks 2. In fact, the hypothesis of Theorem 4 implies that the functions f i,j (x) are necessarily of the form W i,j x + ϕ j .

Remarks 3. Note that we do not a priori require f i,j = f j,i , i.e. there is no assumption of reversibility for X t ; however the VRJP is a mixture of reversible Markov jump processes within time change.

Remarks 4. Concerning the third assumption, we cannot prove the result with rate f i,j (l i , l j ), but the case where f i,j (l i , l j ) = f i (l i )f j (l j ) can be treated. In fact, by applying a time change, the process with rate function of the form f i (l i )f j (l j ) can be reduced to our theorem.

In section 3, we introduce an equivalent notion of partial exchangeability and, as an example, we give a different proof of partial exchangeability of VRJP within a time scale. Section 4 contains the proof of Theorem 4.

3 The two notions of partial exchangeability

Partial exchangeability, infinitesimal point of view

Consider a nearest neighbor jump process on G satisfying the third assumption of Theorem 4. As we have assumed regularity on the trajectory of the process (c.f. Definition 3), to describe the law of our process, it is enough to describe the probability of the following events:

σ = {X [0,t 1 [ = i 0 , X [t 1 ,t 2 [ = i 1 , X [t 2 ,t 3 [ = i 2 , . . . , X [t n-1 ,tn[ = i n-1 , X [tn,t] = i n },
which will be denoted

σ : i 0 t 1 -→ i 1 t 2 -t 1 ---→ i 2 . . . i n-1 tn-t n-1 -----→ i n t-tn ---→
in the sequel and we call such an event a trajectory.

It turns out that when the jump rate is a continuous function of local times, the law of our process can be characterized by some function, which will be called density in the sequel. In fact, for the study of certain history depending random processes, we have the following lemma: Lemma 1. If (X t ) is a jump process with jump rate depending only on local times and the current position of the random walker, i.e. there exists functions f i,j (l) such that conditioned on the past, X t jumps from i to j at rate f i,j (l(t)), and, moreover, f i,j (l(t)) does not depend on the variable l i (t). Then there exists functions d σ , such that for all bounded measurable functions Φ defined on the trajectories,

E(Φ(X u , u ≤ t)) = n≥1 i 0 ,...,in d σ Φ(σ)dt + d i 0 t - → Φ(i 0 t - →)
where d σ = exp(-

t 0 j∼Xs f Xs,j (l(s))ds) n k=1 f i k-1 ,i k (l(t k )) and d i 0 t - → = P(X s = i 0 , 0 ≤ s ≤ t).
Remarks 5. We believe that Lemma 1 still hold when f i,j (l) depends on l i (t). In fact, if we can find a time changed process such that its jump rates do not depend on l i (t), it is immediate by re-applying the inverse time change that Lemma 1 holds in the general cases.

Proof. As f i,j (l(t)) does not depend on l i (t), the holding time of X t at i is exponentially distributed with rate

j∼i f i,j (l(t))
and the probability of jumping from i to j is

p(i, j) := f i,j (l(t)) k∼i f i,k (l(t))
.

Moreover, the process up to time t is characterized by the events

i 0 s 1 -→ i 1 s 2 -→ • • • sn -→ i n s n+1 ---→, s 1 , . . . , s n+1 > 0, n+1 i=1 s i ≤ t. For 1 ≤ k ≤ n + 1, denote t k = s 1 + • • • + s k , P(X t follows the trajectory i 0 s 1 -→ i 1 s 2 -→ • • • sn -→ i n s n+1 ---→, s k > 0, s k ≤ t) = tn≤t n k=1   p(i k-1 , i k ) exp( j∼i k-1 f i k-1 ,j (l(t k-1 ))s k ) • j∼i k-1 f i k-1 ,j (l(t k-1 ))   P(s n+1 > t -t n )ds = t 1 <t 2 <•••<tn<t exp(- t 0 j∼Xs f Xs,j (l(s))ds) n k=1 f i k-1 ,i k (l(t k-1 ))dt, with ds = ds 1 • • • ds n , dt = dt 1 • • • dt n .
Now the lemma follows by distinguishing different trajectories.

Definition 6. We say that X t admits a density if the assumptions in Lemma 1 are satisfied, and we denote its density as d σ .

Let us now give another definition of partial exchangeability for continuous time processes in terms of density. Define two trajectories σ and τ to be equivalent and denoted σ ∼ τ , if their discrete chain strings are equivalent and the local times are equal at each vertex. Formally,

Definition 7. Let σ = i 0 t 1 -→ i 1 t 2 -t 1 ---→ i 2 • • • i n-1 tn-t n-1 -----→ i n t-tn ---→, τ = j 0 s 1 -→ j 1 s 2 -s 1 ----→ j 2 • • • j n-1 sn-s n-1 -----→ j n t-sn ---→ .
Then σ and τ are equivalent if and only if

∀i ∈ V, l σ i (t) = l τ i (t) ∀i, j N i,j (σ) = N i,j (τ ).
where N i,j (σ) denotes the number of jumps from i to j in σ, i.e. N i,j (σ) = N i,j ((i 0 , . . . , i n )), and l σ i (t) = Proof. Suppose that the process X t is partially exchangeable in density, let h > 0, consider the event I = {X 0 = i 0 , X h = i 1 , . . . , X nh = i n }, let (j 0 = i 0 , j 1 , . . . , j n ) be an equivalent string of (i 0 , . . . , i n ), and J = {X 0 = j 0 , X h = j 1 , . . . , X nh = j n }. We construct a bijection T which maps trajectories of I to those of J. As (i 0 , . . . , i n ), (j 0 , . . . , j n ) are equivalent, for any pair of neighbors (i, j), there are exactly a same number of transition counts from i to j. Let us define T to be the transformation which is a permutation of the time segmentations [lh, (l + 1)h) of size h; which, for any k, moves the kth transition i kth --→ j of I to the kth transition i kth --→ j of J, and leaving the last time segmentation [nh, ∞) invariant. Figure 1 illustrates an example of such application.

0 1 0 2 1 0 2 1 0 1 Figure 1: The transformation T for I = {X 0 = 0, X h = 1, X 2h = 0, X 3h = 2, X 4h = 1} and J = {X 0 = 0, X h = 2, X 2h = 1, X 3h = 0, X 4h = 1}. Let σ = k 0 s 1 -→ k 1 s 2 -→ k 2 • • • k N -1 s N --→ k N s N +1 ---→
be one trajectory of the event I, we check that

T (σ) = k ′ 0 s ′ 1 -→ k ′ 1 s ′ 2 -→ k ′ 2 • • • k ′ N -1 s ′ N --→ k ′ N s ′ N +1 ---→
is a trajectory of the event J, and that T is one-one and on-to (c.f. Figure 2). If we fix the total number of jumps N and the discrete trajectory (k 0 , k 1 , . . . , k N ), then T can be though as a substitution of integration. Thus 

0 1 0 2 1 0 2 1 0 1 σ T (σ) u1 u2 u3 u4 u5 u6 u7 u8 u9 u1 u2 u3 u4 u5 u6 u7 u8 u9 s 1 s 2 s 3 s 4 s 5 s 6 s ′ 1 s ′ 2 s ′ 3 s ′ 4 s ′ 5 s ′ 6
P(I) = N k 0 ,k 1 ,...,k N 1 s 1 ,...,s N +1 ∈I(N,k 0 ,...,k N ) d σ ds 1 • • • ds N +1 = N k ′ 0 ,k ′ 1 ,...,k ′ N 1 s ′ 1 ,...,s ′ N +1 ∈I ′ (N,k ′ 0 ,...,k ′ N ) d T (σ) ds ′ 1 • • • ds ′ N +1 = P(J),
where I(N, k 0 , . . . , k N ) is the subset of R N +1 defined as the set of (s 1 , . . . , s N +1 ) such that the event k 0

s 1 -→ k 1 s 2 -→ • • • k N s N +1
---→ is in I; and I ′ (N, k ′ 0 , . . . , k ′ N ) is its image by applying T ; see Figure 2 for a concrete example. As T preserves local times and the numbers of transition counts, these two integrals are whence equal.

Proposition 2. If a jump process is partially exchangeable in the sense of Definition 5, and its jump rate is a continuous function of local times, then it is also partially exchangeable in the sense of Definition 8.

Proof. Let X t denote such a process, for h > 0, consider the σ-algebra

F h = σ(X nh , n ≥ 0), let F 0 = σ(∪ h>0 F h ) and F = σ(X t , t ≥ 0).
As in [START_REF] Da Freedman | De finetti's theorem in continuous time[END_REF], we only consider h running through the binary rationals. Note that F 0 = F thanks to the right continuity of the trajectories.

Let

σ = i 0 t 1 -→ i 1 t 2 -t 1 ---→ i 2 • • • i n t-tn
---→ be a trajectory with n jumps (say n ≥ 1 to avoid triviality). Let {X (h) ∼ σ/h} denotes the event

{X 0 = σ 0 , X h = σ h , . . . , X N h = σ N h , with N = ⌊t/h⌋}.

It turns out that

d σ = lim h→0 P(X (h) ∼ σ/h)h -n .
In fact, let Ψ = 1 X (h) ∼σ/h , by definition of d σ ,

E(Ψ(X u , u ≤ t)) = P(X (h) ∼ σ/h) = k≥1 i 1 ,...,i k d τ Ψ(τ )dt 1 • • • dt k (1) 
where

τ = i 0 t 1 -→ i 1 t 2 -t 1 ---→ i 2 • • • i k-1 t k -t k-1 -----→ i k t-t k ---→ .
When h is small enough, the sum in (1) must be over k ≥ n, and we have

P(X (h) ∼ σ/h) = P 1 + P 2 .
where for some p k , k = 1, . . . , n depending on h P 1 = P((X u ) 0≤u≤t makes n jumps at times s 1 , . . . , s n with s k ∈ (p k h, (p k + 1)h] and the trajectory is i 0 , . . . , i n ) P 2 = P((X u ) 0≤u≤t makes more than n + 1 jumps and X (h) ∼ σ/h)

Note that the jump rates are bounded from both below and above, and any holding time in the event of P 2 must be in an interval of length lesser than 2h, whence the probability of making n + l (l ≥ 1) jumps following the trajectory σ/h is smaller than the probability of n + l independent exponential variables (of parameter C) each smaller than 2h, where C is an upper bound of the jump rates. Whence

P 2 ≤ l≥1 (P(cst ≤ Exp(C) < cst + 2h)) n+l ≤ l≥1 (P(Exp(C) < 2h)) n+l = O(h n+1 ).
Thus P 2 can be dropped when taking the limit. In addition,

P 1 = (pn+1)h pnh • • • (p 1 +1)h p 1 h d σ dt 1 • • • dt n ,
note that here d σ depends only on t 1 , . . . , t n and it is an absolutely integrable function, by Lebesgue differentiation theorem (Theorem 1.6.19 [START_REF] Tao | An introduction to measure theory[END_REF]) lim h→0 P 1 /h n = d σ . Now let

d σ d τ P(X ih ∼ σ/h)h -n P(X ih ∼ τ /h)h -n
σ ∼ τ , when h is sufficiently small, proceeding as in the diagram shows that d σ = d τ .

Example: VRJP is partially exchangeable within a time change

Recall that Y s = X D -1 (s) with D(s) = i∈V (l i (s) 2 + 2l i (s)), It turns out that we can write down the density of the trajectory σ of the (time changed) VRJP process Y (For convenience, write s n+1 for s in the sequel). The density of

σ := i 0 s 1 -→ i 1 s 2 -s 1 ----→ i 2 • • • i n-1 sn-s n-1 -----→ i n s-sn ---→ is (c.f. [11]), denoting S i (t) = t 0 1 Yu=i du the local time of Y , d σ =( 1 2 ) n n k=1 W i k-1 ,i k i∈V,i =in 1 1 + S i (s) • exp (- i∼j W i,j ( (S i (s) + 1)(S j (s) + 1) -1)), (2) 
which clearly depends only on final local times and transition counts, thus by Proposition 1, Y is partially exchangeable. On finite graph it is rather easy to prove that the VRJP is recurrent (for example, using a representation of VRJP by time changed Poisson point process as in [START_REF] Sabot | Edge-reinforced random walk, vertexreinforced jump process and the supersymmetric hyperbolic sigma model[END_REF], and then use an argument as in [START_REF] Davis | Reinforced random walk[END_REF] or [START_REF] Sellke | Reinforced random walk on the d-dimensional integer lattice[END_REF]). Therefore, Y is a mixture of Markov jump processes.

For convenient, we include a proof of this in the sequel (after the proof of Proposition 3), since the mechanisms of the proof enlightens the proof of the main theorem.

Proof of Theorem 4.1 Computation of densities

Let X be a nearest neighbor jump process on G satisfying the assumptions of Theorem 4, in particular, recall the time scale

D(s) = i∈V h i (l i (s)). ( 3 
)
Let l i (t) be the local time of the process X at vertex i at time t. Let us denote the process after time change to be

Y t = X D -1 (t) , (4) 
let S i (s) = s 0 1 Yu=i du (5)
denote the local time of Y . Consider the trajectory

σ : i 0 t 1 -→ i 1 t 2 -t 1 ---→ i 2 • • • i n-1 tn-t n-1 -----→ i n t-tn ---→ (6) 
where 0 < t 1 < • • • < t n < t, after applying the time change, the corresponding trajec-

tory for Y is σ Y : i 0 s 1 -→ i 1 s 2 -s 1 ----→ i 2 • • • i n-1 sn-s n-1 -----→ i n s-sn ---→
where s k = D(t k ).

Proposition 3. With the same settings as in equations (3) (4) (5) ( 6), the density of the trajectory σ Y for Y is

d Y σ = exp   - s 0 j∼Yv f Yv,j (h -1 j (S j (v))) h ′ Yv (h -1 Yv (S Yv (v))) dv   n k=1 f i k-1 ,i k (h -1 i k (S i k (s k-1 ))) h ′ i k-1 (h -1 i k-1 (S i k-1 (s k )))
.

Proof. Applying Lemma 1 to the process X,

d σ = exp   - t 0 j∼Xu f Xu,j (l j (u))du   n k=1 f i k-1 ,i k (l i k (t k-1 )).
Recall that in (3) we assumed that h i : R + → R + are diffeomorphisms satisfying h i (0) = 0.

Next we compute the density for the same trajectory σ but for the process Y s = X D -1 (s) , as we have S i (D(s)) = h i (l i (s)), derivation leads to

S i (D(s)) ′ = D ′ (s)1 Y D(s) =i = h ′ i (l i (s))1 Xs=i . Hence (D -1 (t)) ′ = 1 D ′ (D -1 (t)) = 1 h ′ Y t -• h -1 Y t -(S Y t -(t)) , l i k (t k-1 ) = h -1 i k (S i k (D(t k-1 ))) = h -1 Ys k (S Ys k (s k-1 )).
Substituting s = D(t), we have

d Y σ = exp (- s 0 j∼Yv f Yv,j (h -1 j (S j (v))) h ′ Yv (h -1 Yv (S Yv (v))) dv) n k=1 f i k-1 ,i k (h -1 i k (S i k (s k-1 ))) h ′ i k-1 (h -1 i k-1 (S i k-1 (s k )))
.

Back to the partial exchangeability of VRJP

Proof. Apply the previous proposition to VRJP, where f i,j (l j ) = W i,j (1+l j ) and

h i (l i ) = l 2 i + 2l i . The density d Y σ is 1 2 n exp   - s 0 j∼Yu W Yu,j S j (u) + 1 2 S Yu (u) + 1 du   n k=1 W i k-1 ,i k S i k (s k-1 ) + 1 S i k-1 (s k ) + 1 .
As our trajectory is left continuous without explosion, starting at i 0 , if we calculate the product through the trajectory, by telescopic simplification, it results that the product reduces to

i∈V i =in 1 S i (s) + 1 n k=1 W i k-1 ,i k .
To compute the integral inside the exponential, it is enough to note that, in the expression:

i∼j W i,j ( (S i (s) + 1)(S j (s) + 1) -1),
the local times S i (s), i ∈ V of the process Y only vary (linearly) with s when the process is at i, i.e., when Y t = i. Therefore, the derivative of the above expression with respect to s equals to

j∼Ys W Ys,j S j (s) + 1 2 S Ys (s) + 1
which is what we integrate inside the exponential. Whence ( 2) is proved, and expression (2) depends only on final local times and transition counts, the result hence follows.

Determination of time change h

In the sequel we work with the time changed process Y , to simplify notations, we will write d σ for d Y σ when it does not lead to any confusion. By Proposition 3, the density of certain trajectory contains an exponential term and a product term, let us denote

d σ = exp(-σ) • σ, with      σ = s 0 j∼Yv f Yv ,j (h -1 j (S j (v))) h ′ Yv (h -1 Yv (S Yv (v))) dv σ = n k=1 f i k-1 ,i k (h -1 i k (S Ys k (s k-1 ))) h ′ i k-1 (h -1 i k-1 (S Ys k-1 (s k )))
where the exponential term stems from those exponential waiting times, and the product term corresponds to the probability of the discrete chain. The heuristics of the proof in this subsection is the following: as we assumed partial exchangeability, if we consider two equivalent trajectories, then their densities share the same expression, by comparing them we can hence deduce certain equalities involving f i,j and h i etc. It turns out that these equalities determine h i s then f i,j s.

The following fact is simple but important, suppose that at time s, the random walker arrives at i 0 , each vertex i has accumulated local time l i := S i (s); then it jumps to i 1 after an amount of time t, by Proposition 3, the density has acquired a multiplicative factor exp

  - s+t s j∼i 0 f i 0 ,j • h -1 j (l j ) h ′ i 0 • h -1 i 0 (l i 0 + v) dv   • f i 0 ,i 1 • h -1 i 1 (l i 1 ) h ′ i 0 • h -1 i 0 (l i 0 + t) . ( 7 
)
This fact is in constant use in the sequel, when we explicit the density of certain trajectory.

Lemma 2. Let σ = i 0 s 1 -→ i 1 s 2 -s 1 ----→ i 2 • • • i n-1 sn-s n-1 -----→ i n s-sn
---→ be a trajectory, then

σ = σ + σ where σ = s 0 j∈σ,j∼Yv f Yv,j (h -1 j (S j (v))) h ′ Yv (h -1 Yv (S Yv (v))) dv, σ = s 0 j / ∈σ,j∼Yv f Yv,j (h -1 j (S j (v))) h ′ Yv (h -1 Yv (S Yv (v)))
dv

and if τ is such that τ ∼ σ, then σ = τ .
Proof. Note that for j / ∈ σ, S j (u) = 0 for all u ≤ s. Let Ĥi be the primitive of

1 h ′ i • h -1 i such that Ĥi (0) = 0, σ = j / ∈σ s 0 1 Yv∼j f Yv,j (0) h ′ Yv (h -1 Yv (S Yv (v))) dv = j / ∈σ,i∈σ,j∼i f i,j (0) 
s 0 1 Yv=i h ′ i (h -1 i (S i (v))) dv = j / ∈σ,i∈σ,j∼i f i,j (0) Ĥi (S i (s))
which depends only on final local times, thus if τ ∼ σ, then τ = σ.

In the sequel cst denotes some constant, which can vary from line to line.

Lemma 3. If the process X admits such a time change D which makes it partially exchangeable in density, then for any i ∼ j, there exists some constants λ i,j such that

f i,j (x) = λ i,j h ′ j (x), ∀x ≥ 0. (8) 
Proof. Let ǫ > 0, consider the following two trajectories for the process Y :

σ = i ǫ - → j ǫ - → i t - → j s - → i • - → τ = i t - → j s - → i ǫ - → j ǫ - → i • - →
Note that σ and τ have the same transition counts and the final local times on vertex i, j are respectively equal. Thus the densities of these trajectories are a.s. equal by partial exchangeability. By Lemma 2,

d σ = σ • exp( σ + σ),
where

     σ = f i,j •h -1 j (0) h ′ i •h -1 i (ǫ) • f j,i •h -1 i (ǫ) h ′ j •h -1 j (ǫ) • f i,j •h -1 j (ǫ) h ′ i •h -1 i (ǫ+t) • f j,i •h -1 i (ǫ+t) h ′ j •h -1 j (ǫ+s) σ = ǫ 0 f i,j •h -1 j (0) h ′ i •h -1 i (v) dv + ǫ 0 f j,i •h -1 i (ǫ) h ′ j •h -1 j (v) dv + t 0 f i,j •h -1 j (ǫ) h ′ i •h -1 i (ǫ+v) dv + s 0 f j,i •h -1 i (ǫ+t) h ′ j •h -1 j (ǫ+v) dv. d τ = τ • exp( τ + τ ),
where

     τ = f i,j •h -1 j (0) h ′ i •h -1 i (t) • f j,i •h -1 i (t) h ′ j •h -1 j (s) • f i,j •h -1 j (s) h ′ i •h -1 i (t+ǫ) • f j,i •h -1 i (ǫ+t) h ′ j •h -1 j (ǫ+s) τ = t 0 f i,j •h -1 j (0) h ′ i •h -1 i (v) dv + s 0 f j,i •h -1 i (t) h ′ j •h -1 j (v) dv + ǫ 0 f i,j •h -1 j (s) h ′ i •h -1 i (t+v) dv + ǫ 0 f j,i •h -1 i (ǫ+t) h ′ j •h -1 j (s+v) dv;
We do not explicit σ and τ as they cancel when we compare these expressions (c.f. Lemma 2). Letting ǫ → 0 yields that exp( σ) = exp( τ ); therefore σ = τ , i.e.

∀s, t, f i,j • h -1 j (s) h ′ j • h -1 j (s) • f j,i • h -1 i (t) h ′ i • h -1 i (t) = cst.
Now fix t, let s vary, whence

∀s, f i,j • h -1 j (s) = cst • h ′ j • h -1 j (s),
and let λ i,j denotes this constant, as h -1 j is a diffeomorphism, its range is R + , which allows us to conclude.

The next lemma states in some sense that the exponential part and the product part appearing in the density of a trajectory can be treated separately. Lemma 4. Let σ, τ be two trajectories, and denote

d σ = exp( σ) • σ, d τ = exp( τ ) • τ, if σ ∼ τ , then σ = τ .
Proof. We have S Ys k (s k ) = S Ys k (s k-1 ), thus Lemma 3 yields that

f i k-1 ,i k •h -1 i k (S Ys k (s k-1 )) = λ i k-1 ,i k h ′ i k • h -1 i k (S Ys k (s k )). Whence the product part is σ = n k=1 f i k-1 ,i k (h -1 i k (S Ys k (s k-1 ))) h ′ i k-1 (h -1 i k-1 (S Ys k-1 (s k ))) = n k=1 λ i k-1 ,i k i =i 0 h ′ i • h -1 i (0) i =in h ′ i • h -1 i (S i (s))
, and the last term depends only on the transition counts and final local times.

Lemma 5. Let H i = h ′ i • h -1 i , then for some constant A i (recall that h i is assumed C 2 diffeomorphism), (H 2 i ) ′ = A i and if i ∼ j, then λ i,j A j = λ j,i A i .
Remarks 6. The latest equality tells that the process is reversible. However, we did not assume the reversibility of the process, but vertex reinforced jump processes are reversible (as a mixture of reversible Markov jump process), so are the edge reinforced random walks. In contrast, directed edge reinforced random walks are mixtures of non reversible Markov chains, with independent Dirichlet environments. We can hence expect that the reversibility is a consequence of a non oriented linear reinforcement (where linearity leads to partial exchangeability). Proof. Recall that we have assumed that the graph is strongly connected, i.e. if i, j are two adjacent vertices, there exists a shortest cycle

i n-1 i n i 1 i 2 i n-2 i n-1 i n i 1 i 2 i n-2 σ τ
i 1 ∼ i 2 ∼ i 3 • • • ∼ i n ∼ i 1 with i 1 = i, i n = j
and the i k s are distinct and n ≥ 2. Let (i 1 = i, i 2 , i 3 , . . . , i n = j) be a cycle as described, consider the trajectories (c.f. Figure 3)

σ = i 1 r 1 -→ i n r 2 -→ i 1 s 1 -→ i 2 s 2 -→ i 3 • • • i n-2 s n-2 ---→ i n-1 s n-1 ---→ i n τ = i 1 r 1 -→ i 2 s 2 -→ i 3 • • • i n-2 s n-2 ---→ i n-1 s n-1 ---→ i n r 2 -→ i 1 s 1 -→ i n .
As σ ∼ τ , by Lemma 4 and Lemma 2, σ = τ . Also let

σ ′ = i 1 r 1 -→ i n r 2 -→ i 1 s 1 -→ i 2 s 2 -→ i 1 τ ′ = i 1 r 1 -→ i 2 s 2 -→ i 1 s 1 -→ i n r 2 -→ i 1 ,
thus σ′ = τ ′ . We are going to compute explicitly σ, τ etc, using [START_REF] Da Freedman | De finetti's theorem in continuous time[END_REF], let s =

r 1 +r 2 +s 1 +• • •+s n-1 and recall that Ĥi is the primitive of 1 h ′ i • h -1 i such that Ĥi (0) = 0. σ = (i,j)∈σ 2 ,i∼j λ i,j s 0 1 Yv=i h ′ j • h -1 j (S j (v)) h ′ i • h -1 i (S i (v)) dv = λ i 1 ,i 2 H i 2 (0)( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (0)) + λ i 2 ,i 1 H i 1 (r 1 + s 1 )( Ĥi 2 (s 2 ) -Ĥi 2 (0)) + λ i 1 ,in H in (0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H in (r 2 )( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 )) + λ in,i 1 H i 1 (r 1 )( Ĥin (r 2 ) -Ĥin (0)) + λ in,i n-1 H i n-1 (0)( Ĥin (r 2 ) -Ĥin (0)) + λ i n-1 ,in H in (r 2 )( Ĥi n-1 (s n-1 ) -Ĥi n-1 (0)) + ∆
where ∆ is defined as follows: let

Q k := H i k (0)( Ĥi k-1 (s i k-1 ) -Ĥi k-1 (0)) and Q ′ k := H i k (s k )( Ĥi k+1 (s i k+1 ) -Ĥi k+1 (0)), ∆ = n-1 k=3 λ i k-1 ,i k Q k + λ i k ,i k-1 Q ′ k-1 .
For τ we have: τ = (i,j)∈τ 2 ,i∼j λ i,j s 0

1 Yv=i h ′ j • h -1 j (S j (v)) h ′ i • h -1 i (S i (v)) dv = λ i 1 ,i 2 H i 2 ( 
0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H i 2 (s 2 )( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 )) + λ i 2 ,i 1 H i 1 (r 1 )( Ĥi 2 (s 2 ) -Ĥi 2 (0)) + λ i 1 ,in H in (0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H in (r 2 )( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 ))

+ λ in,i 1 H i 1 (r 1 )( Ĥin (r 2 ) -Ĥin (0)) + λ in,i n-1 H i n-1 (s n-1 )( Ĥin (r 2 ) -Ĥin (0)) + λ i n-1 ,in H in (0)( Ĥi n-1 (s n-1 ) -Ĥi n-1 (0)) + ∆ with the same ∆. Also σ′ = λ i 1 ,i 2 H i 2 (0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H i 2 (0)( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 )) + λ i 2 ,i 1 H i 1 (r 1 + s 1 )( Ĥi 2 (s 2 ) -Ĥi 2 (0)) + λ i 1 ,in H in (0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H in (r 2 )( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 ))

+ λ in,i 1 H i 1 (r 1 )( Ĥin (r 2 ) -Ĥin (0)) τ ′ = λ i 1 ,i 2 H i 2 (0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H i 2 (s 2 )( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 ))

+ λ i 2 ,i 1 H i 1 (r 1 )( Ĥi 2 (s 2 ) -Ĥi 2 (0))
+ λ i 1 ,in H in (0)( Ĥi 1 (r 1 ) -Ĥi 1 (0)) + H in (0)( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 ))

+ λ in,i 1 H i 1 (r 1 + s 1 )( Ĥin (r 2 ) -Ĥin (0)).

Recall that σ -σ ′ = τ -τ ′ , which leads to λ in,i n-1 H i n-1 (0)( Hin (r 2 ) -Hin (0)) + λ i n-1 ,in H in (r 2 )( Ĥi n-1 (s n-1 ) -Ĥi n-1 (0)) = λ i 1 ,in (H in (r 2 ) -H in (0))( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 ))

+ λ in,i 1 (H i 1 (r 1 ) -H i 1 (r 1 + s 1 ))( Ĥin (r 2 ) -Ĥin (0)) + λ in,i n-1 H i n-1 (s n-1 )( Hin (r 2 ) -Hin (0)) + λ i n-1 ,in H in (0)( Ĥi n-1 (s n-1 ) -Ĥi n-1 (0)) letting s n-1 → 0 leads to λ i 1 ,in (H in (r 2 ) -H in (0))( Ĥi 1 (r 1 + s 1 ) -Ĥi 1 (r 1 )) = λ in,i 1 (H i 1 (r 1 + s 1 ) -H i 1 (r 1 ))( Ĥin (r 2 ) -Ĥin (0)) as i 1 , i n , r 2 , s 1 , r 1 are arbitrary, divide the formula by r 2 s 1 and let r 2 , s 1 go to zero leads to λ i 1 ,in H ′ in (0) Ĥ′ i 1 (r 1 ) = λ in,i 1 H ′ i 1 (r 1 ) Ĥ′ in (0), finally note that Ĥ′ i = 1/H i , thus λ i 1 ,in (H 2 in ) ′ (0) = λ in,i 1 (H 2 i 1 ) ′ (r 1 ). Lemma 6. For all i ∼ j, let W i,j = λ i,j A j /2 = λ j,i A i /2, there exists constant ϕ j depends only on j, such that f i,j (x) = W i,j x + ϕ j .

Proof. As (H 2 j (s)) ′ = A j , there exists B j such that H 2 j (s) = A j s + B j , therefore f i,j • h -1 j (s) = λ i,j H j (s) = λ i,j A j s + B j .

On the other hand, (h

-1 j ) ′ (s) = 1 √ A j s+B j
, thus for some C j ,

h -1 j (s) = 2 A j A j s + B j + C j .
f i,j (h -1 j (s)) = f i,j ( 2 A j A j s + B j + C j ) = λ i,j A j s + B j , which leads to f i,j (x) = W i,j x + ϕ j , where ϕ j is some constant depends only on j. Applying the time change

D(s) = i l i (s) -ϕ i ϕ i ,
the resulting process will be of jump rate W i,j ϕ i ϕ j (1 + T j (t))

where T j (t) is the local time for the time changed process Z t = X D-1 (t) .
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 2 Figure 2: An example of σ and T (σ).
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 3 Figure 3: the trajectories σ and τ in Lemma 5.

  Definition 8. A continuous time nearest neighbor jump process is said to be partially exchangeable in density if the densities are equal for any two equivalent trajectories. Or equivalently, the density depends only on final local times and the transition counts.

t 0 1 σs=i ds denotes the local time.

3.2 Equivalence of the two notions

It turns out that in the case of nearest neighbor jump process with continuous jump rate functions, the notion of partial exchangeability in Definition 5 and in Definition 8 are equivalent.

Proposition 1. If a continuous time nearest neighbor jump process is partially exchangeable in the sense of Definition 8, then it is partially exchangeable in the sense of Definition 5.
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