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How Vertex reinforced jump process arises naturally

Xiaolin ZENG

Abstract

We prove that the only nearest neighbor jump process with local dependence on
the occupation times satisfying the partial exchangeability property is the vertex
reinforced jump process, under some technical conditions. This result gives a coun-
terpart to the characterization of edge reinforced random walk given by Rolles [9].

1 Introduction

One of the most remarkable results in probabilistic symmetries is the de Finetti’s theo-
rem [3], which states that the law of any exchangeable sequence valued in a finite state
space is in fact a mixture of i.i.d. sequences. This theorem has a geometrical interpreta-
tion via Choquet’s theorem. More precisely, the subspace of exchangeable probabilities
forms a convex, and those probabilities given by i.i.d. sequences are exactly the extreme
points of the convex.

In the 1920s, W.E. Johnson conjectured that, under some technical conditions, if a
process Xn is exchangeable and P(Xn+1 = i|X0, · · · , Xn) depends only on the number
of times i occurs and the total steps n, then Xn is nothing but the famous Polya urn:
drawing balls uniformly from an urn and put back one additional ball with same color
as the drawn one. This is a process with linear reinforcement. In term of random
walk the natural counterpart of Polya urn is the edge reinforced random walk (ERRW):
Diaconis conjectured that this process have the same characterization as Polya urn. In [9]
S.W.W.Rolles have shown that both conjectures are true under technical conditions.

The vertex reinforced jump process (VRJP) is a linearly reinforced process in con-
tinuous time. In a recent paper, Sabot and Tarres [10] have shown that ERRW is a
mixture of VRJP, which indicates that the VRJP are building blocks of ERRW, thus
should share a similar characterization. We prove that this is true in the sense that we
give a counterpart of the characterization given by Rolles.

2 Definitions and results

Let G be a connected graph such that each vertex have finite degree, define its vertex
set V and edge set E. Denote i ∼ j if {i, j} ∈ E, assume that G contains no loops
(edges with one endpoint).

Definition 1. We call (Xt)t≥0 a nearest neighbor jump processes on G, if it is a random
process which is right continuous without explosion, and each jump is from some vertex
i to one of its neighbors j (i.e. i ∼ j).

Definition 2. A nearest neighbor jump process Xt is a unique mixture of Markov jump
process if there exists a unique probability measure µ on Markov jump processes such
that L(Xt) =

∫

L(Yt)µ(dY ), where L denotes the law of respective processes. If for µ
a.e. the Markov process is reversible, then the process is a unique mixture of reversible
Markov process.
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Freedman introduced the notion of partial exchangeability in continuous time in [7].
Define the transition count from i to j of a finite string of states of length n: ξ =
(ξ0, ξ1, · · · , ξn) to be

Ni,j(ξ) = #{k, 0 ≤ k ≤ n− 1, ξk = i, ξk+1 = j}.

Define two finite strings of states ξ, η to be equivalent and denoted ξ ∼ η, if ξ and η
start at the same state and the transition count from i to j of any pair (i, j) are equal
for ξ and η, i.e. Ni,j(ξ) = Ni,j(η) for all (i, j).

Definition 3 (Freedman). A continuous process Xt is partially exchangeable if for each
h > 0, the law of {Xnh : n = 1, 2, · · · } satisfies the following property: for any ξ ∼ η
of length l,

P(X0 = ξ0, · · · , Xlh = ξl) = P(X0 = η0, · · · , Xlh = ηl).

We recall the de Finetti’s theorem for continuous time Markov chain introduced by
Freedman [7] here,

Theorem 1. Let Xt be a continued time process starting at i0 ∈ G, Xt is mixture of
Markov jump process starting at i0 if

1. Xt has no fixed points of discontinuity, more precisely, for every t, if tn → t, then
P(Xtn → Xt) = 1;

2. Xt is recurrent;

3. Xt is partially exchangeable.

Next, we define the vertex reinforced jump process Xt. Let (We)e∈E be weights on
edges, the process Xt starts at time 0 at some vertex i0, and if X is at vertex i ∈ V at
time t, then, conditioned on the past, the process jumps to a neighbor j of i with rate
Wi,j(1 + lj(t)), where for e = {i, j}, Wi,j = We and lj(t) is the local time of vertex j at
time t:

lj(t) :=

∫ t

0
1Xs=jds.

This process turns out to be partially exchangeable within a time scale: let

D(s) =
∑

i∈V

(li(s)
2 + 2li(s)),

then the process Yt = XD−1(t) is a mixture of Markov chains, c.f. [10] Theorem 2.
Now we can state our main theorem.

Theorem 2. Let Xt be a nearest neighbor jump process on G satisfying the following
assumptions:

1. For all i ∈ V , there exists R
+ homeomorphisms hi such that X is partially ex-

changeable within the time scale D(s) =
∑

i∈V hi(li(s));

2. G is strongly connected (i.e. any two adjacent vertices are in a cycle);

3. The process, at vertex i at time t, jumps to a neighbor j of i with rate fi,j(lj(t))
for some continuous functions fi,j

Then X is a vertex reinforced jump process within time scale, i.e. there exists another
time scale D̃ such that XD̃−1(t) is a vertex reinforced jump process.
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Remarks 1. Note that we do not a priori require fi,j = fj,i, i.e. there is no assumption
of reversibility for Xt; however the VRJP is a mixture of reversible Markov jump process
within time change.

Remarks 2. Concerning the third assumption, we cannot prove the result with rate
fi,j(li, lj), but the case where fi,j(li, lj) = fi(li)fj(lj) can be treated. In fact, by applying
a time change, the process with rate function of the form fi(li)fj(lj) can be reduced to
our theorem.

In section 3, we introduce an equivalent notion of partial exchangeability and, as
an example, we give a different proof of partial exchangeability of VRJP within a time
scale. Section 4 contains the proof of Theorem 2.

3 The two notions of partial exchangeability

3.1 Partial exchangeability, infinitesimal point of view

Consider a nearest neighbor jump process on G satisfying the third assumption of The-
orem 2. As we have assumed regularity on the path of the process (c.f. Definition 1), to
describe the law of our process, it is enough to describe the probability of the following
events:

σ = {X[0,t1[ = i0, X[t1,t2[ = i1, X[t2,t3[ = i2, · · · , X[tn−1,tn[ = in−1, X[tn,t] = in},

which is also denoted

σ : i0
t1−→ i1

t2−t1−−−→ i2 · · · in−1
tn−tn−1−−−−−→ in

t−tn−−−→

in the sequel and we call such an event trajectory.
It turns out that when the jump rate is a continuous function of local times, the law

of our process can be characterized by some function, which will be called density in the
sequel. More precisely:

Definition 4. We say that Xt admits a density if, for all t and for all trajectories

σ = i0
t1−→ i1

t2−t1−−−→ i2 · · · in−1
tn−tn−1−−−−−→ in

t−tn−−−→,

there exists an explicit function dσ, which is a function of tk and ik, such that for all
bounded measurable test function Ψ defined on the trajectories up to time t,

E(Ψ(Xu, u ≤ t)) =
∑

n≥1

∑

i0,··· ,in

∫

dσΨ(σ)dt1 · · · dtn + d
i0

t−→Ψ(i0
t−→)

and obviously we have d
i0

t−→ = P(Xs = i0, 0 ≤ s ≤ t) for the trajectory with no jump.

We will call such a function dσ the density of σ.

Let us now give a notion of partial exchangeability for continuous time process in
terms of density. Define two trajectories σ and τ to be equivalent and denoted σ ∼ τ , if
their discrete chain strings are equivalent and the local times are equal at each vertex.
Formally,

Definition 5. Let

σ = i0
t1−→ i1

t2−t1−−−→ i2 · · · in−1
tn−tn−1−−−−−→ in

t−tn−−−→,
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τ = j0
s1−→ j1

s2−s1−−−−→ j2 · · · jn−1
sn−sn−1−−−−−→ jn

t−sn−−−→ .

Then σ and τ are equivalent if and only if

{

∀i ∈ V, lσi (t) = lτi (t)

∀i, j Ni,j(σ) = Ni,j(τ).

where Ni,j(σ) denotes the number of jumps from i to j in σ, i.e. Ni,j(σ) = Ni,j((i0, · · · , in)),
and lσi (t) =

∫ t
0 1σs=ids denotes the local time.

Definition 6. A continuous time nearest neighbor jump process is said to be partially
exchangeable in density if the densities are equal for any two equivalent trajectories.
More precisely, the density depends only on the local times and the transition counts.

3.2 Equivalence of the two notions

It turns out that in the case of nearest neighbor jump process with continuous rate
functions, the notion of partial exchangeability in Definition 3 and in Definition 6 are
equivalent.

Proposition 1. If a continuous time nearest neighbor jump process is partially ex-
changeable in the sense of Definition 6, then it is partially exchangeable in Freedman’s
definition.

Proof. Suppose that the process Xt is partially exchangeable in density, let h > 0,
consider the event I = {X0 = i0, Xh = i1, · · · , Xnh = in}, let (j0 = i0, j1, · · · , jn) be an
equivalent string of (i0, · · · , in), and J = {X0 = j0, Xh = j1, · · · , Xnh = jn}.

We can construct an application T which maps one continuous trajectory to another
in such a way that T maps bijectively from I to J .

More precisely, as these two trajectories are equivalent, for any pair of neighbors
(i, j), there are exactly the same number of transition counts from i to j. Let us
define T to be the transformation which is a permutation of the time segmentations

[lh, (l + 1)h) of size h; which, for any k, moves the kth transition i
kth−−→ j of I to the

kth transition i
kth−−→ j of J , and leaving the last time segmentation [nh,∞) invariant.

Figure 1 illustrates an example of such application.

0 1 0 2 1

0 2 1 0 1

Figure 1: The transformation T for I = {X0 = 0, Xh = 1, X2h = 0, X3h = 2, X4h = 1}
and J = {X0 = 0, Xh = 2, X2h = 1, X3h = 0, X4h = 1}.

Let
σ = k0

s1−→ k1
s2−→ k2 · · · kN−1

sN−−→ kN
sN+1−−−→

be one trajectory of the event I, it is not hard to check that

T (σ) = k′0
s′1−→ k′1

s′2−→ k′2 · · · k′N−1

s′N−−→ k′N
s′N+1−−−→
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is a trajectory of the event J , and that T is one-one and on-to (c.f. Figure 2). If we fix
the total number of jumps N and the discrete trajectory (k0, k1, · · · , kN ), then T can
be though as a substitution of integration. Thus

0 1 0 2 1

0 2 1 0 1

σ

T (σ)

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 s2s3 s4 s5s6 s7 s8 s9

Figure 2: An example of σ and T (σ).

P(I) =
∑

N

∑

k0,k1,···kN

∫

1s1,··· ,sN+1∈I(N,k0,··· ,kN )dσds1 · · · dsN+1

=
∑

N

∑

k′0,k
′

1,··· ,k
′

N

∫

1s1,··· ,sN∈I′(N,k′0,··· ,k
′

N
)dT (σ)ds1 · · · dsN+1 = P(J),

where I(N, k0, · · · , kN ) is the subset of RN+1 defined as the set of (s1, · · · , sN+1) such

that the event k0
s1−→ k1

s2−→ · · · kN
sN+1−−−→ is in I; and I ′(N, k0, · · · , kN ) is its image by

applying T ; see Figure 2 for a concrete example. As T preserves local times and the
numbers of transition counts, these two integrals are whence equal.

Proposition 2. If a jump process is partially exchangeable in Freedman’s sense, and
its jump rate is a continuous function of local times (in which case the density can be
written down explicitly), then it is also partially exchangeable in density.

Proof. Let Xt denote this process, for h > 0, consider the σ-algebra Fh = σ(Xnh, n ≥ 0),
let

F0 = σ(∪h>0Fh)

and
F = σ(Xt, t ≥ 0).

As in [7], we only consider h running through the binary rationals. Note that F0 = F
thanks to the right continuity of the trajectories.

Let σ = i0
t1−→ i1

t2−t1−−−→ i2 · · · in t−tn−−−→ be a trajectory with n jumps (say n ≥ 1 to
avoid triviality). Let {X(h) ∼ σ/h} denotes the event

{X0 = σ0, Xh = σh, · · · , XNh = σNh, with N = ⌊t/h⌋}.

It turns out that
dσ = lim

h→0
P(X(h) ∼ σ/h)h−n.

In fact, let Ψ = 1X(h)∼σ/h, by definition of dσ,

E(Ψ(Xu, u ≤ t)) = P(X(h) ∼ σ/h) =
∑

k≥1

∑

i1,··· ,ik

∫

dτΨ(τ)dt1 · · · dtk (1)

where
τ = i0

t1−→ i1
t2−t1−−−→ i2 · · · ik−1

tk−tk−1−−−−−→ in
t−tn−−−→ .
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When h is small enough, the sum in (1) must be over k ≥ n, and we have

P(X(h) ∼ σ/h) = P1 + P2.

where for some pk, k = 1, · · · , n depending on h

P1 = P( (Xu)0≤u≤t makes n jumps at times s1, · · · , sn with sk ∈ (pkh, (pk + 1)h] )

P2 = P( (Xu)0≤u≤t makes more than n+ 1 jumps and X(h) ∼ σ/h)

Note that the jump rates are bounded from both below and above, by considering
Poisson processes of jump rates C, where C denotes the upper bound of the rate, we
have

P2 ≤
∑

l≥1

(C(n+ [l/2])h)n+l

(n+ l)!eC(n+[l/2])h
[t/h]l.

Applying Stirling’s formula gives P2 ≤ O(hn+1), thus P2 can be dropped when taking
the limit. In addition,

P1 =

∫ (pn+1)h

pnh
· · ·
∫ (p1+1)h

p1h
dσ dt1 · · · dtn,

note that here dσ depends only on t1, · · · , tn and it is an absolutely integrable function,
by Lebesgue differentiation theorem (Theorem 1.6.19 [13]) limh→0 P1/h

n = dσ. Now let

dσ

dτ

P(Xih ∼ σ/h)h−n

P(Xih ∼ τ/h)h−n

σ ∼ τ , when h is sufficiently small, proceeding as in the diagram shows that dσ = dτ .

3.3 Example: VRJP is partially exchangeable within a time change

Recall that Ys = XD−1(s), we can write down the density of the trajectory σ of the (time
changed) VRJP process Y (For convenience, write sn+1 for s in the sequel), where

σ := i0
s1−→ i1

s2−s1−−−−→ i2 · · · in−1
sn−sn−1−−−−−→ in

s−sn−−−→

its density is (c.f. [11])

dσ =(
1

2
)n

n
∏

k=1

Wik−1,ik

∏

i∈V,i 6=in

1
√

1 + Si(s)

n+1
∏

k=1

dsk

· exp (−
∑

i∼j

Wi,j

2
(
√

(Si(s) + 1)(Sj(s) + 1)− 1)),

(2)

which depends only on final local times and transition counts, thus by Proposition 1,
Y is partially exchangeable. On finite graph it is rather easy to prove that the VRJP
is recurrent (for example, using a representation of VRJP by time changed Poisson
point process as in [10], and then use an argument as in [2] or [12]). Therefore, Y is
a mixture of Markov jump process; in addition, Sabot and Tarres have computed the
mixing measure in [10].

For convenient, we include a proof of this in the sequel, as a corollary of the Propo-
sition 3, since the mechanisms of this proof enlights the proof of the main theorem.
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4 Proof of theorem 1

4.1 Computation of densities

Let X be a nearest neighbor jump process on G satisfying the assumptions of Theorem
2, in particular, recall the time scale

D(s) =
∑

i∈V

hi(li(s)). (3)

Let li(t) be the local time of the process X at vertex i at time t. Let us denote the
process after time change to be

Yt = XD−1(t), (4)

let

Si(s) =

∫ s

0
1Yu=idu (5)

denote the local time of Y . Consider the trajectory

σ : i0
t1−→ i1

t2−t1−−−→ i2 · · · in−1
tn−tn−1−−−−−→ in

t−tn−−−→ (6)

where 0 < t1 < · · · < tn < t, by applying the time change, the corresponding trajectory
for Y is

σY : i0
s1−→ i1

s2−s1−−−−→ i2 · · · in−1
sn−sn−1−−−−−→ in

s−sn−−−→
where sk = D(tk).

Proposition 3. With the same settings as in equations (3) (4) (5) (6), the density of
the trajectory σY for Y is

dYσ = exp



−
∫ s

0

∑

j∼Yv

fYv ,j(h
−1
j (Sj(v)))

h′Yv
(h−1

Yv
(SYv(v)))

dv





n
∏

k=1

fik−1,ik(h
−1
ik

(Sik(sk−1)))

h′ik−1
(h−1

ik−1
(Sik−1

(sk)))
.

Proof. Remark that if at time tk the process just jumps to ik, then during the time
interval [tk, tk+1), the jump rate to any adjacent vertex j is fik,j(lj(t)), which is constant
equal to fik,j(lj(tk)). Therefore, the holding time τk+1 := tk+1 − tk is exponentially
distributed of rate

∑

j∼ik
fik,j(lj(tk)).

On the other hand, using an elementary property of exponential variable, the prob-
ability that at time tk+1 the process jumps to ik+1 is

fik,ik+1
(lik+1

(tk))
∑

j∼ik
fik,j(lj(tk))

.

Combining these and using substitution tk = τ1+ · · ·+ τk, the density dσ for the process
X admits the following explicit form:

dσ = exp



−
∫ t

0

∑

j∼Xu

fXu,j(lj(u))du





n
∏

k=1

fik−1,ik(lik(tk−1)).

Recall that in (3) we assumed that hi : R
+ → R

+ are diffeomorphisms satisfying hi(0) =
0.

Next we compute the same density but for the process Ys = XD−1(s), as we have
Si(D(s)) = hi(li(s)), derivation leads to

Si(D(s))′ = D′(s)1YD(s)=i = h′i(li(s))1Xs=i.
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Hence

(D−1(t))′ =
1

D′(D−1(t))
=

1

h′Y
t−

◦ h−1
Y
t−
(SY

t−
(t))

lik(tk−1) = h−1
ik

(Sik(D(tk−1))) = h−1
YSk

(SYSk
(sk−1)).

By substitution s = D−1(t), we have

dYσ = exp (−
∫ s

0

∑

j∼Yv

fYv ,j(h
−1
j (Sj(v)))

h′Yv
(h−1

Yv
(SYv(v)))

dv)
n
∏

k=1

fik−1,ik(h
−1
ik

(Sik(sk−1)))

h′ik−1
(h−1

ik−1
(Sik−1

(sk)))
.

Back to the partial exchangeability of VRJP

Proof. Apply the previous proposition to VRJP, where fi,j(lj) = Wi,j(1+lj) and hi(li) =
l2i + 2li.

The density dYσ is

1

2n
exp



−
∫ s

0

∑

j∼Yu

WYu,j

√

Sj(u) + 1

2
√

SYu(u) + 1
du





n
∏

k=1

(

Wik−1,ik

√

Sik(sk−1) + 1
√

Sik−1
(sk) + 1

)

.

As our path is left continuous without explosion, starting at i0, if we calculate the
product through the path, by telescopic simplification, it results that the product reduces
to

∏

i∈V i 6=in

1
√

Si(s) + 1

n
∏

k=1

Wik−1,ik .

While the integral inside the exponential becomes

∫ s

0

∑

j∼Yu

WYu,j

√

Sj(u) + 1

2
√

SYu(u) + 1
du

=

n+1
∑

k=1

∫ sk

sk−1

∑

j∼Yu

WYu,j

√

Sj(u) + 1

2
√

SYu(u) + 1
du

=
n+1
∑

k=1

∑

j∼ik−1

Wik,j

2

√

Sj(sk−1) + 1
(√

Sik−1
(sk) + 1−

√

Sik−1
(sk−1) + 1

)

=
∑

i∼j

Wi,j

2

n+1
∑

k=1

1ik−1=i

(

√

(Sj(sk−1) + 1)(Si(sk) + 1)−
√

(Sj(sk−1) + 1)(Si(sk−1) + 1)

)

.

summing through the path, for every pair i, j, there goes another telescopic simplifica-
tion, which gives (2), and expression (2) depend only on final local times and transition
counts, the result hence follows.

4.2 Determination of time change h

In the sequel we work with the time changed process Y , to simplify notations, we will
write dσ for dYσ when it does not lead to any confusion. By Proposition 3, the density
of certain trajectory contains an exponential term and a product term, let us denote

dσ = exp(−
∫

σ) ·
∏

σ,
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with










∫

σ =
∫ s
0

∑

j∼Yv

fYv,j(h
−1
j (Sj(v)))

h′

Yv
(h−1

Yv
(SYv (v)))

dv

∏

σ =
∏n

k=1

fik−1,ik
(h−1

ik
(SYsk

(sk−1)))

h′

ik−1
(h−1

ik−1
(SYsk−1

(sk)))

Where the exponential term stems from those exponential waiting times, and the product
term corresponds to the probability of the discrete chain.

The heuristics of this subsection is the following: as we assumed partial exchange-
ability, if we consider two equivalent trajectories, then their densities share the same
expression, by comparing them we can hence deduce certain equalities involving fi,j and
hi etc. It turns out that these equalities determine his then fi,js.

The following fact is simple but important, suppose that at time s, the random walker
arrives at i0, each vertex i has accumulated local time li := Si(s); then it jumps to i1
after an amount of time t, by Proposition 3, the density has acquired a multiplicative
factor

exp



−
∫ s+t

s

∑

j∼i0

fi0,j ◦ h−1
j (lj)

h′i0 ◦ h
−1
i0

(li0 + v)
dv



 ·
fi0,i1 ◦ h−1

i1
(li1)

h′i0 ◦ h
−1
i0

(li0 + t)
. (7)

This fact is in constant use in the sequel, when we explicit the density of certain trajec-
tory.

Lemma 1. Let σ = i0
s1−→ i1

s2−s1−−−−→ i2 · · · in−1
sn−sn−1−−−−−→ in

s−sn−−−→ be a trajectory, then
∫

σ =

∫

σ̃ +

∫

σ̂ where

∫

σ̃ =

∫ s

0

∑

j∈σ,j∼Yv

fYv ,j(h
−1
j (Sj(v)))

h′Yv
(h−1

Yv
(SYv(v)))

dv,

∫

σ̂ =

∫ s

0

∑

j /∈σ,j∼Yv

fYv ,j(h
−1
j (Sj(v)))

h′Yv
(h−1

Yv
(SYv(v)))

dv

and if τ is such that τ ∼ σ, then

∫

σ̂ =

∫

τ̂ .

Proof. Note that for j /∈ σ, Sj(u) = 0 for all u ≤ s. Let Ĥi be a primitive of
1

h′i ◦ h−1
i

,

∫

σ̂ =
∑

j /∈σ

∫ s

0
1Yv∼j

fYv ,j(0)

h′Yv
(h−1

Yv
(SYv(v)))

dv

=
∑

j /∈σ,i∈σ,j∼i

fi,j(0)

∫ s

0

1Yv=i

h′i(h
−1
i (Si(v)))

dv

=
∑

j /∈σ,i∈σ,j∼i

fi,j(0)(Ĥ(Si(s))− Ĥ(0))

which depends only on final local times, thus if τ ∼ σ, then

∫

τ̂ =

∫

σ̂.

In the sequel cst denotes some constant, which can vary from line to line.

Lemma 2. If the process X admits such a time change D which makes it partially
exchangeable in density, then for any i ∼ j, there exists some constants λi,j such that

fi,j(x) = λi,jh
′
j(x), ∀x ≥ 0. (8)
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Proof. Let ǫ > 0, consider the following two trajectories for the process Y :

σ = i
ǫ−→ j

ǫ−→ i
t−→ j

s−→ i
·−→

τ = i
t−→ j

s−→ i
ǫ−→ j

ǫ−→ i
·−→

Note that σ and τ have the same transition counts and the final local times on vertex i, j
are respectively equal. Thus the densities of these trajectories are a.s. equal by partial
exchangeability. By Lemma 1,

dσ =
∏

σ · exp(
∫

σ̃ +

∫

σ̂),

with










∏

σ =
fi,j◦h

−1
j (0)

h′

i◦h
−1
i (ǫ)

· fj,i◦h
−1
i (ǫ)

h′

j◦h
−1
j (ǫ)

· fi,j◦h
−1
j (ǫ)

h′

i◦h
−1
i (ǫ+t)

· fj,i◦h
−1
i (ǫ+t)

h′

j◦h
−1
j (ǫ+s)

∫

σ̃ =
∫ ǫ
0

fi,j◦h
−1
j (0)

h′

i◦h
−1
i (v)

dv +
∫ ǫ
0

fj,i◦h
−1
i (ǫ)

h′

j◦h
−1
j (v)

dv +
∫ t
0

fi,j◦h
−1
j (ǫ)

h′

i◦h
−1
i (ǫ+v)

dv +
∫ s
0

fj,i◦h
−1
i (ǫ+t)

h′

j◦h
−1
j (ǫ+v)

dv.

dτ =
∏

τ · exp(
∫

τ̃ +

∫

τ̂),

with










∏

τ =
fi,j◦h

−1
j (0)

h′

i◦h
−1
i (t)

· fj,i◦h
−1
i (t)

h′

j◦h
−1
j (s)

· fi,j◦h
−1
j (s)

h′

i◦h
−1
i (t+ǫ)

· fj,i◦h
−1
i (ǫ+t)

h′

j◦h
−1
j (ǫ+s)

∫

τ̃ =
∫ t
0

fi,j◦h
−1
j (0)

h′

i◦h
−1
i (v)

dv +
∫ s
0

fj,i◦h
−1
i (t)

h′

j◦h
−1
j (v)

dv +
∫ ǫ
0

fi,j◦h
−1
j (s)

h′

i◦h
−1
i (t+v)

dv +
∫ ǫ
0

fj,i◦h
−1
i (ǫ+t)

h′

j◦h
−1
j (s+v)

dv;

where we do not explicte
∫

σ̂ and
∫

τ̂ as they cancel when we compare these expressions
(c.f. Lemma 1).

Letting ǫ → 0 yields that exp(
∫

σ̃) = exp(
∫

τ̃); therefore
∏

σ =
∏

τ , i.e.

∀s, t,
fi,j ◦ h−1

j (s)

h′j ◦ h−1
j (s)

· fj,i ◦ h
−1
i (t)

h′i ◦ h−1
i (t)

= cst.

Now fix t, let s vary, whence

∀s, fi,j ◦ h−1
j (s) = cst · h′j ◦ h−1

j (s),

and let λi,j denotes this constant, as h−1
j is a diffeomorphism, its range is R

+, which
allows us to conclude.

The next lemma states in some sense that the exponential part and the product part
appearing in the density of a trajectory can be treated separately.

Lemma 3. Let σ, τ be two trajectories, and denote

dσ = exp(

∫

σ) ·
∏

σ, dτ = exp(

∫

τ) ·
∏

τ,

if σ ∼ τ , then
∏

σ =
∏

τ .
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Proof. We have SYsk
(sk) = SYsk

(sk−1), thus Lemma 2 yields that fik−1,ik◦h−1
ik

(SYsk
(sk−1)) =

λik−1,ikh
′
ik
◦ h−1

ik
(SYsk

(sk)). Whence the product part is

∏

σ =

n
∏

k=1

fik−1,ik(h
−1
ik

(SYsk
(sk−1)))

h′ik−1
(h−1

ik−1
(SYsk−1

(sk)))
dsk =

n
∏

k=1

λik−1,ik

∏

i∈V

1

h′i ◦ h−1
i (Si(tn))

,

and the last term depends only on the transition counts and final local times.

Lemma 4. Let Hi = h′i ◦ h−1
i , then for some constant Ai,

(H2
i )

′ = Ai and if i ∼ j, then λi,jAj = λj,iAi.

Remarks 3. The latest equality tells that the process is reversible. However, we did not
assume the reversibility of the process, but vertex reinforced jump processes are reversible
(as a mixture of reversible Markov jump process), so are the edge reinforced random
walks. In contrast, directed edge reinforced random walks are mixtures of non reversible
Markov chains, with independent Dirichlet environments. We can hence expect that the
reversibility is a consequence of a non oriented linear reinforcement (where linearity
corresponds to partial exchangeability).

Proof. Recall that we have assumed that the graph is strongly connected, i.e. if i, j
are two adjacent vertices, there exists a shortest cycle i1 ∼ i2 ∼ i3 · · · ∼ in ∼ i1 with
i1 = i, in = j and the iks are distinct.

in−1

in

i1

i2
in−2

in−1

in

i1

i2
in−2

σ τ

Figure 3: the trajectories σ and τ in Lemma 4.

Let (i1 = i, i2, i3, · · · , in = j) be a cycle as described, consider the trajectories (c.f.
Figure 3)

σ = i1
r1−→ in

r2−→ i1
s1−→ i2

s2−→ i3 · · · in−2
sn−2−−−→ in−1

sn−1−−−→ in

τ = i1
r1−→ i2

s2−→ i3 · · · in−2
sn−2−−−→ in−1

sn−1−−−→ in
r2−→ i1

s1−→ in.

As σ ∼ τ , by Lemma 3 and Lemma 1,
∫

σ̃ =
∫

τ̃ . Also let

σ′ = i1
r1−→ in

r2−→ i1
s1−→ i2

s2−→ i1

τ ′ = i1
r1−→ i2

s2−→ i1
s1−→ in

r2−→ i1,

thus
∫

σ̃′ =
∫

τ̃ ′. We are going to compute explicitly
∫

σ̃,
∫

τ̃ etc, using (7), let s =

r1 + r2 + s1 + · · ·+ sn−1 and recall that Ĥi is a primitive of
1

h′i ◦ h−1
i

.

∫

σ̃ =
∑

(i,j)∈σ2,i∼j

λi,j

∫ s

0
1Yv=i

h′j ◦ h−1
j (v)

h′i ◦ h−1
i (v)

dv

= λi1,i2Hi2(0)(Ĥi1(r1 + s1)− Ĥi1(0)) + λi2,i1Hi1(r1 + s1)(Ĥi2(s2)− Ĥi2(0))

+ λi1,in

(

Hin(0)(Ĥi1(r1)− Ĥi1(0)) +Hin(r2)(Ĥi1(r1 + s1)− Ĥi1(r1))
)

+ λin,i1Hi1(r1)(Ĥin(r2)− Ĥin(0)) + λin,in−1Hin−1(0)(Ĥin(r2)− Ĥin(0))

+ λin−1,inHin(r2)(Ĥin−1(sn−1)− Ĥin−1(0)) + ∆
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where ∆ is defined as follows: let Qk := Hik(0)(Ĥik−1
(sik−1

) − Ĥik−1
(0)) and Q′

k :=

Hik(sk)(Ĥik+1
(sik+1

)− Ĥik+1
(0)),

∆ =
n−1
∑

k=3

λik−1,ikQk + λik,ik−1
Q′

k−1.

For τ̃ we have:

∫

τ̃ =
∑

(i,j)∈τ2,i∼j

λi,j

∫ s

0
1Yv=i

h′j ◦ h−1
j (v)

h′i ◦ h−1
i (v)

dv

= λi1,i2Hi2(0)(Ĥi1(r1)− Ĥi1(0)) +Hi2(s2)(Ĥi1(r1 + s1)− Ĥi1(r1))

+ λi2,i1Hi1(r1)(Ĥi2(s2)− Ĥi2(0))

+ λi1,in

(

Hin(0)(Ĥi1(r1)− Ĥi1(0)) +Hin(r2)(Ĥi1(r1 + s1)− Ĥi1(r1))
)

+ λin,i1Hi1(r1)(Ĥin(r2)− Ĥin(0)) + λin,in−1Hin−1(sn−1)(Ĥin(r2)− Ĥin(0))

+ λin−1,inHin(0)(Ĥin−1(sn−1)− Ĥin−1(0)) + ∆

with the same ∆. Also
∫

σ̃′ = λi1,i2

(

Hi2(0)(Ĥi1(r1)− Ĥi1(0)) +Hi2(0)(Ĥi1(r1 + s1)− Ĥi1(r1))
)

+ λi2,i1Hi1(r1 + s1)(Ĥi2(s2)− Ĥi2(0))

+ λi1,in

(

Hin(0)(Ĥi1(r1)− Ĥi1(0)) +Hin(r2)(Ĥi1(r1 + s1)− Ĥi1(r1))
)

+ λin,i1Hi1(r1)(Ĥin(r2)− Ĥin(0))

∫

τ̃ ′ = λi1,i2

(

Hi2(0)(Ĥi1(r1)− Ĥi1(0)) +Hi2(s2)(Ĥi1(r1 + s1)− Ĥi1(r1))
)

+ λi2,i1Hi1(r1)(Ĥi2(s2)− Ĥi2(0))

+ λi1,in

(

Hin(0)(Ĥi1(r1)− Ĥi1(0)) +Hin(0)(Ĥi1(r1 + s1)− Ĥi1(r1))
)

+ λin,i1Hi1(r1 + s1)(Ĥin(r2)− Ĥin(0)).

Recall that
∫

σ −
∫

σ′ =
∫

τ −
∫

τ ′, which leads to

λin,in−1Hin−1(0)(H̃in(r2)− H̃in(0)) + λin−1,inHin(r2)(Ĥin−1(sn−1)− Ĥin−1(0))

= λi1,in(Hin(r2)−Hin(0))(Ĥi1(r1 + s1)− Ĥi1(r1))

+ λin,i1(Hi1(r1)−Hi1(r1 + s1))(Ĥin(r2)− Ĥin(0))

+ λin,in−1Hin−1(sn−1)(H̃in(r2)− H̃in(0)) + λin−1,inHin(0)(Ĥin−1(sn−1)− Ĥin−1(0))

letting sn−1 → 0 leads to

λi1,in(Hin(r2)−Hin(0))(Ĥi1(r1 + s1)− Ĥi1(r1)) =

λin,i1(Hi1(r1 + s1)−Hi1(r1))(Ĥin(r2)− Ĥin(0))

as i1, in, r2, s1, r1 are arbitrary, divide the formula by r2s1 and let r2, s1 go to zero leads
to

λi1,inH
′
in(0)Ĥ

′
i1(r1) = λin,i1H

′
i1(r1)Ĥ

′
in(0),

finally note that Ĥ ′
i = 1/Hi, thus λi1,in(H

2
in
)′(0) = λin,i1(H

2
i1
)′(r1).
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Lemma 5. For all i ∼ j, let Wi,j = λi,jAj/2 = λj,iAi/2, there exists constant Dj

depends only on j, such that fi,j(x) = Wi,jx+Dj.

Proof. As (H2
j (s))

′ = Aj , there exists Bj such that H2
j (s) = Ajs+Bj , therefore

fi,j ◦ h−1
j (s) = λi,jHj(s) = λi,j

√

Ajs+Bj .

On the other hand, (h−1
j )′(s) = 1√

Ajs+Bj

, thus for some Cj ,

h−1
j (s) =

2

Aj

√

Ajs+Bj + Cj .

fi,j(h
−1
j (s)) = fi,j(

2
Aj

√

Ajs+Bj + Cj) = λi,j

√

Ajs+Bj , which leads to

fi,j(x) = Wi,jx+Dj ,

where Dj is some constant depends only on j. Applying the time change

D(s) =
∑

i

li(s)−Di

Di
,

the resulting process will be of jump rate

Wi,jDiDj(1 + Tj(t))

where Tj(t) is the local time for the time changed process Zt = XD−1(t).

Acknowledgments: I would like to thank Christophe Sabot for his constant support
in this project.
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