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ABSTRACT

In this paper, we generalize the Discrete Extended Kalman
Filter (D-EKF) to the case where the state and the observa-
tions evolve on Lie group manifolds. We propose a new filter
called Discrete Extended Kalman Filter on Lie Groups (D-
LG-EKF). It assumes that the posterior distribution of the
state is a concentrated Gaussian distribution on Lie group.
Our formalism yields closed-form equations for both non-
linear discrete propagation and update of the distributionpa-
rameters based on the likelihood. We also show that the D-
LG-EKF reduces to the traditional D-EKF if the state evolves
on an Euclidean space. Our approach leads to a systematic
methodology for the design of filters, which is illustrated by
the application to a camera pose estimation problem. Results
show that the D-LG-EKF outperforms both a constrained D-
EKF and a D-EKF applied on the Lie algebra of the Lie group.

Index Terms— Extended Kalman Filter, Lie Groups,
Discrete time filtering, Filtering on manifolds

1. INTRODUCTION

This paper deals with the estimation of a state evolving on
a manifold. Taking into account the geometry of a manifold
usually leads to well-posed problems and hence can boost the
performances of algorithms. A few works tried to extend dis-
crete Euclidean filtering algorithms to manifolds. For exam-
ple, particle filters for states evolving on a Riemannian [1],
Stiefel [2] or Grassmann [3] manifolds have been proposed.
In this paper we extend the Discrete Extended Kalman Fil-
ter (D-EKF) [4] defined for a state and measurements evolv-
ing on Euclidean spaces to the case of a state and measure-
ments evolving on matrix Lie groups. Typical examples of
such groups include rotation matricesSO (3), unitary quater-
nionsSU (2), rigid-body motionSE (3), homographiesSL (3)

and invertible matricesG L (3).
A large amount of works modeling the state on a Lie

group has dealt with the specific groupsSO(3) , SU (2) or
SE (3). Among them [5] and [6] modified the unscented
Kalman filter to estimate a unitary quaternion. In [7] an al-
gorithm able to estimate the trajectory of a state evolving on
SE (3) is described. In [8], an Invariant Momentum-tracking
Kalman Filter is derived to estimate a unitary quaternion and
an angular momentum vector. Aside from these specific al-

gorithms, a generic constrained filter [9] could be applied to
this problem, by embedding the state in a vector space and
enforcing an equality constraint to ensure the state to remain
on the embedded Lie group manifold. This approach does
not take the geometry of the Lie group into account in an
intrinsic manner and may lead to degenerated configurations
as we will discuss later.

In contrast to these approaches, this paper introduces a
framework that is both generic and adapted to Lie group ge-
ometry. It can be tailored to specific applications by designing
the Lie Group on which the state is defined. Our formalism
is also able to take into account measurements evolving on a
Lie group. Assuming the posterior distribution of the stateis a
concentrated Gaussian on Lie groups, we propose a tractable
formulation of discrete error propagation and update that we
call Discrete Extended Kalman Filter on Lie groups (D-LG-
EKF). Moreover, we show that the D-LG-EKF reduces to the
D-EKF if the state evolves on an Euclidean space.

The rest of the paper is organized as follows: Section 2
introduces some Lie group and Lie algebra notions as well as
the concentrated Gaussian distribution on Lie group formal-
ism. The D-LG-EKF theory is presented in Section 3 and the
differences with the D-EKF as well as the applicability of our
formalism are discussed. In section 4, the D-LG-EKF perfor-
mances are illustrated on a camera pose estimation problem.
Finally the conclusion and future research directions are pro-
vided in Section 5.

2. PRELIMINARIES

2.1. Lie Groups and Lie Algebras
In this section we give the definitions and basic properties of
matrix Lie Groups and Lie Algebra. For a detailed description
of these notions the reader is referred to [10]. We focus on
matrix Lie Groups since they cover most Lie groups of inter-
est in signal and image processing. A Lie GroupG is a group
which has also the structure of a smooth manifold such that
group composition and inversion are smooth operations. IfG

is a matrix Lie group, theng ∈G ⊂ Rn×n and its operations
are matrix multiplication and inversion with the identity ma-
trix as identity elementI d n×n . Note that an Euclidean space
is a trivial matrix Lie Group. The matrix exponentiale x pG

and matrix logarithml o gG mappings establish a local diffeo-
morphism between an open neighborhood of0n×n in the tan-



gent space at the identityTe G , called theLie Algebrag, and an
open neighborhood ofI d n×n in G . The Lie Algebrag associ-
ated to ap -dimensional matrix Lie group is ap -dimensional
vector space defined by a basis consisting of real matrices
E i for i = 1. . .p . Hence there is a linear isomorphism be-
tweeng andRp that we denote as follows:[·]∨

G
: g → Rp

and [·]∧G : Rp → g. For example leta ∈ g ⊂ Rn×n , then we
have[a]∨

G
= a ∈ Rp . Thus we can define a basis[E i ]

∨
G
= e i

where{e i } is the natural basis ofRp anda=
∑p

i=1
a i E i with

a =
�

a 1 . . . a p

�T
. We also defineM ⊂ G andS ⊂ Rp as the

sets on whiche x pG and l o gG are bijective functions. The
two previous notions are summarized in fig. 1.

M ⊂G ⊂Rn×n

l o g G

→

←
ex pG

g⊂Rn×n

[·]∨
G
→

←
[·]∧G

S ⊂Rp

Fig. 1. Mappings between the Lie group, its Lie algebra and
Rp

Lie groups are usually non-commutative. The two follow-
ing operators capture this property (X ∈G , a ,b ∈Rp ):

• The Adjoint representation ofG onRp is defined as the
operatorAdG : AdG (X )a =

�

X [a ]∧
G

X−1
�∨

G

• The adjoint representation ofRp onRp is defined as the
operatora dG : a dG (a )b =

�

[a ]∧G [b ]
∧
G − [b ]

∧
G [a ]

∧
G

�∨

G

Finally let’s introduce the Baker-Campbell-Haussdorff for-
mula which expresses the group product directly inRp :
�

l o gG

�

e x pG

�

[a ]∧
G

�

e x pG

�

[b ]∧
G

���∨

G

= a +b +O
�

|a ,b |2
�

(1)

The following related formula will be useful for our deriva-
tions:
�

l o gG

�

e x pG

�

[−a ]∧
G

�

e x pG

�

[a +b ]∧
G

���∨

G

= a +ΦG (a )b +O
�

|b |2
�

(2)

whereΦG (a ) =
∑∞

m=0

(−1)m

(m+1)!
a dG (a )

m .

2.2. Concentrated Gaussian Distribution on Lie Groups

In this section we introduce the concept of concentrated Gaus-
sian on Lie groups [11, 12] as a generalization of the normal
distribution in Euclidean space which is used in the D-EKF
formalism. In order to define such a distribution, the consid-
ered Lie group has to be a connected unimodular matrix Lie
group. Henceforth, in the rest of the paper, when referring to
Lie groups, we will consider this assumption to hold. Note
that this is the case of most Lie groups of interest such as
SO (3), SE (3), SL (3), Rn ... From [11] the following distribu-
tion can be defined:

ρ (X ) =αe
− 1

2

�

[l o g G (X )]
∨

G
P−1[l o g G (X )]

∨

G

�

(3)

Where α is a normalizing constant,X ∈ G , G is a p -
dimensional Lie group andP is a definite positive matrix.
Probability of elements outside ofM is set to zero. Let’s de-
fine ε as follows:ε =

�

l o gG (X )
�∨

G
whereε ∈ S. Whenρ (X )

is tightly focused around the group identity (i.e the maximum
of the eigenvalues ofP is small), the distribution ofε can
be approximated by a classical Euclidean Gaussian distribu-
tion defined onRp of mean0p×1 and covariance matrixP :
NRp

�

0p×1, P
�

. In this case, the distribution ofX is called a
concentrated Gaussian distribution onG around the identity.
It can be moved aroundµ ∈ G using the left action of the
Lie group, producing a concentrated Gaussian onG centered
aroundµ (denotedX ∼NG

�

µ, P
�

):

X =µe x pG

�

[ε]∧G

�

(4)

µ will be called the mean ofX , ε can be seen as a Lie alge-
braic error of mean0p×1 and covarianceP. Figure 2 provides
a graphical interpretation of the transfer of the probability dis-
tribution fromε to X . Such a distribution allows us to describe
the covariance of the state inRp and hence using Euclidean
tools while being invariant w.r.t the left action of the group on
itself.

G G

Lµ

µµ

I d n×n I d n×n

e x pG

g

NRp

�

0p×1, P
�

NG

�

µ, P
�

NG (I d n×n , P)

Fig. 2. Concentrated Gaussian on Lie groups

3. DISCRETE EXTENDED KALMAN FILTER ON
LIE GROUPS THEORY

The Discrete Extended Kalman Filter (D-LG-EKF) theory is
built upon the formalism of the concentrated Gaussian distri-
bution on Lie groups.

3.1. System Model

Let the system state be modeled as satisfying the following
equation:

Xk = f (Xk−1, u k−1, n k−1)

= Xk−1 e x pG

�

[Ω(Xk−1, u k−1)+n k−1]
∧
G

�

(5)

whereXk ∈G is the state we wish to estimate at timek and
G is a p -dimensional Lie group.u k−1 ∈ Rw corresponds to
a control input andn k−1 ∼NRp

�

0p×1, Rk−1

�

is a white Gaus-
sian noise.Ω : G ×Rw →Rp is a non-linearC 2 function.



We also consider discrete measurements on aq -dimensional
Lie groupG ′:

z k = h (Xk )e x pG ′

�

[wk ]
∧
G ′

�

(6)

wherez k ∈G ′ andwk ∼ NRq

�

0q×1,Qk

�

is a white Gaussian
noise.

3.2. Proposed solution

We assume the state posterior distribution to be a concen-
trated Gaussian distribution on Lie groups:p (Xk |z 1, . . . , z l )≈

NG

�

µk |l , Pk |l

�

. We focus onl = k−1 (propagation) andl = k

(update). Therefore, the aim of the D-LG-EKF is to propagate
and update the distribution parametersµk−1|k−1 andPk−1|k−1.
In our formalism,µ is the state estimate. The maximum of the
eigenvalues of the white Gaussian noises covariance matrices
considered in section 3.1 are assumed to be small in order to
apply the concentrated Gaussian distribution formalism.

3.2.1. Propagation

We assume that the state posterior distribution at timek −1 is
represented byNG

�

µk−1|k−1, Pk−1|k−1

�

. Therefore, the aim of
this section is to show how to propagateµk−1|k−1 andPk−1|k−1

between two consecutive sensor measurements.

Mean PropagationThe state estimate is propagated using the
state model without noise:

µk |k−1 =µk−1|k−1e x pG

�
�

Ω̂k−1

�∧

G

�

(7)

whereΩ̂k−1 =Ω
�

µk−1, u k−1

�

.

Covariance PropagationIn order to propagate the covari-
ance, we study the Lie algebraic error propagation. The state
error onG can be expressed as follows:

e x pG

�
�

εk |k−1

�∧

G

�

=µ−1

k |k−1
Xk

= e x pG

�
�

−Ω̂k−1

�∧

G

�

e x pG

�
�

εk−1|k−1

�∧

G

�

e x pG

�

[Ω(Xk−1, u k−1)+n k−1]
∧
G

�

(8)

LinearizingΩ in µk−1|k−1 and using equations (1) and (2), one
can obtain the following Lie algebraic error propagation:

εk |k−1 =Fk−1εk−1|k−1+ΦG

�

Ω̂k−1

�

n k−1+O
�
�

�εk−1|k−1, n k−1

�

�

2
�

(9)
where

Fk−1 = AdG

�

e x pG

�

−Ω̂k−1

��

+ΦG

�

Ω̂k−1

�

Ck−1 (10)

and

Ck−1 =
∂

∂ ε
Ω
�

µk−1|k−1e x pG

�

[ε]∧
G

�

, u k−1

�

|ε=0 (11)

As in the D-EKF case, terms inO
�
�

�εk−1|k−1

�

�

2
�

are neglected.

Moreover, we do not consider terms inO
�
�

�εk−1|k−1, n k−1

�

�

2
�

since, because of the concentrated Gaussian assumption,n k−1

is assumed to be small.
Under these conditions:E

�

εk |k−1

�

=mk |k−1 = 0p×1. Fi-
nally, we obtain the following covariance propagation for-
mula:

Pk |k−1 =E
h

εk |k−1ε
T
k |k−1

i

=Fk−1Pk−1|k−1F
T
k−1
+ΦG

�

Ω̂k−1

�

Rk−1ΦG

�

Ω̂k−1

�T
(12)

Propagation step summaryAt the end of the propagation
step, the estimated state is parametrized as follows:

Xk |z 1, . . . , z k−1 ∼NG

�

µk |k−1, Pk |k−1

�

(13)

whereεk |k−1 ∼NRp

�

mk |k−1 = 0p×1, Pk |k−1

�

.

3.2.2. Update

This step consists in incorporating the information coming
from the measurementz k into the Lie algebraic error. It is
followed by a reparametrization of the state to satisfy to the
concentrated Gaussian distribution assumption.

Lie algebraic error update Let’s define the following inno-
vation term:

z̃ k =
�

l o gG ′

�

h
�

µk |k−1

�−1
z k

��∨

G ′

=
h

l o gG ′

�

e x pG ′

�

Hkεk |k−1+O
�
�

�εk |k−1

�

�

2
��

e x pG ′

�

[wk ]
∧
G

�
�i∨

G ′

(14)

where

Hk =
∂

∂ ε

�

l o gG ′

�

h
�

µk |k−1

�−1
h
�

µk |k−1e x pG

�

[ε]∧G

����∨

G
|ε=0

(15)
Using equation (1), we obtain:

z̃ k =Hkεk |k−1+wk +O
�
�

�εk |k−1, wk

�

�

2
�

(16)

As in the D-EKF case, terms inO
�
�

�εk |k−1

�

�

2
�

are neglected.

Moreover, we do not consider terms inO
�
�

�εk |k−1, wk

�

�

2
�

since, because of the concentrated Gaussian assumption,wk

is assumed to be small.
Equation (16) is linear inεk |k−1 which evolves onRp .

Therefore, we can apply the classical update equations of the
Kalman filter [13] to updateεk |k−1 into the posterior distribu-
tion asε−k |k ∼ NRp

�

m−
k |k , P−k |k

�

wherem−
k |k andP−k |k can be

calculated as follows:







Kk = Pk |k−1H
T
k

�

Hk Pk |k−1H
T
k +Qk

�−1

m−
k |k = 0p×1+Kk

�

z̃ k −Hk 0p×1

�

P−k |k = (I d −KkHk )Pk |k−1

(17)



State ReparametrizationAt the end of the update step, we
expect to haveXk =µk |k e x pG

�
�

εk |k

�∧

G

�

with E
�

εk |k

�

= 0p×1

(conditionally to z 1, . . . , z k ), to satisfy the concentrated
Gaussian distribution definition (4). However we have
E

�

ε−k |k

�

= m−
k |k 6= 0p×1. Hence, we perform the following

reparametrization:

µk |k =µk |k−1e x pG

�
�

m−
k |k

�∧

G

�

(18)

Thus, using equation (2) and neglecting terms inO

�
�

�

�ε−k |k

�

�

�

2
�

,

we obtain:
mk |k = 0p×1 (19)

Pk |k =ΦG

�

m−
k |k

�

P−k |kΦG

�

m−
k |k

�T
(20)

Update Step SummaryAt the end of the update step, the
estimated state is parametrized as follows:

Xk |z 1, . . . , z k ∼NG

�

µk |k , Pk |k

�

(21)

whereεk |k ∼ NRp

�

mk |k = 0p×1, Pk |k

�

. The LG-EKF algo-
rithm is summarized below:

Algorithm 1 D-LG-EKF Algorithm

Inputs :µk−1|k−1, Pk−1|k−1, u k−1, z k

Outputs :µk |k , Pk |k

Propagation :

µk |k−1 =µk−1|k−1e x pG

�
�

Ω̂k−1

�∧

G

�

Pk |k−1 =Fk−1Pk−1|k−1F
T
k−1
+ΦG

�

Ω̂k−1

�

Rk−1ΦG

�

Ω̂k−1

�T

Update :

Kk =Pk |k−1H
T
k

�

Hk Pk |k−1H
T
k +Qk

�−1

m−
k |k = Kk

�
�

l o gG ′

�

h
�

µk |k−1

�−1
z k

��∨

G ′

�

µk |k =µk |k−1e x pG

�
�

m−
k |k

�∧

G

�

Pk |k =ΦG

�

m−
k |k

�

(I d l×l −KkHk )Pk |kΦG

�

m−
k |k

�

3.3. Discussion

The D-LG-EKF generalizes the D-EKF. An Euclidean
space is a trivial Lie group where functionse x p , l o g , [·]∧,
[·]∨, Ad andΦ are identity mappings. Furthermore, in this
case, group composition and inversion correspond to vector
addition and subtraction. Consequently, equations (5) and(6)
generalize the traditional additive noise Euclidean equations
Xk = f (Xk−1, u k−1) + n k−1 andz k = h (Xk ) +wk (see [4]) .
Moreover, for Euclidean space, matricesFk−1 andHk cor-
respond to Jacobians off andh calculated atµk−1|k−1 and
µk |k−1 respectively. Therefore, it is straightforward to see
that the D-LG-EKF (see alg.1) reduces to the D-EKF (see
[4]) whenG andG ′ are Euclidean spaces.

Why not employing a D-EKF to solve our problem ?Esti-
mating a stateX ∈G ⊂Rn×n while considering measurements
z ∈ G ′ ⊂ Rm×m , whereG andG ′ are Lie groups of dimen-
sion p andq respectively, is not coherent with the D-EKF

theory which was developed to estimate states evolving on
Euclidean spaces. However, it is possible to adapt the con-
strained D-EKF formalism [9] in an ad hoc manner to fit to
this problem, assumingX ∈ Rn×n , vectorizing it and con-
sidering the group geometry as a state constraint. Such an
algorithm (noted D-EKF Constr in the experiments) treats the
geometry of the Lie group as an extrinsic constraint, thus the
filtering is performed in the Euclidean embedding spaceRl

of the Lie group, wherel > p . Consequently, both the state
and the measurement covariance matrices are singular which
causes issues during the Kalman gain computation.

Another way to employ a D-EKF to solve our problem
is to estimatex =

�

l o gG (X )
�∨

G
instead ofX [14] (noted D-

EKF LieAlg in the experiments) and to consider measure-
ments
�

l o gG ′ (z )
�∨

G ′
. To apply such a filter,l o gG andl o gG ′

must be defined over the whole group. In this case, the D-EKF
LieAlg is a suitable alternative to the D-LG-EKF and does
not produce singular covariance matrices. However,l o gG ′

may be discontinuous for some groups such asSO (3) which
would yield the innovation to be incorrectly large even witha
small error on the group.

When is the D-LG-EKF applicable ? The D-LG-EKF ap-
plies for Lie groups of interest such as:SO (3) andSU (2) (ro-
tation),SL (3) (homographies),SE (2) andSE (3) (rigid body
motion), (R+∗,×) (scale factor),(Rn ,+) (any element of an
Euclidean space) or products of these spaces. For commu-
tative Lie groups, our formalism greatly simplifies since ev-
ery term dealing with non-commutativity disappear such as
Φ. For SO (3) andSE (3), analytic expressions ofl o g , e x p

andΦ are available [15]. ForSL (3), these functions have to
be numerically approached.

When implementing a D-LG-EKF, the choice of the ap-
propriate Lie group (direct product ’×’, semi-direct product
’⋊’ or twisted product ’⋆’ between the spaces) as well as the
choice of its associated Lie algebra basis, remain a modeling
question for the practitioner.

4. SIMULATION RESULTS

We choose to evaluate the proposed formalism on a camera
pose estimation problem. It deals with estimating the camera
positionT ∈R3 and orientationR ∈SO (3) using a white-noise
acceleration model. Therefore, both the angular velocityω ∈

R3 and the radial velocityv ∈ R3 are also estimated. We as-
sumeR andT are directly observed. Finally, we choose to
consider the following Lie groups :G =SO (3)×R3×R3×R3

andG ′ =SO (3)×R3 with the classical basis ofSO (3) [15].
To compare the results of the D-LG-EKF, we imple-

mented two other filters, a D-EKF Constr and a D-EKF
LieAlg (introduced in 3.3). We simulate a room as a 3D point
cloud cube and assume the camera to be perfectly calibrated.
Then, we generate trajectories and create sequences of mea-
surements inG ′ using a maximum likelihood algorithm such
as [16]. The covariance of each measurement is estimated



by propagating the covariance from each 3D observed point.
For all the filters,T andR are perfectly initialized with small
variances whereasω and v are set to zero with large vari-
ances.

Figure 3 reports the RMSE of each filter w.r.t sampling
rateδt . The RMSE is defined as the square root of the av-
erage of the following errors :





µT −T






2

2
(position error) and








l o gSO3

�

�

µR
T R
�∨

SO(3)

�









2

2

(orientation error).

As it was expected by the theoretical differences outlined
in 3.3, both the D-EKF Constr and the D-EKF LieAlg di-
verge. Indeed, in the D-EKF Constr, the moreδt grows, the
more the state estimate is projected far from the true opti-
mal state, which results in the incorrect estimates of the fil-
ter and numerical instabilities. For smallδt , these effects
are limited. Concerning the D-EKF LieAlg case, when the
norm of the vector describing the rotation in the Lie algebra
go overπ, the estimation becomes incorrect because of the
SO (3) logarithm discontinuity. As opposed to these two fil-
ters, the D-LG-EKF does not suffer from those limitations
and consequently it does not diverge, and efficiently smooths
the camera trajectory. Asδt grows, the state model becomes
less informative which is why the D-LG-EKF RMSE comes
closer to the measurements RMSE.

Finally, we also considered the case where the matrices
ΦG in the D-LG-EKF algorithm are replaced by identity ma-
trices. We call this version: D-LG-EKF NoPhi. It turns out
that neglecting the matricesΦG only slightly reduces the per-
formances of the algorithm in the considered case. Therefore,
depending on the required accuracy of the considered appli-
cation, one can choose to replace them by identity matrices.

Fig. 3. RMSE of the filters (RMSER : orientation and
RMSET : position) calculated on 2000 trajectories
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5. CONCLUSION

In this paper, we proposed a new generic algorithm called
Discrete Extended Kalman Filter on Lie Groups that gener-
alizes the Discrete Extended Kalman Filter to the case where
the state and the observations evolve on Lie group manifolds.
Assuming the posterior distribution is a concentrated Gaus-
sian distribution, we showed how to propagate and update the
distribution parameters. The systematic methodology of our
algorithm was illustrated by a camera pose estimation prob-
lem where both a constrained D-EKF and a D-EKF applied
on the Lie algebra of the Lie group were outperformed. We
believe that, in this type of application, our new algorithm
allows one to replace the D-EKF.

6. REFERENCES

[1] H Snoussi and A Mohammad-Djafari, “Particle filtering onriemannian
manifolds,” inAIP Conference , Vol. Issue 1, p219, 2006, vol. 872.

[2] Frank Tompkins and Patrick J. Wolfe, “Bayesian filteringon the stiefel
manifold,” in IEEE International Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing, 2007.

[3] Q Rentmeesters, P. Absil, P. Van Dooren, K. Gallivan, andA. Srivas-
tava, “An efficient particle filtering technique on the grassmann mani-
fold,” in IEEE International Conference on Acoustics Speech and Sig-
nal Processing, 2010.

[4] Simon S Haykin et al.,Kalman filtering and neural networks, Wiley
Online Library, 2001.

[5] E. Kraft, “A quaternion-based unscented kalman filter for orientation
tracking,” in International Conference on Information Fusion, 2003,
vol. 1, pp. 47–54.

[6] J. Crassidis and F. Markley, “Unscented filtering for spacecraft attitude
estimation,”Journal of Guidance, Control, and Dynamics, vol. 26, pp.
536–542, 2003.

[7] Paul Smith, Tom Drummond, and Kimon Roussopoulos, “Computing
map trajectories by representing, propagating and combining pdfs over
groups,” inICCV, 2003, pp. 1275–1282.

[8] S. Persson and I. Sharf, “Invariant momentum-tracking kalman filter for
attitude estimation,” inRobotics and Automation (ICRA), 2012 IEEE
International Conference on, 2012, pp. 592–598.

[9] D. Simon, “Kalman filtering with state constraints: a survey of linear
and nonlinear algorithms,”IET Control Theory & Applications, vol. 4,
no. 8, pp. 1303–1318, 2010.

[10] G.S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Springer, 2012.

[11] Y. Wang and G. Chirikjian, “Error propagation on the euclidean group
with applications to manipulators kinematics,”IEEE Transactions on
Robotics, vol. 22, 2006.

[12] K. Wolfe, M. Mashner, and G. Chirikjian, “Bayesian fusion on lie
groups,”Journal of Algebraic Statistics, vol. 2, pp. 75–97, 2011.

[13] P. Maybeck, Stochastic Models, Estimation, and Control, Academic
Press, 1979.

[14] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry,An Invitation to 3D Vision:
From Images to Geometric Models, Springer, 2004.

[15] J Selig, “Lie groups and lie algebras in robotics,”Computational Non-
commutative Algebra and Applications, pp. 101–125, 2005.

[16] Chien-Ping Lu, Gregory D. Hager, and Eric Mjolsness, “Fast and glob-
ally convergent pose estimation from video images,”IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 22, no. 6, pp. 610–622, 2000.


