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DISCRETE EXTENDED KALMAN FILTER ON LIE GROUPS
Guillaume Bourmaud, Rémi Mégret, Audrey Giremus and YarBécthoumieu

Université de Bordeaux, Laboratoire IMS CNRS UMR 5218,
351 cours de la Libération, 33405 Talence cedex, France

ABSTRACT gorithms, a generic constrained filter [9] could be applizd t
In this paper, we generalize the Discrete Extended Kalma%hIS prpblem, by embeddmg _the state in a vector space and
. enforcing an equality constraint to ensure the state to irema
Filter (D-EKF) to the case where the state and the observa- 4 . .
. . : .. on the embedded Lie group manifold. This approach does
tions evolve on Lie group manifolds. We propose a new filter

call Discrete Exended Kaman Fieron L Groups (0 99 1 Se07ely o e woup o ecountln o,
LG-EKF). It assumes that the posterior distribution of the y 9 9

) . o : as we will discuss later.
state is a concentrated Gaussian distribution on Lie group. In contrast to these approaches, this paper introduces a

Our formalism yields closed-form equations for both non- : ) .
X . . IS framework that is both generic and adapted to Lie group ge-
linear discrete propagation and update of the distribupian . o Co .
N ometry. It can be tailored to specific applications by deisign
rameters based on the likelihood. We also show that the D7 . : : ) :
. . the Lie Group on which the state is defined. Our formalism
LG-EKF reduces to the traditional D-EKF if the state evolves. . .
) s also able to take into account measurements evolving on a
on an Euclidean space. Our approach leads to a systemafic ) S T
. i o 1e group. Assuming the posterior distribution of the state
methodology for the design of filters, which is illustrated b . :
S L oncentrated Gaussian on Lie groups, we propose a tractable
the application to a camera pose estimation problem. Resul Srmulation of discrete error bropadation and undate theat w
show that the D-LG-EKF outperforms both a constrained D- propag P

) . . call Discrete Extended Kalman Filter on Lie groups (D-LG-
EKFand a D-EKF applied onthe Lie algebraof the Lie grOUp'EKF). Moreover, we show that the D—LG—EKFgredlE)ce(s to the

Index Terms— Extended Kalman Filter, Lie Groups, D-EKF if the state evolves on an Euclidean space.
Discrete time filtering, Filtering on manifolds The rest of the paper is organized as follows: Section 2
introduces some Lie group and Lie algebra notions as well as
1. INTRODUCTION the concentrated Gaussian distribution on Lie group formal

This paper deals with the estimation of a state evolving oS- The D-LG-EKF theory is presented in Section 3 and the
a manifold. Taking into account the geometry of a manifolgdifferences with the D-EKF as well as the applicability of ou
usually leads to well-posed problems and hence can boost tf@rmalism are discussed. In section 4, the D-LG-EKF perfor-
performances of algorithms. A few works tried to extend dismances are illustrated on a camera pose estimation problem.
crete Euclidean filtering algorithms to manifolds. For exam Finally the conclusion and future research directions aoe p
ple, particle filters for states evolving on a Riemannian [1] Vided in Section 5.
Stiefel [2] or Grassmann [3] manifolds have been proposed. 2 PRELIMINARIES
In this paper we extend the Discrete Extended Kalman Fil-
ter (D-EKF) [4] defined for a state and measurements evolv2.1. Lie Groups and Lie Algebras
ing on Euclidean spaces to the case of a state and measuhethis section we give the definitions and basic propertfes o
ments evolving on matrix Lie groups. Typical examples ofmatrix Lie Groups and Lie Algebra. For a detailed descriptio
such groups include rotation matriced(3), unitary quater- of these notions the reader is referred to [10]. We focus on
nionsSU (2), rigid-body motionSE(3), homographieSL(3)  matrix Lie Groups since they cover most Lie groups of inter-
and invertible matrice& L(3). est in signal and image processing. A Lie Gr@ufs a group

A large amount of works modeling the state on a Liewhich has also the structure of a smooth manifold such that
group has dealt with the specific grou®(3) , SU(2) or  group composition and inversion are smooth operations. If
SE(3). Among them [5] and [6] modified the unscentedis a matrix Lie group, thelg € G c R**” and its operations
Kalman filter to estimate a unitary quaternion. In [7] an al-are matrix multiplication and inversion with the identityam
gorithm able to estimate the trajectory of a state evolving o trix as identity elemenid,,. Note that an Euclidean space
SE(3) is described. In [8], an Invariant Momentum-trackingis a trivial matrix Lie Group. The matrix exponentiekpg
Kalman Filter is derived to estimate a unitary quaterniott an and matrix logarithniogs mappings establish a local diffeo-
an angular momentum vector. Aside from these specific almorphism between an open neighborhood,gf,, in the tan-



gentspace at the identifyG, called the_ie Algebrag, andan  Where a is a normalizing constantX € G, G is a p-
open neighborhood dfd ., in G. The Lie Algebrag associ- dimensional Lie group and® is a definite positive matrix.
ated to gp-dimensional matrix Lie group is a-dimensional  Probability of elements outside f is set to zero. Let’s de-
vector space defined by a basis consisting of real matricd®e ¢ as follows:e = [logg (X)]é wheree € S. Whenp (X)
E; for i = 1...p. Hence there is a linear isomorphism be-is tightly focused around the group identity (i.e the maximu
tweeng andR” that we denote as followsf]/, : g — R?  of the eigenvalues oP is small), the distribution of can
and[-]} : R? — g. For example let € g c R, then we  be approximated by a classical Euclidean Gaussian distribu
have[a]é =a € RP. Thus we can define a bas{iB,-]é =e; tion defined orR? of mean0,.; and covariance matri® :
wheref{e;} is the natural basis 6t” anda =377, a;E; With %, (0,1, P). In this case, the distribution of is called a
a= (al...a,,)T. We also defingf c G andS c R? as the concentrated Gaussian distribution Graround the identity.
sets on whichexpg andlogg are bijective functions. The It can be moved around € G using the left action of the
two previous notions are summarized in fig. 1. Lie group, producing a concentrated Gaussiatazentered
aroundu (denotedX ~ A (u, P)):

logg Lg

McGcRwn CRPn . SCRP X= A 4
. 9 . =upexpg ([€]y) (4)
expg [’(}

u will be called the mean ok, ¢ can be seen as a Lie alge-
braic error of mea®, ., and covarianc®. Figure 2 provides
Fig. 1. Mappings between the Lie group, its Lie algebra anda graphical interpretation of the transfer of the probabilis-
tribution frome to X. Such a distribution allows us to describe
the covariance of the state i’ and hence using Euclidean
tools while being invariant w.r.t the left action of the gpoon
e The Adjoint representation @f onR is defined as the itself.

p
R Lie groups are usually non-commutative. The two follow-
ing operators capture this propery € G, a,b e RP):

operatorAdg: Adg(X)a= [X[a]gxfl]é N (01, P) expe
e The adjoint representation &8 onR? is defined as the \ NG (d pxn, P)
3 ,
operatotad : adg(a)b = [[al} [b]} — b1 [al}] Idnin L,

Finally let’s introduce the Baker-Campbell-Haussdorfi-fo
mula which expresses the group product directigin

[togc (expq (laly) expe (1b1))]

=a+b+0(ja,bP) (1) A6 (1, P)

The following related formula will be useful for our deriva- G G

tions:
Fig. 2. Concentrated Gaussian on Lie groups

[1ogc (expe (1-al}) expe (la+b13))] .,
=a+®c(a)b+0(|bf) ) 3. DISCRETE EXTENDED KALMAN FILTER ON
LIE GROUPS THEORY

wheredg (a)=Y"_, %dd@ (a)™.

The Discrete Extended Kalman Filter (D-LG-EKF) theory is
built upon the formalism of the concentrated Gaussianidistr

2.2. Concentrated Gaussian Distribution on Lie Groups  p tion on Lie groups.

In this section we introduce the concept of concentrated&Gau

sian on Lie groups [11, 12] as a generalization of the norma:?'l' System Model

distribution in Euclidean space which is used in the D-EKFLet the system state be modeled as satisfying the following
formalism. In order to define such a distribution, the consid equation:

ered Lie group has to be a connected unimodular matrix Lie

group. Henceforth, in the rest of the paper, when referiing t Xie = f(Xi-1, Uk—1, 1ge—1)

Lie groups, we will consider this assumption to hold. Note =Xi_1expg ([Q(Xk,l, le71)+nk—1]/(\;) %)

that this is the case of most Lie groups of interest such as

SO(3), SE(3), SL(3), R™... From [11] the following distribu- WhereX; € G is the state we wish to estimate at tirheand
tion can be defined: G is ap-dimensional Lie groupu;_, € R¥ corresponds to

1 . . a control input andi_; ~ A% (OPXI,R,H) is a white Gaus-
p(X)= ae’i(["’gﬂ(x)]cp [1oge(x];;) (3) sian noiseQ: G x R¥ — R? is a non-linears? function.



We also consider discrete measurementsgiaanensional since, because of the concentrated Gaussian assumgpgign,

Lie groupG’: is assumed to be small.
. Under these conditionsE [€x-1] = Mik-1 = 0px1. Fi-
zk=h(Xi)expg ([wk]cf) (6) nally, we obtain the following covariance propagation for-
, ) ) mula:
wherez, € G’ andwy. ~ Az (04x1,Qx ) is a white Gaussian
noise. Peg-1=E [€k|k—1€Z|k—l]
. ~ ~ T
3.2. Proposed solution = Fpr Py FL |+ (Qk—l) Ri 1@ (Qk—l) (12)

We assume the state posterior distribution to be a conce
trated Gaussian distribution on Lie groupgXy|zy,...,z;)~
AN (Ui, Py ). We focus onl = k—1 (propagation) and = k
(update). Therefore, the aim of the D-LG-EKF is to propagate Xel2 1,2kt ~ N (kfe—1> Pefit) (13)
and update the distribution parametgsjx—1 andPy_jx_1.

In our formalismyu is the state estimate. The maximum of thewheree 1 ~ Ak» (mk|k_1 = opxl,P,dk_l) .

eigenvalues of the white Gaussian noises covariance restric

considered in section 3.1 are assumed to be small in order 92 2. Update

apply the concentrated Gaussian distribution formalism.

rfb_ropagation step summaryAt the end of the propagation
step, the estimated state is parametrized as follows:

This step consists in incorporating the information coming
from the measurement; into the Lie algebraic error. It is
followed by a reparametrization of the state to satisfy ® th
We assume that the state posterior distribution at fima is  concentrated Gaussian distribution assumption.
represented byyG (ti-1je-1, Pi-1e-1)- Therefore, the aim of | je algebraic error update Let's define the following inno-
this section is to show how to propagate .- andPc_1jk-1  vation term:

between two consecutive sensor measurements.

3.2.1. Propagation

Mean PropaggtionThe state estimate is propagated using the Zk= [lOgG’ (h (i)™ Zk)] é

state model without noise: _ [log(;/ (expcf (%kekuc—l 40 ({ek”c—l{z)) expe ([wklé))]l
Pklk—1 = Uk—1/k—1€XPG ([Qk—l]g) (7) (14)

Whel'er_l =0 (,uk—h Ltk_l). where

Covariance Propagationin order to propagate the covari- 0 a A v
ance, we study the Lie algebraic error propagation. The stat v = 3¢ (1086 (1 (uaie1) ™" h (-1 expe ([€15))) [ le=o

error onG can be expressed as follows: _ _ _ (15)
Using equation (1), we obtain:

expe ([exi-1]g) =l Xk

=expg ([_Qkfl]/c\) expg ([€k71|k71]/(\;)
expe ([QXk—1, ux—1)+nealg) (8) As in the D-EKF case, terms i@ ()ek“c_l{z) are neglected.

Zk:%kekuc_]+wk+o(}€k|k—l’wk}2) (16)

. . 2
Linearizing® in ux_1 -1 and using equations (1) and (2), one Moreover, we do not consider terms m({eklkfl»wk) )
can obtain the following Lie algebraic error propagation: ~ Since, because of the concentrated Gaussian assumgption,
is assumed to be small.

€kjk—1 = Fk-1€k-11k-1+PG (Qk,l) Ng-1+0 (}ek,nk,l,nk,l}z) Equation (16) is linear iregx—; which evolves onRk?.
(9)  Therefore, we can apply the classical update equationsof th
where Kalman filter [13] to update,—; into the posterior distribu-

) ) tion asey ~ A (M P ) Wherem, and P, can be
Fra=Adg (expe (—%1)) +@c (%) 61 (10)  calculated as follows:

and
-1
Kl N Kie =P A} (%kpklk—I%IZ"'Qk)
Cre1 = %Q (H’C*”k*lexPG ([G]G)’uk*) le=o (11) My = Opx1 + K (Zk—%”kopxl) a7

, , P =(Id — Ki.%6) Pejr_
As in the D-EKF case, terms i ({ek_uk_l}z) are neglected. klk kI T

. 2
Moreover, we do not consider termsdn({ek_uk_l,nk_l{ )



State ReparametrizationAt the end of the update step, we theory which was developed to estimate states evolving on
expectto havey = uyrexpe ([ek,k]g) WIth E [€k ] = 0,1 Euclidean spaces. However, it is possible to adapt the con-
(conditionally to zi,...,zx), to satisfy the concentrated strained D-EKF formalism [9] in an ad hoc manner to fit to
Gaussian distribution definition (4). However we havethis problem, assuming € R”**", vectorizing it and con-

E [e;lk] = my, # Opx1. Hence, we perform the following sidering the group geometry as a state constraint. Such an

reparametrization: algorithm (noted D-EKF Constr in the experiments) treags th
R geometry of the Lie group as an extrinsic constraint, thes th
Uklk = Uklk-1€XPG ([m;“c]c) (18) filtering is performed in the Euclidean embedding spaée

) of the Lie group, wheré > p. Consequently, both the state
)' and the measurement covariance matrices are singular which
causes issues during the Kalman gain computation.
Another way to employ a D-EKF to solve our problem
is to estimatex = [logg (X)], instead ofX [14] (noted D-
P =P ("”h&k) Py %6 (ml;lk)T (20)  EKF LieAlg in th experiments) and_to consider measure-
ments[loge (2)] .- To apply such a filterlogs andloge
must be defined over the whole group. In this case, the D-EKF
LieAlg is a suitable alternative to the D-LG-EKF and does
not produce singular covariance matrices. Howevegg
Xilzv, oz~ A6 (1eik Peik) (1) may be discontinuous for some groups sucls@&3) which
where ey ~ Age (m;dk =0px1,Pk|k). The LG-EKF algo- would yield the innovation to be incorrectly large even vath
rithm is summarized below: small error on the group.

When is the D-LG-EKF applicable ? The D-LG-EKF ap-
plies for Lie groups of interest such &0 (3) andSU (2) (ro-

Thus, using equation (2) and neglecting term® i(u

€Lk
we obtain:
Mgk =0px1 (19)

Update Step SummaryAt the end of the update step, the
estimated state is parametrized as follows:

Algorithm 1 D-LG-EKF Algorithm

INPULS *pk—1jk—1, Peorji—1, U1, Zk tation), SL(3) (homographies)$E(2) andSE (3) (rigid body
Outputs ‘Ukjk, Prik motion), (R**, x) (scale factorR”,+) (any element of an
Propagation : Euclidean space) or products of these spaces. For commu-
Uklk—1 = Uk—1]k-1€X PG ([Q,H]g) tative Lie groups, our formalism greatly simplifies since ev

ery term dealing with non-commutativity disappear such as

. ~ T
Pek—1 = Fx1 Pk FL + @6 Q1) Re1 @ (- . :
il k1 Btk Fey F G( K 1) kol G( K 1) ®. ForSO(3) andSE(3), analytic expressions diog, exp

Update : r . 4 and® are available [15]. Fo§L(3), these functions have to
Ki = Peer # L (AP #7 + Qi) . be numerically approached.
My = K ([log(;/ (n (llk|k—1)7lzk)]c,) When implementing a D-LG-EKF, the choice of the ap-

Lkie = Prlk—1€XPG ([mzlk]A) propriate_ Lie group (direct produck’, semi-direct product
P = - \(d _KG% ) Py _ "X’ or Mlgted prodgct&’ bgtween the sp’_atces) as well as thg
ik =@ (mig ) Ui = Kii) Puw®a (mige) choice of its associated Lie algebra basis, remain a maglelin
question for the practitioner.

3.3. Discussion

The D-LG-EKF generalizes the D-EKF. An Euclidean

space is a trivial Lie group where functiomsp, log, [1",  We choose to evaluate the proposed formalism on a camera
[1Y, Ad and® are identity mappings. Furthermore, in this pose estimation problem. It deals with estimating the camer
case, group composition and inversion correspond to vect@ositionT € R? and orientatiorR € SO(3) using a white-noise
addition and subtraction. Consequently, equations (5X&nd acceleration model. Therefore, both the angular velaoity
generalize the traditional additive noise Euclidean eiquat 3 and the radial velocity € R3 are also estimated. We as-
Xie = f(Xg—1, ug—1)+ ne—1 andzyx = h(Xx)+ wi (see [4]) . sumer and T are directly observed. Finally, we choose to
Moreover, for Euclidean space, matric@s_, and.» cor-  consider the following Lie groupsG = SO(3) x R? x R3 x R3
respond to Jacobians ¢gfandh calculated apux—1x-1 and  andG’ = SO(3) x R? with the classical basis &0 (3) [15].

pkik-1 respectively. Therefore, it is straightforward to see T compare the results of the D-LG-EKF, we imple-
that the D-LG-EKF (see alg.1) reduces to the D-EKF (segnented two other filters, a D-EKF Constr and a D-EKF
[4]) whenG andG’ are Euclidean spaces. LieAlg (introduced in 3.3). We simulate a room as a 3D point
Why not employing a D-EKF to solve our problem ?Esti-  cloud cube and assume the camera to be perfectly calibrated.
mating a stat& € G c R”*" while considering measurements Then, we generate trajectories and create sequences of mea-
z € G’ c R™"m whereG andG’ are Lie groups of dimen- surements irG’ using a maximum likelihood algorithm such
sion p and g respectively, is not coherent with the D-EKF as [16]. The covariance of each measurement is estimated

4. SIMULATION RESULTS



by propagating the covariance from each 3D observed point. 5. CONCLUSION

For all the filters,T andR are perfectly initialized with small

variances whereas and v are set to zero with large vari- In this paper, we proposed a new generic algorithm called

ances. Discrete Extended Kalman Filter on Lie Groups that gener-

alizes the Discrete Extended Kalman Filter to the case where

Figure 3 reports the RMSE of each filter w.r.t samplingthe state and the observations evolve on Lie group manifolds

rate6r. The RMSE is defined as the square root of the avassuming the posterior distribution is a concentrated Gaus

erage of the following errors“uT - THz (position error) and  sian distribution, we showed how to propagate and update the

distribution parameters. The systematic methodology of ou

algorithm was illustrated by a camera pose estimation prob-

&em where both a constrained D-EKF and a D-EKF applied

2
“logso3 ([.URTR];/O(?;)) “2 (orientation error).

As it was expected by the theoretical differences outline

in 3.3, both the D-EKF Constr and the D-EKF LieAlg di-
verge. Indeed, in the D-EKF Constr, the méregrows, the
more the state estimate is projected far from the true opt
mal state, which results in the incorrect estimates of the fil
ter and numerical instabilities. For smalk, these effects
are limited. Concerning the D-EKF LieAlg case, when the [1]
norm of the vector describing the rotation in the Lie algebra
go overr, the estimation becomes incorrect because of thel?]
SO(3) logarithm discontinuity. As opposed to these two fil-
ters, the D-LG-EKF does not suffer from those limitations
and consequently it does not diverge, and efficiently smsoth
the camera trajectory. A8t grows, the state model becomes
less informative which is why the D-LG-EKF RMSE comes
closer to the measurements RMSE.

(3]

(4]

Finally, we also considered the case where the matricegs]
@ in the D-LG-EKF algorithm are replaced by identity ma-
trices. We call this version: D-LG-EKF NoPhi. It turns out
that neglecting the matricds; only slightly reduces the per-
formances of the algorithm in the considered case. Thezefor
depending on the required accuracy of the considered applim
cation, one can choose to replace them by identity matrices.

(6]

8]
Fig. 3. RMSE of the filters RMSEg: orientation and
RMSE7: position) calculated on 2000 trajectories [9]
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on the Lie algebra of the Lie group were outperformed. We
believe that, in this type of application, our new algorithm
Iz_;tllows one to replace the D-EKF.
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