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Abstract

We study the escape dynamics in the presence of a hole of a standard family of intermittent
maps of the unit interval with neutral fixed point at the origin (and finite absolutely continuous
invariant measure). Provided that the hole (is a cylinder that) does not contain any neigh-
borhood of the origin, the surviving volume is shown to decay at polynomial speed with time.
The associated polynomial escape rate depends on the density of the initial distribution, more
precisely, on its behavior in the vicinity of the origin. Moreover, the associated normalized push
forward measures are proved to converge to the point mass supported at the origin, in sharp
contrast to systems with exponential escape rate. Finally, a similar result is obtained for more
general systems with subexponential escape rates; namely that the Cesaro limit of normalized
push forward measures is generally singular, invariant and supported on the asymptotic survivor
set.

November 6, 2013.

1 Introduction and setting

The study of systems with holes finds its origin in the study of Markov chains with absorbing states
[25, 34, 35, 36] and was introduced in deterministic dynamical systems by Pianigiani and Yorke [32].
It has focused on the establishment of escape rates and on the existence of conditionally invariant
measures which describe the asymptotic distribution of mass conditioned on non-escape.

Since conditionally invariant measures are badly non-unique [17], physically relevant measures
are usually characterized as the limit of normalized push forward iterates of a reference measure
(usually Lesbegue). Such limiting distributions are typically eigenmeasures with maximal eigen-
value of the corresponding transfer operator defined on an appropriate function space. The maximal
eigenvalue itself gives the exponential rate of escape of mass from the system. These limiting con-
ditionally invariant measures have properties analogous to Sinai-Ruelle-Bowen (SRB) measures for
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the corresponding closed system. Under reasonable assumptions, they converge to the SRB mea-
sure as the size of the hole tends to zero, and this establishes stability under perturbations in the
form of holes.

Examples begin with open systems admitting a finite Markov partition: expanding maps in
R
n [14, 32], Smale horseshoes [6], Anosov diffeomorphisms [7, 8], and some unimodal maps [27].

Subsequent attempts to subsitute the Markov assumption by requiring that the holes be small, have
extended this analysis to Anosov diffeomorphisms with non-Markov holes [9, 10], to expanding maps
of the interval [11, 15, 29], to multimodal maps satisfying a Collet-Eckmann condition [2, 16], to
piecewise hyperbolic maps [18] and recently, to various classes of dispersing billiards [19, 21, 22].

The characteristic common to all these systems is that the rate of escape is exponential (the
systems enjoy exponential decay of correlations before the introduction of the hole) so that the
concept of conditionally invariant measure is well-defined.

Polynomial rates of escape have been studied numerically in some systems [23, 24] and via formal
expansions to obtain leading order terms for the decay rate [3, 4]. However, to our knowledge, there
are no analytical results regarding limiting distributions for systems with polynomial rates of escape.

The purpose of the present paper is to initiate the analysis of open systems with subexponential
rates of escape. For simplicity, we consider a family of intermittent maps of the unit interval, with
neutral fixed point at the origin [30]. For the hole, we take any element of a refined Markov
partition for the map, not adjacent to the origin. (Of note, [26] has also considered interval maps
with neutral fixed point and very specific holes which are either a neighborhood of the neutral fixed
point or its complement.)

In this context, we first prove that the rates of escape must be polynomial for a large class
of initial distributions, and this rate depends on the behavior of the initial distribution in the
neighborhood of the origin. In particular, the polynomial rate of escape with respect to the SRB
measure (before the introduction of the hole) differs from that with respect to Lebesgue measure.

In this setting, conditionally invariant measures are not physically meaningful (although plenty
still exist with any desired eigenvalue [17]). We show that the limit of T̊n

∗ µ/|T̊
n
∗ µ| converges to the

point mass at the neutral fixed point, again for a large class of initial distributions (including both
Lebesgue and the SRB measures).

These results hold independently of the size of the hole. Thus from the point of view of
the physical limit T̊n

∗ µ/|T̊
n
∗ µ|, a hole of any size is always a large perturbation in the context of

subexponentially mixing systems. In other words, the attracting property of the SRB measure
under the action of Tn

∗ is unstable with respect to small leaks in the system.

Finally, we consider more general systems with subexponential rates of escape. The analysis of
intermittent maps of the interval might suggest that the results are specific to this setting. Our
final result Theorem 2.3 shows that this is not the case: in contrast to situations with exponential
escape, in systems with slow escape, the (Cesaro) limit of T̊n

∗ m/|T̊n
∗ m| will always be singular and

will be supported on the survivor set of points that never escape.

1.1 Setting

We study the dynamics of the map of the unit interval T : I → I where I = [0, 1) and T is defined
by (see [30] and Figure 1)

T (x) =

{

x+ 2γxγ+1 if x ∈ [0, 12)
2x− 1 if x ∈ [12 , 1)
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with 0 < γ < 1, after the introduction of a hole H into I. In this parameter range, T preserves a
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Figure 1: Graph of the map T for γ = 3
4 (solid red branches), together with some the intervals

Jn = [an, an−1).

finite invariant measure, µSRB, absolutely continuous with respect to Lebesgue.

In order to define the hole, we need to introduce the (standard) finite and countable Markov
partitions of I. The finite partition is defined by P := {JL, JR} where JL = [0, 12) and JR = [12 , 1).
The countable partition is defined by J := {Jn}n>0 where

Jn =

{

JR if n = 0
[an, an−1) if n > 1

where an = T−n
L (12) and TL denotes the left branch of T . Now, given t > 0, let J (t) be the refined

partition defined as follows

J (t) := J ∨
t
∨

i=0

T−i(P).

The hole H is defined to be any element of J (ℓH) where ℓH > 0 is arbitrary. We shall denote by
Jh ⊇ H with h > 0, the element of J that contains H.

Of note, this assumption on the hole gives immediate access to the countable Markov partition
of the open system. This is convenient for the conditioning arguments in the proof of Lemma 3.2
and for the invariance of a certain function space used in the proof of Theorem 2.2 that implies
control of the structure of the singular limit. However, we believe that this cylinder assumption is
purely technical and we expect our results to hold even when relaxed, although significant technical
modifications will have to be made.

Define I̊ = I \ H and given t > 0, let I̊t =
t
⋂

i=0
T−i(I \ H) represent those points which have

not escaped by time t. We refer to T̊ := T |I̊0 as the map with a hole and its iterates T̊ t = T t|I̊t−1

(t > 1) describe the dynamics of the open system before escape. Notice that J (ℓH) is also a
countable Markov partition for T̊ .
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One of the quantities we will be interested in studying is the rate of escape of mass from the
open system. Given a measure µ on I̊, we define the polynomial rate of escape with respect to µ by

epoly(µ) = − lim
t→∞

logµ(I̊t)

log t
,

whenever the limit exists.

We will also study the asymptotic evolution of absolutely continuous measures that are trans-
ported under the action of T̊ . Given a measure µ on I̊ and t > 1, let T̊ t

∗µ be the push forward
measure under the action T̊ t.

Let m denote Lebesgue measure on I and given f ∈ L1(m), let µf be the absolutely continuous

measure with density f . As in the standard case (without hole), we have T̊ t
∗µ = µL̊tf where

L̊tf := 1I̊0L
t(f1I̊t−1) and L is the transfer operator associated with T , defined by the expression

Lf(x) =
∑

y∈T−1(x)

f(y)

DT (y)
,

where DT > 0 is the (first) derivative of T . In addition, the change of variable formula implies in
this case the following relation

|L̊tf |1 = µf (I̊
t), ∀t > 0,

where | · |1 denotes the L1-norm with respect to Lebesgue measure m.

2 Statement of Results

2.1 Results for the open system T̊

Throughout this section, the hole H is fixed as in the previous section (and so are ℓH and h).
Our first result describes a common set of escape rates for initial distributions depending on their
behavior near 0. Following [37], the notation ut ≈ vt (resp. ut . vt) means there exists C > 0 such
that C−1vt 6 ut 6 Cvt (resp. ut 6 Cvt) for all t.

Theorem 2.1. For any non-negative f ∈ L1(m) for which there exist x0 ∈ (0, 1) and α ∈ [0, 1)
such that

0 < inf
x∈(0,x0)

xαf(x) 6 sup
x∈(0,1)

xαf(x) < +∞,

we have
µf (I̊

t) ≈ t
− 1−α

γ .

Consequently, the associated measure µf has polynomial escape rate, epoly(µf ) =
1−α
γ .

The proof is given in Section 3.2. Of note, to obtain the lower bound on µf (I̊
t) is rather

immediate (see relation (9)). Moreover, ergodicity of the map T implies µf (I̊
t)

t→+∞
−−−−→ 0. Thus,

most of the proof consists in proving the upper bound. This part is inspired by the proof in [37] of
the speed of convergence to the equilibrium measure.

Theorem 2.1 implies in particular that the polynomial escape rate associated with Lebesgue
measure is given by epoly(m) = 1

γ . Interestingly, since dµSRB
dm (x) ≈ x−γ for x near 0 [37], this rate

differs from the one associated with the SRB measure, epoly(µSRB) =
1−γ
γ .
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That the escape rate is polynomial depends on the assumptions on bothH and the initial density
f . Indeed, if the hole included a neighborhood of the neutral fixed point 0, then the corresponding
open system T̊ would be uniformly expanding and the escape rate would be exponential, for any
initial density f ∈ L1(m), see [26, 32] for the Markov case and any of [11, 15, 29] for the non-Markov
case. (Obviously, such holes do not belong to J (t) for any t > 0.)

Alternatively, H = [12 ,
1
2 + dℓH ) ∈ J (ℓH) for some dℓH > 0 can also create exponential behavior

for some initial densities f . Indeed, the map T |[2dℓH ,1) is uniformly expanding and no point in

[2dℓH , 1) can enter the interval [0, 2dℓH ) without first falling into H. Hence, the measure associated
with any smooth density f satisfying f |[0,2dℓH ) ≡ 0 must experience an exponential rate of escape

in this case. (Such densities do not satisfy the assumption of Theorem 2.1.)

However, for any hole not blocking repeated passes through a neighborhood of 0, L̊tf will
eventually be positive in a neighborhood of 0 (and bounded) for any ‘typical’ smooth density f ;
hence Theorem 2.1 implies that the associated measure will experience a polynomial escape rate 1

γ .

Our next result describes the limiting behavior of the sequence {
T̊ t
∗
µf

µf (I̊t)
}t∈N of push forward

probability measures, for initial densities f that are log-Hölder continuous on elements of the
partition J (ℓH). To be precise, let C0(J (ℓH)) denote the set of functions defined in the interior of
I and continuous on each element of J (ℓH). Given f ∈ C0(J (ℓH)), f > 0, p ∈ R

+ and J ∈ J (ℓH),
define the quantity Hp

J(f) as follows

Hp
J(f) =















0 if f ≡ 0 on J
+∞ if f(x) = 0 < f(y) for some x, y ∈ J

sup
x 6=y∈J

log f(x)− log f(y)

|x− y|p
if f > 0 on J

and let ‖f‖p := sup
J∈J (ℓH )

Hp
J(f). Consider also the set of functions,

Fp = {f ∈ C0(J (ℓH)) : f > 0, |f |1 = 1 and ‖f‖p < +∞}.

and its subset
F0
p = {f ∈ Fp : ∃C > 0 and n0 ∈ N such that f | ⋃

n>n0

Jn > C}.

of functions which are bounded away from zero in a neighborhood of 0 (so that their escape rate
captures the behavior of the neutral fixed point).

Theorem 2.2. Let f ∈ F0
p for some p ∈ (0, γ

γ+1 ]. Then the sequence {
T̊ t
∗
µf

µf (I̊t)
}t∈N of absolutely

continuous measures behaves asymptotically as follows

lim
t→+∞

T̊ t
∗µf

µf (I̊t)
= δ0,

where δ0 denotes the point mass at 0 and the convergence is in the weak sense. Moreover, we have

lim
t→+∞

µf (I̊
t+1)

µf (I̊t)
= 1.
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Of note, this last expression of the theorem can be alternatively formulated as

lim
t→+∞

µf (I̊
t \ I̊t+1)

µf (I̊t)
= 0.

Theorem 2.2 applies in particular to Lebesgue measure, since 1 belongs to F0
p for every p ∈ R

+.
(More generally, one easily checks that any positive Hölder continuous density on I with exponent
p belongs to F0

p ). Theorem 2.2 also applies to µSRB since the density fSRB = dµSRB
dm belongs to F0

p

for every p ∈ (0, γ
γ+1 ] as does any normalized density f/|f |1, where f(x) = x−α for some α ∈ (0, 1)

(see Lemma 3.7 in Section 3.3).

As mentioned in the introduction, this theorem implies that arbitrarily small holes in systems
with polynomial rates of escape can act as large perturbations from the point of view of the physical

limit
T̊ t
∗
µf

µf (I̊t)
.

As part of the broader analysis of the dependence of the escape rate on the size and location of
the hole [1, 5, 20, 28], one can also think of stability of the open system in terms of the continuity
of limiting invariant and conditionally invariant objects as we ‘slide’ a hole continuously in I. If we

take Hε = (ε, ε + δ) for some small δ > 0, then for each ε > 0, the sequence T̊ t
∗
m

m(I̊t)
tends to δ0 for

large n. But when ε = 0, H0 = (0, δ), the escape rate is exponential and the sequence T̊ t
∗
m

m(I̊t)
tends

to a conditionally invariant measure that is absolutely continuous with respect to Lebesgue. Thus
once again, the hole is seen as a discontinuous perturbation.

2.2 General open systems: Consequence of a subexponential escape rate

Convergence of
T̊ t
∗
µf

µf (I̊t)
to a singular limit as in Theorem 2.2 is not limited to the map T̊ above.

Indeed, as we show now, this phenomenon occurs very generally when the rate of escape is subex-
ponential.

To see this, let X be a compact, separable metric space and let T : X → X be now an arbitrary
Borel measurable map. Assume there exists a probability measure µ with respect to which T is
nonsingular (but not necessarily invariant). This will be our reference measure.

Let an open set H ⊂ X be the hole and let X̊t =
t
⋂

i=0
T−i(X \ H) denote the survivor set up

until time t ∈ N ∪ {+∞}. Our main assumption on the open system is that µ-almost every point
escapes and that the escape rate is subexponential, i.e. we assume

µ(X̊∞) = 0, µ(X̊t) > 0 for all t > 0 and lim sup
t→+∞

logµ(X̊t)

t
= 0. (1)

In particular, this includes both polynomial and stretched exponential rates of escape (and does
not assume that the limit above converges).

By assumption, all push forward (probability) measures T̊ t
∗
µ

µ(X̊t)
are nonsingular with respect to

µ. Hence, the same is true for

µt =
1

t

t−1
∑

k=0

T̊ k
∗ µ

µ(X̊k)
, (2)

for all t > 1. As the next result shows, any limit point however must be singular. Convergence
here is also understood in the weak sense.
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Theorem 2.3. Any limit point µ∞ of the sequence {µt}t∈N is singular with respect to µ and is
supported on X̊∞. If, in addition, µ∞ gives zero measure to the discontinuity set of T̊ , then µ∞ is
T -invariant.

Interestingly, the averaging method presented here does not work so easily in the case of expo-

nential escape (unless a priori one knows that the limit of T̊ t
∗
µ

µ(X̊t)
itself exists). Indeed, in this case,

the ratio of consecutive normalizations µ(X̊t+1)

µ(X̊t)
does not converge to 1 and the terms appearing in

the sum must be weighed to compensate for this. For an example of an averaging method in the
exponential case under stronger assumptions, see [12, 13]. Theorem 2.3 is proved in Section 3.5.

3 Proofs

3.1 Preliminary estimates

In proving the theorems, we shall repeatedly use the following bounds [37]

an ≈ n
− 1

γ and |Jn| ≈ n
− γ+1

γ . (3)

We shall also rely on the following lemma.

Lemma 3.1. Given n > 0 and t > 1, let x, y ∈ I̊t lie in the same element of J (t+1) such that
T t(x), T t(y) ∈ Jn. Then we have

(a) 1
DT t(x) .

(

n
n+t

)
γ+1
γ
;

(b) for any p ∈ (0, γ
γ+1 ], one has

∣

∣

∣

∣

log
DT t(x)

DT t(y)

∣

∣

∣

∣

. |T t(x)− T t(y)|p.

Proof. (a) Given i ∈ {0, · · · , t − 1}, let Jni
denote the element of J containing T i(x) and T i(y).

Let also Bni
= 2γγ(γ+1)aγ−1

ni be the maximum value of |D2T | and M
(j)
ni be the minimum value of

|DT j | on Jni
, respectively. We have

∣

∣

∣

∣

log
DT t(x)

DT t(y)

∣

∣

∣

∣

6

t−1
∑

i=0

| logDT ◦ T i(x)− logDT ◦ T i(y)|

6

t−1
∑

i=0

Bni

M
(1)
ni

|T i(x)− T i(y)| 6
t−1
∑

i=0

Bni
|T i(x)− T i(y)| . (4)

Following [37], we write |T t(x)− T t(y)| = |DT t−i(z)||T i(x)− T i(y)| for some z ∈ Jni
and use that

the expansion DT t−i(z) decreases as ni increases to conclude that the last sum here is maximised
for ni = n+ t− i, i.e. T i(x), T i(y) ∈ Jn+t−i. Using equation (3) we obtain

∣

∣

∣

∣

log
DT t(x)

DT t(y)

∣

∣

∣

∣

.

t−1
∑

i=0

(n+ t− i)
1−γ
γ (n+ t− i)

− γ+1
γ =

t−1
∑

i=0

(n+ t− i)−2 6 n−1,

where the last inequality follows from
∞
∑

i=n+1
i−2 6

+∞
∫

n
x−2dx.
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Now, T t(x) has no preimage in
⋃

i>n+t
Ji, so the weakest expansion occurs when x ∈ Jn+t. The

previous distorsion estimate implies the existence of C ′ > 0 such that

DT t(x) > C ′ |Jn|

|Jn+t|
.

Using equation (3) again, statement (a) easily follows.

(b) Adopting the same notation as in (a) and starting from (4), we fix p ∈ (0, γ
γ+1 ] and write

∣

∣

∣

∣

log
DT t(x)

DT t(y)

∣

∣

∣

∣

6

t−1
∑

i=0

Bni
|T i(x)− T i(y)|1−p |T

i(x)− T i(y)|p

|T t(x)− T t(y)|p
|T t(x)− T t(y)|p

6

t−1
∑

i=0

Bni
|Jni

|1−p

(M
(t−i)
ni )p

|T t(x)− T t(y)|p.

Using statement (a) and, as in the previous proof, that the worst case scenario in the upper bounds
of equation (3) occurs for ni = n+ t− i, we obtain

∣

∣

∣

∣

log
DT t(x)

DT t(y)

∣

∣

∣

∣

. n
p γ+1

γ

t−1
∑

i=0

(n+ t− i)−2|T t(x)− T t(y)|p 6 n
p γ+1

γ
−1|T t(x)− T t(y)|p

and statement (b) follows from the assumption p 6 γ
γ+1 .

3.2 Estimating escape rates - proof of Theorem 2.1

Recall that H is a cylinder in J (ℓH) and H ⊆ Jh for some h > 0. The main estimate of this section
is the following lemma.

Lemma 3.2. m(I̊t) . t
− 1

γ .

The proof of this lemma is based on the fact that an induced map related to T has exponential
escape rate. To formulate this property, choose nS > h, let IS = [anS

, 1) ⊃ H and consider the
induced map S = TR : IS → IS , where R is the first return time to IS .

Let I̊tS =
t
⋂

i=0
S−i(IS \ H) denote the set of points in IS which do not enter H before time

t under the action of S. The induced open system S|I̊0S
is uniformly expanding with countably

many branches and admits a countable Markov partition which is formed by joining J (ℓH) with
the partition into sets on which R is constant. The action of S on this partition satisfies the large
images condition [15]; hence the following property holds.1

Lemma 3.3. [15] There exists σ < 1 such that m(I̊tS) . σt.

1The full results of [15] also require a “smallness” condition on the size of the hole. This condition is not needed
here since we are not invoking any results regarding a spectral gap for the transfer operator associated with S, but
just an exponential rate of escape, which does not require the hole to be small.
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Proof of Lemma 3.2. We first assume there exists d > 0 such that [12 ,
1
2 + d) ∩ H = ∅. The

complementary case is much simpler and will be addressed at the end of the proof.

Without loss of generality, we can choose the index nS that defines IS sufficiently large so that
anS

2 < d, viz. the open system makes full returns to the interval JS = [12 ,
1
2 +

anS

2 ) before entering

I \ IS . In order to obtain the estimate on m(I̊t), we consider separately the sets I̊t ∩ IS and
I̊t ∩ [0, anS

).

Case I. Estimate for points in I̊t ∩ IS. Consider the decomposition of I̊t ∩ IS into subsets Et
k of

points having made k passes through I \ IS before time t. After each pass through I \ IS , an orbit
must spend at least nS +1 iterates within IS before making its next pass. It results that the index
k here is at most ⌊ t−2

nS+2⌋.

In order to estimate the measure of the sets Et
k, we consider separately the cases k > b log t and

k 6 b log t, where b = 1
(nS+1)γ log σ−1 and σ is from Lemma 3.3.

For k > b log t, we observe that every point in Et
k must spend at least (k − 1)(nS + 1) iterates

in IS before hitting the hole. Hence we have Et
k ⊂ I̊

(k−1)(nS+1)
S and using Lemma 3.3 and the

definition of b, we get
∑

k>b log t

m(Et
k) .

∑

k>b log t

σ(k−1)(nS+1) . t
− 1

γ ,

as desired.

For k 6 b log t, we first note that the case k = 0 is easily estimated using Et
0 ⊂ I̊tS and

Lemma 3.3. From now on, we assume k ∈ {1, · · · , b log t} and observe as before that the subset
Et,+

k ⊂ Et
k of points whose orbit spends at least b(nS+1) log t iterates in IS up to time t is included

in I̊
b(nS+1) log t
S . This inclusion implies m

(

b log t
⋃

k=1

Et,+
k

)

. t
− 1

γ .

It remains to consider the complementary subset Et,−
k = Et

k \E
t,+
k of points whose orbits spend

more than t− b(nS + 1) log t iterates in [0, nS). Given x ∈ Et,−
k and i ∈ {1, . . . , k}, let ni > nS be

such that Jni
is the element of J where T j(x) begins its ith pass through [0, anS

). We have

m(Et,−
k ) 6

k
∑

i=1

m

(

x ∈ Et
k : ni − nS >

t− b(nS + 1) log t

k

)

. (5)

The sets in this sum can be decomposed using symbolic dynamics. Given two integers t1 < t2, let

J
θ
t2
t1

=
t2
⋂

ℓ=t1

T−ℓ(Jθℓ). We have

{

x ∈ Et
k : ni = n

}

=
⋃

j,{θℓ}
j−2
ℓ=1 ,{θℓ}

t
ℓ=j+1

J
θj−1
0

∩ T−j(Jn) ∩ Jθtj+1
, (6)

where, by an abuse of notation2

J
θj−1
0

:= IS ∩ J
θj−2
1

∩ T−(j−1)(JS),

2For this expression to be meaningful, we should decompose the sets IS and T−(j−1)(JS) into (standard) cylinder
sets prior to define the intermediate cylinder J

θ
j−2

1

. This abuse of notation has no impact on the reasoning here.

(The same comment applies to the set T−j(Jn) and to the decomposition in equation (6).)
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and where the union on {θℓ}
j−2
ℓ=0 (resp. {θℓ}

t
ℓ=j+1) is taken over all admissible words compatible

with i− 1 (resp. k − i) passes through [0, nS) and avoiding H until at least time t. The sets in (6)

are pairwise disjoint; hence it suffices to estimate each quantity m
(

J
θj−1
0

∩ T−j(Jn) ∩ Jθtj+1

)

.

To proceed, notice first that the property Tn(Jn) = J0 implies

J
θj−1
0

∩ T−j(Jn) = J
θj−1
0

∩ T−j(I \ IS) ∩ T−(j+n)(J0).

Moreover, the map T j+n is one-to-one on each element of T−(j+n)(J0). Applying the bounded
distortion estimate in the proof of Lemma 3.1, we obtain

m
(

J
θj−1
0

∩ T−j(Jn) ∩ Jθtj+1

)

m
(

J
θj−1
0

∩ T−j(I \ IS) ∩ T−(j+n)(J0)
) ≈

m
(

T j+n
(

J
θj−1
0

∩ T−j(Jn) ∩ Jθtj+1

))

m
(

T j+n
(

J
θj−1
0

∩ T−j(I \ IS) ∩ T−(j+n)(J0)
)) .

The second ratio here is equal to

m
(

J0 ∩ T j+n(Jθtj+n+1
)
)

m(J0)
,

from where our first estimate follows

m
(

J
θj−1
0

∩ T−j(Jn) ∩ Jθtj+1

)

≈ m
(

J0 ∩ T j+n(Jθtj+n+1
)
)

m
(

J
θj−1
0

∩ T−j(Jn)
)

.

Proceeding similarly for the second factor above and using T (JS) = I \ IS , we get

m
(

J
θj−1
0

∩ T−j(Jn)
)

m
(

J
θj−1
0

) ≈
m
(

T j
(

J
θj−1
0

∩ T−j(Jn)
))

m
(

T j
(

J
θj−1
0

)) =
m(Jn)

anS

,

from which equation (3) implies

m
(

J
θj−1
0

∩ T−j(Jn) ∩ Jθtj+1

)

≈ n
− γ+1

γ m
(

J0 ∩ T j+n(Jθtj+n+1
)
)

m
(

J
θj−1
0

)

. (7)

Now use that imposing i − 1 passes through I \ IS before time j implies at least (i − 1)(nS + 1)
iterates in IS before j to obtain the following relation

m







⋃

j,{θℓ}
j−2
ℓ=1

J
θj−1
0






⊂ m

(

I̊
(i−1)(nS+1)
S

)

. σ(i−1)(nS+1).

Similarly, let q be the number of iterates that the orbits of points in J0 ∩ T j+n(Jθtj+n+1
) spend in

IS . Each pass in I \ IS from i+ 1 through k− 1 must be followed by at least nS + 1 iterates in IS ;
hence q > (k− i− 1)(nS +1) (also q 6 t− (j+n)+ 1− (k− i− 1) where the maximum is obtained
when each pass in I \ IS consists of a single iterate) and then by Lemma 3.3,

m







⋃

j,{θℓ}
t
ℓ=j+1

J0 ∩ T j+n(Jθtj+n+1
)






6

∑

q>(k−i−1)(nS+1)

m(I̊qS) . σ(k−i)(nS+1).
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(Notice that this estimate holds even in the case i = k.) Putting these estimates together with (6)
and (7), we have obtained

m
(

x ∈ Et
k : ni = n

)

. σ(k−1)(nS+1)n
− γ+1

γ .

Using the inequality

∑

n>nS+
t−b(nS+1) log t

k

n
− γ+1

γ 6

(

nS +
t− b(nS + 1) log t

k

)− 1
γ

it follows from (5) that

m(Et,−
k ) . σ(k−1)(nS+1)k

γ+1
γ (knS + t− b(nS + 1) log t)

− 1
γ .

It remains to sum over k. We finally have

m

(

b log t
⋃

k=1

Et,−
k

)

. (nS + t− b(nS + 1) log t)
− 1

γ

b log t
∑

k=1

σ(k−1)(nS+1)k
γ+1
γ . t

− 1
γ ,

as desired, where we used
b log t
∑

k=1

σ(k−1)(nS+1)k
γ+1
γ < +∞ and (nS + t− b(nS + 1) log t)−1 . t−1.

Case II. Estimate for points in I̊t ∩ [0, anS
). Recall that [0, anS

) =
⋃

n>nS

Jn and by definition of the

Jn, we have I̊t ⊃
⋃

n>t+h

Jn so that using equation (3) yields m

(

I̊t ∩
⋃

n>t+h

Jn

)

. (t+ h)
− 1

γ 6 t
− 1

γ .

It remains to estimate m

(

I̊t ∩
t+h
⋃

n=nS+1
Jn

)

. For every n > nS , we have Tn−nS (I̊t ∩ Jn) =

I̊t−n+nS ∩ JnS
. Using bounded distortion again, we get

m
(

I̊t ∩ Jn

)

m(Jn)
≈

m
(

I̊t−n+nS ∩ JnS

)

m(JnS
)

,

which, together with the inclusion JnS
⊂ IS and the conclusion in Case I, implies

m

(

I̊t ∩
t+h
⋃

n=nS+1

Jn

)

.

t+h
∑

n=nS+1

n
− γ+1

γ (t− n+ nS)
− 1

γ . (8)

Using the inequality
b
∑

n=a
f(n) 6

b+1
∫

a−1

f(x)dx which holds for every f > 0, we estimate the sum up

to t+ h− 1 via the following integral (for the last term, we have (t+ h)
− γ+1

γ (nS − h)
− 1

γ . t
− 1

γ ),

∫ t+h

nS

x
− γ+1

γ (t+ nS − x)
− 1

γ dx =

∫ t/2

nS

x
− γ+1

γ (t+ nS − x)
− 1

γ dx+

∫ t+h

t/2
x
− γ+1

γ (t+ nS − x)
− 1

γ dx.

In the first integral, the second factor in the integrand is at most (nS + t
2)

− 1
γ while the first

factor integrates to something less than γn
− 1

γ

S . In the second integral, the first factor is at most

11



( t2)
− γ+1

γ while the second factor integrates to something less than γ
1−γ (nS −h)

− 1
γ
+1

. It results that

m

(

I̊t ∩
t+h
⋃

n=nS+1
Jn

)

. t
− 1

γ and this concludes the proof of Lemma 3.2 in the case in which H is

disjoint from [12 ,
1
2 + d) for some d > 0.

The case in which H contains [12 ,
1
2 + d) for some d > 0 is much simpler since points starting in

[2d, 1) never enter [0, 2d) before escaping. Thus the estimates of Case I with k = 0 together with
Case II imply that the upper bound on m(I̊t) in this case is the same.

With Lemma 3.2 established, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Given a density f as in the theorem, let C0 = inf
x∈(0,x0)

xαf(x) > 0 and

n0 = min{n : an 6 x0}. We have I̊t ⊃
⋃

n>t+h

Jn for all t > 0; hence for t sufficiently large so that

t+ h > n0, the equation (3) implies

µf (I̊
t) =

∫

I̊t
f dm > C0

∫ at+h

0
x−α dx >

C0

1− α
(h+ t)

− 1−α
γ , (9)

from which the lower bound immediately follows.

For the upper bound, we split [0, 1) into 3 intervals: [0, ah+t)∪ [ah+t, anS
)∪ IS and estimate the

intersection of I̊t with each of these separately.3

On [0, ah+t), we estimate,
∫

I̊t∩[0,ah+t)
f dm .

∫ ah+t

0
x−α dx . (h+ t)

− 1−α
γ ,

while on IS , we have, using that f is bounded on IS and Lemma 3.2,
∫

I̊t∩IS

f dm . m(I̊t) . t
− 1

γ .

On [ah+t, anS
) =

t+h
⋃

n=nS+1
Jn, we proceed as in Case II of the previous proof,

∫

I̊t∩[ah+t,aNf
)
f dm =

t+h
∑

n=nS+1

∫

I̊t∩Jn

f dm .

t+h
∑

n=nS+1

a−α
n m

(

I̊t ∩ Jn

)

.

t+h
∑

n=nS+1

n
− γ+1−α

γ (t−n+nS)
− 1

γ ,

where we have used (8). As before, the last sum (except its last term) is estimated after splitting
into two integrals, to give

t+h
∑

n=nS+1

n
− γ+1−α

γ (t− n+ nS)
− 1

γ . t
− 1−α

γ .

3For α = 0, the upper bound also directly follows from the fact that f is uniformly bounded on I together with
Lemma 3.2,

µf (I̊
t) . m(I̊t) . t

−
1

γ .
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3.3 Properties of the function spaces Fp

The definition of the quantity Hp
J before Theorem 2.1 implies the following simple facts about the

set Fp (p ∈ R
+), whose proof we leave to the reader.

Lemma 3.4. (1) ‖ · ‖p is scale invariant, i.e. ‖Cf‖p = ‖f‖p for any C > 0.

(2) For any J ∈ J (ℓH), E a subinterval of J and f ∈ Fp, we have

sup
x∈J

f(x) 6 eH
p
J (f)|E|p inf

x∈E
f(x) 6 eH

p
J (f)|E|p |E|−1

∫

E
f dm.

Now, we equip the set of measures with the topology of weak convergence, consider the ball
Bp = {µf : f ∈ Fp, ‖f‖p 6 1} and notice that this ball is not closed. Indeed, given ℓ ∈ N, let the
density fℓ be defined by

fℓ(x) =

{

a−1
ℓ if x ∈

⋃

n>ℓ+1

Jn

0 elsewhere.

Then we have, fℓ > 0,
∫

fℓ dm = 1 and ‖fℓ‖p = 0 so that µfℓ ∈ Bp. However, we clearly have

lim
ℓ→∞

µfℓ = δ0 6∈ Bp.

The Dirac measure at 0 turns out to be the only possible singular component to where sequences
in Bp can accumulate.

Lemma 3.5. The set {(1− s)µf + sδ0 : s ∈ [0, 1], f ∈ Bp} is compact.

Proof. Let {µfℓ}ℓ∈N ⊂ Bp be an arbitrary sequence. Since
∫

fℓ dm = 1, there exists a subse-
quence {µfℓk

} which converges weakly to a probability measure µ∞ on I. Now fix J ∈ J (ℓH).
By Lemma 3.4, the sequence of densities {fℓk} is a bounded, equicontinuous family on J . By the

Arzelà-Ascoli theorem, there exists a subsequence that converges uniformly to a function f
(∞)
J on

J .4 Note that Hp
J(f

(∞)
J ) 6 1.

Diagonalizing, we obtain a subsequence {fℓkj } converging to f
(∞)
J on each J ∈ J (ℓH). Letting

f (∞) =
∑

J f
(∞)
J , we have f (∞) > 0, ‖f (∞)‖p 6 1, and by Fatou’s lemma,

∫

f∞ dm 6 1.

Let s = 1 −
∫

f (∞) dm. If s < 1, let f∞ = (1 − s)−1f (∞). By the above observations, we have
µf∞ ∈ Bp. Since {0} is the only accumulation point of the sequence of sets {J}J∈J (ℓH ) , we must
have µ∞ = (1− s)µf∞ + sδ0, as required.

For the next statement, we need to introduce the (nonlinear) normalized transfer operator and
its iterates,

L̊t
1f :=

L̊tf

|L̊tf |1
, ∀t > 1. (10)

4To be precise, note that ‖fℓ‖p ≤ 1 implies that fℓ is uniformly continuous on J so that f can be extended to a
continuous function f̄ℓ on the closure J̄ and it still holds that ‖f̄ℓ‖p ≤ 1.

13



Proposition 3.6. Let p ∈ (0, γ
γ+1 ]. We have L̊1(F

0
p ) ⊂ F0

p . In addition, there exist two constants

C1, C2 > 0, such that for every f ∈ F0
p ,

‖L̊t
1f‖p 6 C1‖f‖p + C2 for all t > 1.

Proof. Every J ⊂ J (ℓH) has at most two pre-images under T̊ and each pre-image is included in
some element of J (ℓH). This implies that L̊(C0(J (ℓH))) ⊂ C0(J (ℓH)). Also we obviously have

L̊f > 0 and |L̊f |1 6 |f |1,

for every f > 0.

Now, assume that f is such that f | ⋃

n>n0

Jn > C for some n0 ∈ N and C > 0, and let n′ =

max{n0, h}+ 1. Clearly, we have L̊f | ⋃

n>n′

Jn > C
1+2γ(1+γ)aγ

n′−1

. In particular, |L̊f |1 > 0 so that L̊1f

is well defined. Anticipating the proof below that ‖L̊f‖p < +∞ for every f with ‖f‖p < +∞ , we
obtain L̊1(F

0
p ) ⊂ F0

p .

In order to check the estimate on ‖L̊t
1f‖p, it suffices to prove the inequality for ‖L̊tf‖p due to

the scale invariance property from Lemma 3.4(1).

Let f ∈ F0
p . Fix n > 0, J ∈ J (ℓH), J ⊂ Jn and x, y ∈ J . Let also t > 1 and {xi} (resp. {yi}) be

an enumeration of the pre-images T̊−t(x) (resp. T̊−t(y)) such that each pair xi, yi lies in the same
branch of T̊−t. Then

log L̊tf(x)− log L̊tf(y) = log

∑

i f(xi)/DT t(xi)
∑

i f(yi)/DT t(yi)
6 max

i
log

f(xi)

f(yi)
+ log

DT t(yi)

DT t(xi)
, (11)

where we have used the fact that
∑

i bi∑
i ci

6 maxi
bi
ci

for two series of positive terms. The first term

on the right hand side of (11) is estimated by

log
f(xi)

f(yi)
6 ‖f‖p|xi − yi|

p,

while the second term on the right side of (11) is estimated by

log
DT t(xi)

DT t(yi)
. |T t(xi)− T t(yi)|

p = |x− y|p,

according to Lemma 3.1(b). Putting these two estimates together and using Lemma 3.1(a), we
obtain that there exist C1, C2 > 0 such that

| log L̊tf(x)− log L̊tf(y)|

|x− y|p
6 ‖f‖pmax

i

|xi − yi|
p

|x− y|p
+ C2

6 ‖f‖pC1

(

n

n+ t

)p γ+1
γ

+ C2

6 C1‖f‖p + C2,

as desired.
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The last statement of this section provides examples of unbounded densities that belong to the
sets F0

p .

Lemma 3.7. Let p ∈ (0, γ
γ+1 ]. Every function f

|f |1
where f(x) = x−α for all x ∈ (0, 1), α ∈ [0, 1),

belongs to F0
p . The same is true for the density fSRB associated to the SRB measure.

Proof. Letting f(x) = x−α for all x ∈ (0, 1), we clearly have f ∈ C0(J (ℓH)), f > 0 and |f |1 < +∞.
Therefore, we only need to check that ‖f‖p < +∞.

Fix J ∈ J (ℓH), J ⊂ Jn for some n > 0 and let x < y ∈ J . Then

log f(x)− log f(y)

|x− y|p
= α

log(y/x)

|x− y|p
6

α

x
|x− y|1−p.

Since x ∈ Jn, we have 1
x . n

− 1
γ and |x− y| . n

− γ+1
γ by equation (3). Thus

Hp
J(f) . n

1−(γ+1)(1−p)
γ

and the exponent of n is non-positive when p 6 γ/(γ + 1). Taking the supremum over n, we have
‖f‖p < ∞ as required.

As for fSRB, observe that the sequence {L
t1}t∈N (transfer operator for the system without hole)

converges to the density fSRB. On the other hand, the proof of Proposition 3.6 can be repeated
mutatis mutandis to conclude L(F0

p ) ⊂ F0
p and supt∈N ‖Ltf‖p < +∞ for all f ∈ F0

p . Since 1 ∈ F0
p ,

it follows from Lemma 3.5 that fSRB ∈ Fp. However, fSRB(x) ≈ x−γ ; hence we must have fSRB ∈ F0
p

as desired.

3.4 Proof of Theorem 2.2

Throughout this proof, we choose an arbitrary number p ∈ (0, γ
γ+1 ] and density f ∈ F0

p .

By Proposition 3.6, the sequence {
T̊ t
∗
µf

µf (I̊t)
}t∈N is composed of absolutely continuous probability

measures with densities in F0
p . By Lemma 3.5, any of its limit points must have the form µ∞ =

(1− s∞)µf∞ + s∞δ0 for some f∞ ∈ Fp and s∞ ∈ [0, 1]. We want to prove that s∞ = 1 for any limit
point.

To proceed, we first prove that s∞ > 0 in all cases. Take any cylinder J ⊂ J (ℓH) and con-
sider a converging subsequence {L̊

tj
1 f}j∈N with limit point (1 − s∞)f∞. (Recall that L̊t

1 is the
normalized transfer operator, see equation (10) above.) The limit density f belongs to Fp; hence

the convergence L̊
tj
1 f |J → (1− s∞)f∞|J holds in the uniform topology of functions defined on this

interval. In particular, its integrals against any bounded measurable function converge as well on
each J ∈ J (ℓH). Thus for any k ∈ N, since I̊k ⊃ [0, ah+k), we have on the one hand,

lim
j→∞

∫

L̊tjf · 1I̊k dm

|L̊tjf |1
= lim

j→∞

∫

[0,ah+k)
L̊tjf dm

|L̊tjf |1
+

∫

[ah+k,1)
L̊tjf · 1I̊k dm

|L̊tjf |1

= µ∞([0, ah+k)) + µ∞([ah+k, 1) ∩ I̊k) = µ∞(I̊k).

On the other hand, by applying a change of variable, we get
∫

L̊tjf · 1I̊kdm =

∫

f · 1I̊tj · 1I̊k ◦ T̊
tjdm =

∫

f · 1I̊tj · 1I̊k+tj dm = µf (I̊
k+tj ).
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Using Theorem 2.1 immediately yields,

∫

L̊tjf · 1I̊k dm

µf (I̊tj )
=

µf (I̊
k+tj )

µf (I̊tj )
≈

(

k + tj
tj

)− 1−α
γ

,

which implies the existence of C > 0 such that µ∞(I̊k) ≥ C for all k > 1. However, ergodicity
ensures that we must have

lim
k→+∞

µf∞(I̊k) = 0, (12)

therefore we conclude that s∞ > C > 0 as desired.

For the second step of the proof, we assume, without loss of generality, that the subsequence

{tj}j∈N along which
T̊

tj
∗ µf

µf (I̊
tj )

converge to µ∞ is such that lim
j→+∞

tj+1 − tj = +∞. We are going to

show that

lim
j→+∞

T̊
tj+1−tj
∗ µ∞

µ∞(I̊tj+1−tj )
= δ0. (13)

To that purpose, given a function ϕ ∈ C0(I), we write using the expression for µ∞ and a change
of variable again

∫

ϕdT̊
tj+1−tj
∗ µ∞ = (1− s∞)

∫

ϕ · L̊tj+1−tjf∞dm+ s∞ϕ(0)

= (1− s∞)

∫

ϕ ◦ T̊ tj+1−tj · f∞ · 1I̊tj+1−tj dm+ s∞ϕ(0) .

By assumption on ϕ, the function |ϕ ◦ ◦T̊ tj+1−tj | is bounded. Using also equation (12) and the
assumption lim

j→+∞
tj+1 − tj = +∞, we obtain

lim
j→+∞

∫

ϕ ◦ T̊ tj+1−tj · f∞ · 1I̊tj+1−tj dm = lim
j→+∞

µf∞(I̊tj+1−tj ) = 0,

so that

lim
j→+∞

∫

ϕdT̊
tj+1−tj
∗ µ∞ = s∞ϕ(0).

Applying this relation with ϕ = 1 and using that s∞ > 0 yields

lim
j→+∞

∫

ϕdT̊
tj+1−tj
∗ µ∞

µ∞(I̊tj+1−tj )
= ϕ(0), ∀ϕ ∈ C0(I)

which is nothing but the desired behavior (13).

Now, the measure µ∞ clearly gives zero weight to the singularity set for T̊ . By continuity,

letting µt :=
T̊ t
∗
µf

µf (I̊t)
, it follows that

lim
j→+∞

T̊
tk+1−tk
∗ µtj

µtj (I̊
tk+1−tk)

=
T̊
tk+1−tk
∗ µ∞

µ∞(I̊tk+1−tk)
, ∀k ∈ N.

By construction, we have

T̊
tk+1−tk
∗ µtk

µtk(I̊
tk+1−tk)

=
T̊
tk+1
∗ µf

µf (I̊tk+1)
.
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Hence, using a diagonal argument together with equation (13), we conclude

µ∞ = lim
k→+∞

T̊
tk+1
∗ µf

µf (I̊tk+1)
= δ0,

as desired.

Finally, since again δ0 is an invariant measure that sits outside the singularity set of T̊ , we have

δ0 = T̊∗(δ0) = T̊∗

(

lim
t→+∞

T̊ t
∗µf

µf (I̊t)

)

= lim
t→+∞

T̊ t+1
∗ µf

µf (I̊t)
,

from which the relation

lim
t→+∞

µf (I̊
t+1)

µf (I̊t)
= 1,

immediately follows.

3.5 General open systems - proof of Theorem 2.3

The proof requires a preliminary statement. We say a set A ⊂ N has density ρ ∈ [0, 1] if

lim
n→∞

#(A∩[1,n])
n = ρ, where # denotes the cardinality of a set.

Define βt =
µ(X̊t+1)

µ(X̊t)
for t > 0 and β−1 = µ(X̊0). We obviously have βt 6 1 for all t > 0 and if it

happens that lim inf
t→∞

βt < 1, then the subexponential escape rate assumption (1) imposes a strong

constraint on any index set with accumulation point below 1.

Lemma 3.8. For λ ∈ (0, 1), define Aλ = {k ∈ N : βk ≤ λ}. Then Aλ must have zero density.

Proof. Fix λ ∈ (0, 1) and note that if Aλ is finite, it has zero density. So assume Aλ is infinite.
Then lim sup

k→∞
k∈Aλ

βk ≤ λ. Equation (1) implies

lim sup
t→+∞

µ(X̊t)
1
t = lim sup

t→+∞
exp

(

1

t
logµ(X̊t)

)

= 1. (14)

To derive a contradiction, assume A has density ρ > 0. The relation µ(X̊t) =
t−1
∏

k=0

βk then implies

µ(X̊t)
1
t 6 λ

#(Aλ∩[0,t−1])

t for all t > 0,

from which it follows that lim sup
t→∞

µ(X̊t)
1
t 6 λρ < 1, contradicting equation (14).

Passing now to the proof of the theorem, we consider the sequence of probability measures
{µt}t∈N where µt is defined by equation (2). By assumption on X, this sequence is compact and
any limit point µ∞ is necessarily a probability measure.

Our proof has two steps: (A) µ∞ gives zero weight to T−i(H) for every i > 0; (B) if µ∞ gives
zero weight to the discontinuity set of T̊ , then µ∞ is an invariant measure for T .
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Since T is assumed to be nonsingular with respect to µ, the associated transfer operator L
acting on L1(µ) is well-defined. As before, we also consider the transfer operator L̊ for the system
with hole defined by L̊tf = 1X̊0L(f1X̊t−1) for all t > 1.

(A) First note that T̊ t
∗µ is supported on X \ H for each t > 0 so that µ∞(H) = 0. Now define

gk = L̊k1
µ(X̊k)

for k > 1. For each i > 1, k > 1, we have

βk+i−1 · · ·βk =

∫

X L̊i(L̊k1) dµ

µ(X̊k)
=

∫

X̊i

gk dµ = 1−

∫

i⋃

j=0
T−j(H)

gk dµ,

since
∫

X\H gk = 1. Choose λ ∈ (0, 1) and let Aλ be as defined in Lemma 3.8. Given i > 1, let

Ai
λ = A− [0, i− 1]

denote the translates of elements of Aλ by some integer at most i − 1. Note that Ai
λ still has

frequency zero. Then since lim inf
k→+∞

βk+i−1 · · ·βk ≥ λi as long as we avoid the exceptional set Ai
λ, we

have

lim sup
k→∞
k/∈Ai

λ

∫

i⋃

j=0
T−j(H)

gk dµ ≤ 1− λi .

Since µtj = 1
tj

tj−1
∑

k=0

gkµ and Ai
λ has zero density, we conclude µ∞

(

i
⋃

j=0
T−j(H)

)

≤ 1− λi. Since λ

is arbitrary, it must be that µ∞

(

i
⋃

j=0
T−j(H)

)

= 0. Since i is arbitrary, µ∞ must be supported on

X̊∞, and therefore is singular with respect to µ by assumption (1).

(B) For any test function ϕ ∈ C0(X), we have

L̊µtj (ϕ) =
1

tj

tj−1
∑

k=0

L̊k+11(ϕ)

µ(X̊k)
=

1

tj

tj−1
∑

k=0

L̊k+11(ϕ)

µ(X̊k+1)
βk =

1

tj

tj−1
∑

k=0

L̊k1(ϕ)

µ(X̊k)
βk−1 +

1

tj

(

L̊tj1(ϕ)

µ(X̊tj−1)
− ϕ

)

.

Again choose λ ∈ (0, 1), define Aλ as in Lemma 3.8, and let Ac
λ = N \Aλ. Thus, assuming that µ∞

gives zero measure to the discontinuity set of T̊ , we can pass to the limit to obtain

|L̊µ∞(ϕ)− µ∞(ϕ)| 6 lim
j→+∞

1

tj

tj−1
∑

k=0
k∈Aλ

|L̊k1(ϕ)|

|L̊k1|1
|βk−1 − 1|+

1

tj

(

|ϕ|∞|L̊tj1|1

|L̊tj−11|1
+ |ϕ|∞

)

+ lim
j→+∞

1

tj

tj−1
∑

k=0
k∈Ac

λ

|L̊k1(ϕ)|

|L̊k1|1
|βk−1 − 1|

≤ |ϕ|∞(1− λ)

where we have used the fact that the set of k for which βk ≤ λ has density 0, βk 6 1, and
|L̊k1(ϕ)|/|L̊k1|1 6 |ϕ|∞ for each k. Since λ is arbitrary, we must have L̊µ∞(ϕ) = µ∞(ϕ).
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