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Abstract

To identify and to explain coupling-induced phase transitions in Coupled Map Lattices
(CML) has been a lingering enigma for about two decades. In numerical simulations, this
phenomenon has always been observed preceded by a lowering of the Lyapunov dimension,
suggesting that the transition might require changes of linear stability. Yet, recent proofs of
co-existence of several phases in specially designed models work in the expanding regime where
all Lyapunov exponents remain positive.

In this paper, we consider a family of CML composed by piecewise expanding individual map,
global interaction and finite number N of sites, in the weak coupling regime where the CML is
uniformly expanding. We show, mathematically for N = 3 and numerically for N > 3, that a
transition in the asymptotic dynamics occurs as the coupling strength increases. The transition
breaks the (Milnor) attractor into several chaotic pieces of positive Lebesgue measure, with
distinct empiric averages. It goes along with various symmetry breaking, quantified by means
of magnetization-type characteristics.

Despite that it only addresses finite-dimensional systems, to some extend, this result recon-
ciles the previous ones as it shows that loss of ergodicity/symmetry breaking can occur in basic
CML, independently of any decay in the Lyapunov dimension.

August 28, 2013.

1 Introduction

Coupled Map Lattices (CML) are simple deterministic models of spatially extended systems com-
posed of interacting units. Originally designed to facilitate numerical simulations, these models
consist of transformations acting on real vectors (or sequences) and generated by the composition
of the direct product of a one-dimensional map (representing the paralelised individual dynamics
of each unit) and a coupling operator that mimics interactions between units [22]. Many variations
on the theme can be found in the literature. The most common example is the following space-time
discrete version of the basic reaction-diffusion equation on a periodic 1D medium

xt+1
s = (1− ε)f(xts) +

ε

2
(f(xts−1) + f(xts+1)), ∀s ∈ Z/NZ,

where f : R→ R is the individual map and where ε ∈ [0, 1] is the coupling strength.

Being suitably adapted to explore modifications of dynamical behaviors upon variations of parame-
ters (of the interaction strength in particular), CML have been employed in the modeling of a large
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variety of situations, from chemical oscillators [40] to populations dynamics [38] and atmospheric
circulation [29], to cite few examples.

While CML are easy to implement numerically, the analysis of their dynamics faces several chal-
lenging issues [10]. As a result, the current rigorous (mathematical) description of their global
properties is mostly limited to extreme parameter regimes, either when the individual dynamics
dominates (uncoupled regime) or when the interaction prevails (synchronisation and the like). By
focusing on small lattices (basically with 2 sites), few papers have nonetheless managed to cover
the full coupling range [15, 25, 28].

This paper aims to provide insights into the global dynamics of chaotic CML with arbitrary
number of sites, beyond the uncoupled regime (i.e. when the system ceases to share the same
features of its uncoupled limit), but before any change in linear (transverse) stability.

A basic result in the theory of dynamical systems is the existence of a semi-conjugacy between any
map possessing a Markov partition and its associated topological Markov chain, see e.g. [23]. In
other words, the dynamics of any suitable map f can be regarded as an evolving discrete ’spin’ with
finitely many states. When applied to lattice dynamical systems such as CML, this correspondence
suggests to represent these systems as spin lattices of statistical mechanics (with the coupling
strength ε playing the role of the inverse of a temperature) [8].

While this connection to spin systems can be proved for any (piecewise) expanding CML [20],
for standard models, the transition rules (grammar) of the resulting symbolic systems are usually
intractable and of infinite range. Exceptions to this failure are repellers of weakly coupled chains
of maps with Cantor repelling set [12, 13] and specially designed CML for which the coupling
operator preserves the uncoupled Markov partition [2, 8, 14, 17, 21, 35, 36, 39]. Independently
of grammatical issues, proofs of uniqueness of the physical measure in the weak coupling regime
(analogue to the uniqueness of the high temperature phase) have been provided using perturbative
approaches from the uncoupled limit [1, 5, 6, 16, 19, 27, 28].

More intriguingly, the correspondence with spin systems indicates that phase transitions should
take place in CML as the coupling strength increases [8]. In fact, a similar to the 2D Ising ferromag-
netic transition had been numerically observed in some square lattices of coupled piecewise affine
maps [31]. Subsequent studies revealed that this symmetry breaking transition occurs in a regime
where the CML is no longer expanding, because it is preceded by a reduction of the Lyapunov
dimension [3, 4]. This reduction, which is reminiscent of synchrony phenomena in coupled chaotic
dynamical systems, including CML [20], casts doubt on the nature of the observed transition. Is
this symmetry breaking the finite dimensional signature of the emergence, at the thermodynamic
limit, of several probability measures supported on a topologically mixing attractor [30]? Or is it
a consequence of a genuine topological change of the (finite-dimensional) CML attractor? Does
it require a change of transverse stability/Lyapunov dimension as is the case for the transition to
synchronisation? Can it be mathematically proved?

To the best of our knowledge, these questions have remained unanswered and the proof of existence
of phase transition in standard CML is still a largely open problem. (Besides, phase transitions
have been established in models with prescribed symbolic grammar mentioned above, that mimic
probabilistic cellular automata for which the phenomenon had been rigorously proved [2, 14, 17].)

In this paper, we show that coupling-induced symmetry breaking bifurcations, that exhibit char-
acteristic phenomenological features of Ising-type transitions, occur in finite dimensional CML, at
no expense of the Lyapunov or attractor dimension (and without any prerequisite on the symbolic
dynamics). We bring evidence, in CML composed of N > 2 globally coupled piecewise affine ex-
panding circle maps, of ergodicity breaking of an absolutely continuous invariant measure (a.c.i.m.)
into asymmetric Lebesgue components, as the coupling strength increases. Even though they do
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not quite address the phase transition enigma, these results indicate that the symmetry breaking
induced emergence of an order parameter in chaotic CML can be of different nature than synchrony
type phenomena. In particular, this phenomenon does not require any change of (linear) stability.

The paper is organised as follows. We begin with definitions and basic considerations on the
dynamics in section 2. Then, we report numerical observations of symmetry breaking on temporal
averages of two observables (orbits issued from random initial conditions), one for each symmetry
of the family of N maps (N > 2, section 3). For N = 3, these numerics are completed by a direct
visualisation in phase space. Moreover, they are confirmed by mathematical proofs of ergodicity of
the a.c.i.m. at weak coupling, and of its failure when the coupling exceeds a threshold (section 4.2).
The proofs rely on a thorough analysis of the Milnor attractor of a reduced mapping of the two-
torus (Appendix B). For completeness, we show that ergodicity breaking fails for N = 2. Indeed,
in this case, we prove that our CML remains ergodic throughout the expanding domain (section 4.1
and Appendix A for proofs). We also describe for N = 2 and 3, synchrony phenomena that take
place in the contractive regime, and characterised by the global convergence to a 1-dimensional
attractor.

Notice finally that global symmetry breaking bifurcations (a.k.a. attractor splitting crises) have
already been reported in the literature [11, 18], mostly based on numerical simulations. Our result
for N = 2 provides a proof of such bifurcation in the case where the attractor dimension, before
and past the crisis, remains equal to that of the embedding space.

2 Globally coupled piecewise affine maps of the circle

2.1 Definition of the dynamics

Given an integer N ∈ N (that represents the total number of units in the system), we consider the
one-parameter family {Fε,N}ε∈[0,1] of maps of the N -dimensional torus TN = (R/Z)N into itself,
defined by

(Fε,N (x))s = 2

(
xs +

ε

N

N∑
r=1

g(xr − xs)

)
(mod 1), ∀s ∈ {1, · · · , N}, x = (xs)

N
s=1 ∈ TN ,

where the function g mimics elastic interactions on the circle (as opposed to on the real line R, see
Figure 1 and also [28] for more details). More formally, g is the function of the circle T1 that, on
the domain [−1

2 ,
1
2 ], is given as follows1

u

gHuL

-

3
2

-1 -

1
2

1
2

1 3
2

-

1
2

1
2

Figure 1: Graph of the function g involved in the definition of the interaction term of Fε,N .

1For the sake of notation, throughout the paper, we identify real numbers with equivalence classes in the circle T1

and vice-versa, as long as no confusion results. We however keep the notation (mod 1) in the algebraic expressions
of maps in order to emphasize that we are dealing with actions of TN .
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g(u) =

{
u if |u| < 1

2
0 if |u| = 1

2

, ∀u ∈ [−1
2 ,

1
2 ].

Of note, g has the reflection symmetry: g(−u) = −g(u) (mod 1) for all u ∈ T1.

The map Fε,N can be viewed as a crude approximation of more traditional systems where g is usually
assumed to be smooth, typically to be the sine function, see e.g. [20]. The current choice obviously
makes the map more amenable to rigorous mathematical analysis. This applies in particular to the
case N = 3 where, to the best of the author’s knowledge, no analogous results to those in section
4.2 have been published in the literature (also including coupled maps with diffusion on the real
line).

The operator Cε,N given by

(Cε,N (x))s = xs +
ε

N

N∑
r=1

g(xr − xs) (mod 1), ∀s ∈ {1, · · · , N}, x ∈ TN ,

which is indeed well defined as a mapping from TN into itself – hence the same property holds for
Fε,N ) – is called the coupling operator. Furthermore, this definition of Fε,N as the composition
F0,N ◦Cε,N , instead of the more standard convention Cε,N ◦F0,N adopted in the literature [10, 22],
makes to our opinion the analysis easier. As the dynamics is concerned, this choice is unimportant
since both dynamical systems are semi-conjugated to each other (through either F0,N or Cε,N
depending upon the choice of the conjugacy relation).

2.2 Simplification of the analysis: Reduction to 1 + (N − 1) dimensions

A simple but important feature of Fε,N is the fact that, under a suitable change of variables, this
map can be transformed into the product of two independent actions. One map is one-dimensional
and has ε-independent and well-known dynamics. The other action is N −1 dimensional and varies
with the coupling strength parameter. To see this, let

m(x) =
N∑
s=1

xs, ∀x ∈ TN .

Then, the reflection symmetry of g easily implies the following relation on TN

m ◦ Fε,N = 2m (mod 1),

viz. the dynamics of m is just the doubling of the variable on the circle, and in particular it is
transitive and ergodic with respect to the Lebesgue measure (whatever value ε takes).

Moreover, letting ys = xs − m(x)
N for all s, we get

N∑
s=1

ys = 0, and hence there are only N − 1

independent variables ys. Letting also Gε,N−1 be the map acting on the first N − 1 variables ys
and induced by Fε,N , i.e.

(Gε,N−1(y))s = (Fε,N (x))s −
m ◦ Fε,N (x)

N
, ∀s ∈ {1, · · · , N − 1},

then one shows that its explicit expression is given by

(Gε,N−1(y))s = 2

(
ys +

ε

N

N−1∑
r=1

g(yr − ys)−
ε

N
g

(
N−1∑
r=1

yr + ys

))
(mod 1), ∀s ∈ {1, · · · , N − 1},

(1)

4

ha
l-0

09
03

23
7,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
3



for all y = (ys)
N−1
s=1 ∈ TN−1. In particular, Gε,N−1 is independent of the variable m and hence, is a

genuine map of the torus TN−1. Accordingly, the analysis in this paper boils down to the study of
the dynamics of the family of maps {Gε,N−1}ε∈[0,1] of the N − 1-dimensional torus.2

Every map Gε,N−1 possesses two important symmetries:

• Gε,N−1 commutes with every permutation of coordinates, viz. we have (ys)
N−1
s=1 7→ (yπ(s))

N−1
s=1

for every permutation π of {1, · · · , N − 1},

• Gε,N−1 commutes with the inversion of coordinates, viz. we have (ys)
N−1
s=1 7→ (−ys (mod 1))N−1s=1 .

The first symmetry is a direct consequence of the global interaction structure of the coupling
operator. The second one follows from the reflection symmetries of both the function g and the
uncoupled mapping F0,N .

Equation (1) together with the definition of g show that every map Gε,N−1 is piecewise affine
with derivative (outside discontinuities) given by 2(1− ε)Id|TN−1 (where Id|TN−1 is the identity on
TN−1). Accordingly, every map is expanding for 0 6 ε < 1

2 and contracting for 1
2 < ε 6 1. (We

shall not consider the limit case when ε = 1
2 .)

That the derivative of Gε,N−1 is a multiple of Id|TN−1 implies that the so-called multiplicity entropy
must vanish [9]. Focusing on the expanding domain, it follows from the ergodic theory of multi-
dimensional dynamical systems with discontinuities that, for every 0 6 ε < 1

2 , every map Gε,N−1
has an absolutely continuous (with respect to the Lebesgue measure in TN−1) invariant measure
(a.c.i.m.) whose density is uniformly positive on some open ball [9, 37]. Moreover there can be
at most finitely many Lebesgue ergodic components, viz. ergodic components with positive
Lebesgue measure.

Therefore, even though the attractor of Gε,N−1 may change as ε varies, it must always contain a
ball in TN−1. For the original map Fε,N , it means in particular that no synchrony property (i.e.
global convergence to invariant sets of dimension < N [7, 34]) can emerge as long as 0 6 ε < 1

2 .
The corresponding attractor must remain ’large’ (and contain open sets of TN ) throughout the
expanding domain.

Moreover, perturbation arguments on spectral gap of the transfer operator associated with standard
CML [24, 26] and the semi-conjugacy mentioned at the end of the previous section, imply that the
maps Gε,N−1 are mixing (hence ergodic) with respect to their a.c.i.m., provided that the coupling
is sufficiently weak.

Accordingly, emphasis will be made here on detecting symmetry breaking bifurcations of Gε,N−1 as
ε increases in the expanding domain.3 More precisely, we mean the emergence of several Lebesgue
ergodic components, that are not invariant under the mentioned symmetries.

3 Numerical results on symmetry breaking

This section reports results obtained from numerical simulations of the maps Gε,N−1 across the
expanding domain. These results show that, while the dynamics remains symmetric on average in
a large part of the domain, multiple ergodic components with asymmetric features emerge in the
long term as soon as the coupling strength exceeds some threshold. This phenomenology can be
observed both for the inversion symmetry and for the symmetry of permutation of coordinates.

2More formally, the arguments here show that Fε,N and the direct product 2m (mod 1) × Gε,N−1 are in fact
smoothly conjugated by the torus automorphism x 7→ (m, y).

3For N = 2 and 3, the dynamics in the contracting regime will also be described.
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In practice, orbits were generated starting from random initial conditions drawn with uniform
distributions and empiric averages of asymmetry quantifiers were computed. These quantities are
displayed here vs. ε across the expanding domain, for several values of N . For N = 3, we also show
direct evidence of ergodicity and then symmetry breaking, in the two-dimensional phase space of
the map Gε,2.

3.1 Breaking the inversion symmetry

Here, we present results related to the inversion symmetry obtained by evaluating space-time
averages of coordinates (projected on the interval [−1

2 ,
1
2)). Figure 2 reports superimposed statistical

realizations of the following order parameter4∣∣∣∣∣ 1

T (N − 1)

T−1∑
t=0

N−1∑
s=1

π
[−1

2 ,
1
2 )

(yt+t0s )

∣∣∣∣∣ where yk = Gkε,N−1(y) and t0 = T
5 , (2)

computed for random initial conditions y ∈ TN−1 and three values of T , as the parameter ε runs
across an interval that extends up to the boundary ε = 1

2 of the expanding domain.

As can be anticipated in this chaotic context, the pictures show that the average (2) indeed depends
both on the initial condition and on the averaging length T . However, its statistical fluctuations
behave as if caused by finite size effects: despite that their range gets larger when the number of
initial conditions is augmented (see insets), the fluctuations decrease when the averaging length
increases. Anticipating that these deviations should eventually vanish in the limit of large averaging
lengths, the pictures indicate that the order parameter takes only a limited number of asymptotic
values, for each value of ε (reminiscent of the fact that the number of Lebesgue ergodic components
of Gε,N−1 is finite).

These numerics reveal the existence of a threshold εc,N−1 for every N (and 0.41 < εc,N−1 < 0.45) up
to which the order parameter asymptotically vanish for every initial condition. Beyond εc,N−1, the
behaviors cease to be symmetric and the order parameter converges as T →∞ to one of several non-
vanishing values. Fig. 2 also suggests that each limit value is attained for a positive fraction of initial
conditions (the same for the pictures and their inset), advocating that ergodicity of the physical
measure [42] is likely to be broken and several asymmetric Lebesgue ergodic components emerge at
εc,N−1. Interestingly, more asymptotic values (ergodic components) appear as ε further increases
(N > 3), suggesting that secondary bifurcations may take place beyond εc,N−1. The maximum
number of ergodic components definitively increases with N , possibly in a linear way.5 Moreover,
the maximum amplitude of the order parameter decreases (by several orders of magnitude) when
N increases.

The same phenomenology has also been observed for other values of N > 2, namely N = 4, 6, 7, 40
and 100, see Figure 3 for the latter cases (other results not shown).6 We conjecture that spontaneous
symmetry breaking of the a.c.i.m./physical measure into multiple ergodic components holds for
every finite number N > 2 of sites. Beside improved algorithms, to check this conjecture for (very)
large values of N certainly requires powerful machines. Indeed, it took about 2 weeks CPU time

4The function π
[− 1

2
,
1
2
)

is the canonical projection from the circle T1 to the interval [− 1
2
, 1
2
), namely π

[− 1
2
,
1
2
)
(u) =

buc − 1
2
. (No boundary effect resulting from this choice seems to affect our conclusions, as can be expected from the

fact that sets of zero Lebesgue measure do not affect the dynamics of a.e. initial conditions, because all maps Gε,N−1

are non-singular, see beginning of section 4.)
5In particular, there are 5 limit values of the order parameter (2) for N = 10, and 10 (resp. 20) values for N = 20

(resp. 40), see also Fig. 3.
6As said before, the map Gε,1 for N = 2 is ergodic across the entire expanding domain (see statement 4.1 below).
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Figure 2: Superimposed statistical plots of the order parameter

∣∣∣∣ 1
T (N−1)

T−1∑
t=0

N−1∑
s=1

π
[−1

2 ,
1
2 )

(yt+t0s )

∣∣∣∣ vs.

ε in the expanding domain, for respectively N = 3, 5, 10 and 20. (The symbol π
[−1

2 ,
1
2 )

denotes the

canonical projection T1 → [−1
2 ,

1
2) and we choose t0 = T

5 .) Each dot corresponds to a single orbit
realisation from a random initial condition drawn with uniform distribution in TN−1. Dot colors
depend on the length T of temporal averages (blue: T = 104, red: T = 105, green: T = 106). For
each value of ε, 100 dots are plotted for each color; first blue, then red and finally green (insets:
500 dots are plotted for each value of ε).

on QuadriCore-3.4GHz computer to obtain the results for N = 100. In addition, the decay of
the maximal amplitude and the increase of the number of ergodic components suggest that longer
averaging lengths might be needed in order to reduce finite-size effects and to obtain well-defined
averages and neat evidence of the existence of two regimes.

3.2 Breaking the permutation symmetry

Symmetry breaking in the dynamics of the maps Gε,N−1 can also be detected by means of an order
parameter associated with the permutation of coordinates. To that goal, we first partition the
torus TN−1 into isomorphic subsets that are mapped one into another under this symmetry, i.e. we
write7

TN−1 =
N−1⋃
s=1

Us (mod 0),

where

Us =

{
y ∈ TN−1 : s is the smallest s′ ∈ {0, · · · , N − 1} s.t. ys′ − ys′+1 = min

r∈{1,··· ,N−1}
yr − yr+1

}
.

7(mod 0) indicates that the symmetric difference between the corresponding sets has zero TN−1-Lebesgue measure.
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Figure 3: Superimposed statistical plots of the order parameter (2) for N = 40 and 100. Charac-
teristics as in Fig. 2.

Now, similarly to Fig. 2, Figure 4 reports superimposed statistical realizations of the following
order parameter ∣∣∣∣∣ 1

T (N − 1)

T−1∑
t=0

N−1∑
s=1

χUs(y
t+t0) exp

(
2iπs

N − 1

)∣∣∣∣∣ ,
where χA is the characteristic function of the set A. (As before, boundary effects in this definition
seem to have no consequence on the statistics, thanks to Gε,N−1 being non-singular.) In short
terms, this number quantifies the asymmetry of the visit frequencies into the sets Us; it vanishes
for an equidistributed orbit and it is maximal and is equal to 1 for an orbit that only visits a single
Us.

These pictures reveal similar features to the previous ones and confirm the observed phenomenology.
Symmetric behavior holds on average for ε up to εc,N−1 (same threshold as before), and then several
Lebesgue ergodic components emerge.

Substantial differences can however be pointed out. First, Fig. 4 shows that some ergodic compo-
nents beyond threshold do not break the permutation symmetry. There always exists a positive
fraction of orbits for which this order parameter vanishes. Moreover, the number of asymptotic val-
ues remains small when ε approaches the boundary of the expanding domain – definitively smaller
than the corresponding number in the previous diagnostic – and does not seem to increase with N .

As before, the maximum amplitude also substantially decreases when N increases and appears to
be comparatively smaller than before for large N (compare the figures N = 10 and 20). This
maximum becomes so tiny for N = 20 that the transition is no longer detectable with averages
of length T = 105. Lengths such as T = 107 need to be employed in order to clearly reveal the
phenomenon. In spite of this drawback, unlike the previous one, this order parameter can be
employed in more general CML where the individual map/uncoupled system F0,N does not possess
the symmetry of inversion of coordinates.

3.3 Symmetry breaking for the map Gε,2 attractor

For N = 3, the map Gε,2 is two-dimensional. Plotting its attractor vs. ε provides complementary
illustrative information to previous statistics. Figure 5 reports plots of the orbit components
{(yt+t01 , yt+t02 )}T−1t=0 (with T = 2000 and t0 = 500), issued from random initial conditions in T2.
The figure suggests that ergodicity holds for ε up to εc,2 ∼ 0.417. Indeed, every orbit densely
visits a unique set with finitely many connected components. At ε = εc,2, a bifurcation takes place
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Figure 4: Superimposed statistical plots of the order parameter∣∣∣∣ 1
T (N−1)

T−1∑
t=0

N−1∑
s=1

χUs(y
t+t0) exp

(
2iπs
N−1

)∣∣∣∣ vs. ε in the expanding domain (see text for defini-

tions), for respectively N = 3, 5, 10 and 20. Characteristics as in Fig. 2; black dots correspond to
T = 107.

that breaks ergodicity: 6 distinct closed invariant sets of positive Lebesgue measure emerge, that
compose the attractor beyond the transition.

As already known, this phenomenon is accompanied by symmetry breaking.8 Two of these invariant
sets (composed by points colored in light blue and dark blue in Fig. 5) only break the inversion
symmetry (hence there can only be two such sets), confirming the findings of Fig. 4. The other four
sets (’warm’ colors in the pictures) break both symmetries, although the breaking of permutation
symmetry is more obvious (reminiscent of the sharp difference in the order parameter amplitudes
in Fig. 2). Interestingly, these numerics suggest that the number of Lebesgue ergodic components
remains equal to 6 for all ε > εc,2. Each component shrinks to a finite number of limit points as ε
approaches 1

2 , and one point in each component lies on one of the discontinuities.

8The inversion symmetry of Gε,2 materializes here as the mirror symmetry with respect to the anti-diagonal
y1 = −y2 (mod 1), whereas the permutation symmetry is represented by the mirror symmetry with respect to the
diagonal y1 = y2 (mod 1) in Figure 5. Moreover we have T2 = U1 ∪ U2 (mod 0) where

U1 =
{
y ∈ T2 : y1 6 y2

}
and U2 =

{
y ∈ T2 : y2 6 y1

}
.

9

ha
l-0

09
03

23
7,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
3



Ε " 0.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y1

y 2

Ε " 0.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y1
y 2

Ε "0.42

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y1

y 2

Ε "0.45

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y1

y 2

Figure 5: Plots of successive orbit components {(yt+t01 , yt+t02 )}T−1t=0 (with T = 2000 and t0 = 500),
starting from 6 distinct initial conditions (one orbit for each color), and generated by the maps
Gε,2 for four values of ε; two values lie below εc,2 ∼ 0.417, two lie above.

4 Mathematical results on the dynamics of Gε,1 and Gε,2

This section aims to mathematically confirm, for N = 3, the main features of the observed phe-
nomenology, by means of an analysis of the dynamics in the map Gε,2 attractor. For completeness,
the dynamics of Gε,1 is also described.

Intriguingly, the symmetry breaking of Gε,2 as observed in Fig. 5 cannot be obtained from consid-
erations of the basic attractor

+∞⋂
t=0

Gtε,2(T2).

Indeed, this set consists of a single connected component for ε at least up to 3
7 > εc,2 (see beginning

of section B.1 below). Moreover, even when ε is arbitrarily small, Gε,2 can certainly not be transitive
in this attractor because, as we shall see below, there are subsets with positive Lebesgue measure to
which the dynamics never returns. (These sets are mostly repelling neighborhood of 1-d invariant
subsets.)

Since we are interested in properties of a.c.i.m., the appropriate notion of attractor in this context
is due to Milnor and deals with the smallest closed set that attracts the orbit of every initial
condition in TN−1, up to a set of zero Lebesgue measure [7, 32]. In particular, since every map
Gε,N−1 is non-singular when ε < 1,9 dealing with Milnor attractor enables one to ignore those orbits
that hit discontinuities, i.e. that reach, in the course of time, the set of points y ∈ TN−1 such that

|yr − ys| = 1
2 (mod 1) for some pair r, s ∈ {1, · · · , N − 1}.

More generally, all sets can be considered up to sets of zero Lebesgue measure in TN , without
affecting our conclusions.

Ergodicity breaking (N = 3) will follow from the splitting of the Milnor attractor into asymmetric
invariant sets, see statement 4.4 below and its proof in Appendix B. We begin by presenting the
results for Gε,1.

4.1 Properties of the one-dimensional map Gε,1

In the case N = 2, the map Gε,1 is one-dimensional and writes (see Fig. 6)

Gε,1(y) = 2y − εg(2y) (mod 1), ∀y ∈ T1.

9For ε = 1, the set G1,N−1(TN−1) is finite; hence the dynamics must be eventually periodic.
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In Appendix A below, we show that its Milnor attractor consists of two arcs. On that set, the
map is smoothly conjugated to a piecewise affine Lorenz-type map of the interval. Results on the
dynamics of Lorenz maps [33, 41] immediately imply the following conclusion.

Proposition 4.1 For every 0 6 ε < 1
2 , the map Gε,1 is transitive on its Milnor attractor (that

consists of two arc of the circle) and in particular, the a.c.i.m. is ergodic.

Therefore, the original CML map Fε,2 is transitive on its Milnor attractor for every 0 6 ε < 1
2 . This

conclusion is the analogue of the transitivity result, obtained in [25], for a system of two doubling
maps coupled by standard diffusion process on R.

In the contracting regime ε ∈ (0, 12), a straightforward analysis of the graph of Gε,1 yields the
following conclusion.

Proposition 4.2 For every 1
2 < ε < 1, we have lim

t→∞
Gtε,1(y) = 0 for all y ∈ T1.

This result implies that global synchronization holds for the original map Fε,2, viz. every trajectory
asymptotically approaches the diagonal x1 = x2 (mod 1). Again, this conclusion is reminiscent of
the results in [25], where almost sure synchrony has been proved in the strong coupling regime.10

4.2 Ergodic properties of the map Gε,2

For N = 3, the map Gε,2 acts on the standard torus T2 and its expression writes

Gε,2(y1, y2) =

(
2y1 +

2ε

3
(g(y2 − y1)− g(2y1 + y2)), 2y2 +

2ε

3
(g(y1 − y2)− g(y1 + 2y2))

)
(mod 1)

for all (y1, y2) ∈ T2. Technical limitations prevent to obtain results as complete as in the one-
dimensional case. However, one can determine the Milnor attractor and prove its ergodicity for
small coupling, and also ensure ergodicity breaking with estimate on the number of components
for large coupling.

Proposition 4.3 For every ε < 1 −
√
2
2 ∼ 0.293, the Milnor attractor of Gε,2 (more precisely

its intersection with the fundamental domain of T2) consists of a finite union of convex polygons.
Moreover, Gε,2 is transitive on this set.

Proposition 4.3 implies that the a.c.i.m. associated to the original coupled map Fε,3 is mixing
in this regime. The polygons (’islands’) can be observed in the left panel of Fig. 5 and they
are known explicitly, see Propositions B.10 and B.12 in Appendix B where Proposition 4.3 is
proved. For convenience, the proof works with another map Hε,2 to which Gε,2 is conjugated by an
automorphism. Moreover, the second panel in Fig. 5 indicates that the Milnor attractor is certainly

not composed of convex islands sets as ε approaches εc,2; hence the restriction ε < 1−
√
2
2 here. In

other words, any proof of ergodicity for 1−
√
2
2 6 ε < εc,2 requires additional considerations and is

yet to be completed.

Although the proof fails to provide the optimal bound for ergodicity, it consists of a thorough
geometrical analysis of the dynamics that paves the way to the proof of ergodicity breaking for
stronger coupling. As reported above, this phenomenon materializes as the emergence of large
closed asymmetric invariant sets from the previously connected islands.

10Global synchronization however does not hold for the system in [25], as a 2-periodic orbit off the diagonal exists
for every ε ∈ [0, 1] [13].
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Proposition 4.4 For every 4−
√
10

2 ∼ 0.419 < ε < 1
2 , every ergodic component of the map Gε,2 must

break the inversion symmetry. In particular, Gε,2 has at least two Lebesgue ergodic components.

Moreover, for every 0.445 < ε < 1
2 , Gε,2 has at least six Lebesgue ergodic components.

The number 4−
√
10

2 is very close to εc,2 ∼ 0.417. Moreover, the lower bound 0.445 is a three-digit
upper bound approximation of the root of some cubic polynomial, see section B.2.2.

In the contracting regime ε ∈ (0, 12), the dynamics is not as trivial as for N = 2. Yet, the
analysis developed in the expanding regime enables one to easily obtain the following conclusion
(see section B.4).

Proposition 4.5 For every 1
2 < ε < 1, the Milnor attractor of Gε,2 consists of the union of a

stable fixed point at the origin and of three stable periodic orbits of period 2.

Of note, the periodic orbits exist for every ε ∈ [0, 1] and their coordinates do not depend on the
coupling strength. One periodic orbit is invariant under the inversion symmetry, one lies on the
axis y1 = 0 (mod1) and the third one is on the on axis y2 = 0 (mod1). Interestingly, for ε < 1

2 , each
orbit coordinate lies at the center of one of the islands (archipelagos when ε > εc,2) that appear in
Fig. 5.

For the original map Fε,3, our analysis implies that every orbit that never hits any discontinuity
line, must asymptotically approach either the main diagonal {(x, x, x) (mod 1) : x ∈ T1} of T3

or the pair of invariant circles
{
x± (−1

3 , 0,
1
3) (mod 1) : x ∈ T1

}
, or one of the image pair under

the permutation symmetry. This result was already established in [28] (where the proof operated
directly on the map Fε,3).

5 Concluding remarks

In this paper, we have presented numerical evidences and mathematical proofs of the breaking of
ergodicity of an a.c.i.m. in expanding systems of globally coupled maps. We conjecture that this
phenomenon is not limited to models with mean field coupling. It should exist in any system with
sufficiently long-range interactions.

That the interactions be long range appears to be necessary, at least in one-dimensional chains,
because we have observed no symmetry breaking for the analogous to the maps Fε,N with nearest
neighbor coupling. Whatever the length N > 3 of the chain is in this setting, both order parameters
vanish for every coupling in the expanding domain. It would be interesting to know if the interaction
range matters in higher dimensional lattices, and in particular if symmetry breaking can occur for
systems of nearest neigbhor coupled maps. (As a side comment, the existence of a.c.i.m. with large
support might be an issue in other models of CML, especially when the entropy of multiplicity is
no longer under control throughout the expanding domain.)

Back to the globally coupled system Fε,N , an challenging question, as mentioned in section
3, is to show numerical evidence of ergodicity breaking holds for arbitrary large N . Our results
indicate that, when N is large, longer statistics are required in order to separate the asymptotic
values of the inversion symmetry order parameter. This obstacle also limits the approach based on
the permutation symmetry observable. Indeed, the corresponding amplitude becomes tiny when
N is large, presumably because of the large (extensive) number of domains Us that partition the
the phase space (reminiscent of absence of phase transition in models of statistical mechanics with
continuous symmetry).
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As far as mathematical proofs are concerned, no proof for N > 3 is currently available. Hence
any progress in this direction would be of primary interest.
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A Analysis of the dynamics of Gε,1

As indicated at the beginning of section 4.1, the map Gε,1 : T1 → T1 is given by y 7→ 2y −
εg(2y) (mod 1). An example of its graph for ε < 1

2 is displayed in Figure 6.

y

HyLGΕ ,1

H1-ΕL�2

H1+ΕL�2

GΕ ,1 H1�2-Ε�2L

GΕ ,1 H1�2+Ε�2L
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1
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1

Figure 6: Graph of the map Gε,1 of the circle in the expanding regime (ε = 1
4). The horizontal blue

lines represent the set Aε and the green lines materialize the set Bε = Gε,1(T1 \ Aε).

In order to evaluate the action of Gε,1, we decompose the circle into two arcs where this map is
continuous, namely we write

T1 = I ∪ (I + 1
2) (mod 0), (3)

where
I =

{
y ∈ T1 : 0 < y < 1

4

}
∪
{
y ∈ T1 : 3

4 < y < 1
}
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is one arc, and the other one is

I + 1
2 =

{
y + 1

2 (mod 1) : y ∈ I
}

=
{
y ∈ T1 : 1

4 < y < 3
4

}
.

Now, the definition of g implies g(2y) = 2y (mod 1) on I; hence the set Aε = Gε,1(I) is given by
(see Fig. 6)

Aε = Gε,1(I) =
{
y ∈ T1 : 0 < y < 1−ε

2

}
∪
{
y ∈ T1 : 1+ε

2 < y < 1
}
.

Moreover, we have Gε,1(y + 1
2) = Gε,1(y) for all y ∈ T1 and together with (3) this implies

Gε,1(T1) = Aε (mod 0).

A simple calculation shows that the inclusion I ⊂ Aε holds for every ε in the expanding domain.
Together with the previous arguments, this implies

Gε,1(Aε) = Aε (mod 0),

i.e. Aε is the largest invariant set of the map Gε,1. However, as announced before, this set is not
the minimal attractor in the Milnor sense because it contains a subset Bε to which no orbit can
ever return. This subset is defined by (see Fig. 6 again)

Bε = Gε,1(T1 \ Aε) =
{
y ∈ T1 : 0 < y 6 Gε,1

(
1+ε
2

)}
∪
{
y ∈ T1 : Gε,1

(
1−ε
2

)
6 y < 1

}
.

One checks that
G−1ε,1 (Bε) ⊂ Bε ∪ (T1 \ Aε),

viz. the only way a point y ∈ Aε be mapped into Bε is that the point y be already in this set. Since
the only point whose orbit always remains in Bε is the origin 0 (mod 1), it results that the Milnor
attractor of Gε,1 must be contained in the set

Aε \ Bε =
{
y ∈ T1 : Gε,1

(
1+ε
2

)
< y < 1−ε

2

}
∪
{
y ∈ T1 : 1+ε

2 < y < Gε,1
(
1−ε
2

)}
.

Clearly, the set Aε \ Bε consists of two disjoint arcs and

Gε,1(Aε \ (Bε ∪ {14 ,
3
4})) = Aε \ Bε (mod 0).

By applying a change of variable that consists in gluing together the inner boundaries of the two
arcs, the positive jump discontinuities of the map at y = 1

4 and y = 3
4 can be removed, and the

resulting map turns out to be a symmetric piecewise affine Lorenz map.

More precisely, let Iε be the open interval in R defined by

Iε =
(
Gε,1

(
1+ε
2

)
, Gε,1

(
1−ε
2

)
− ε
)
,

and let the Lorenz map Hε,1 : Iε \
{
1−ε
2

}
→ Iε be defined by (Figure 7)

Hε,1(u) =

{
2(1− ε)u if u < 1−ε

2
2(1− ε)(u− 1−ε

2 ) + ε(1− ε) if 1−ε
2 < u

Let also rε : Aε \ Bε → Iε \
{
1−ε
2

}
be the change of variable given by

rε(u) =

{
u if u < 1−ε

2
u− ε if 1−ε

2 < u

The transformation rε is a diffeomorphism from Aε \ Bε to Iε \
{
1−ε
2

}
, and the conjugacy between

Gε,1 on Aε \ Bε and Hε on Iε (discontinuities discarded) is given by the following formal statement

Claim A.1 We have Hε,1 ◦ rε = rε ◦Gε,1 for all ε ∈ (0, 12).

The proof is a simple calculation and is left to the reader.

The properties of the dynamics of Gε,1, in particular transitivity and ergodicity everywhere in
the expanding domain (Proposition 4.1 in section 4.1), are then immediate consequences of the
analogous results for symmetric piecewise affine Lorenz maps, see [33] for a detailed description.
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Figure 7: Graph of the Lorenz map Hε,1 defined on the real set Iε \
{
1−ε
2

}
(ε = 1

4).

B Proofs of recurrent properties of the map Gε,2

This appendix is devoted to the proofs of Proposition 4.3 and 4.4 in section 4.2. The map Gε,2 is
piecewise affine of T2 with nine atoms on the fundamental domain. For the sake of simplicity, we

first reduce the number of atoms to consider by applying the linear automorphism M =

(
3
2 0
1
2 1

)
.

Letting

(
u
v

)
= M

(
y1
y2

)
, the induced map Hε,2 = M ◦ Gε,2 ◦M−1 of the unit torus T2 into

itself writes

Hε,2(u, v) =
(

2u− ε(g(u+ v) + g(u− v)), 2v − ε

3
(g(u+ v) + g(v − u) + 2g(2v))

)
(mod 1).

As forGε,2, the mapHε,2 is piecewise affine with derivative (off discontinuities) given by 2(1−ε)Id|T2 .
Hence, this map also has an a.c.i.m. with density uniformly positive on some open ball, for every
ε in the expanding domain. From now on, we exclusively consider Hε,2 instead of Gε,2.

B.1 Milnor attractor of the map Hε,2

This section contains the construction of the Milnor attractor of Hε,2. More exactly, we construct
the smallest systematically attracting and recurrent set of this map, see Proposition B.10 as the
end of this section. As Gε,1(T1) was invariant under Gε,1,

11 the image Hε,2(T2) of the whole phase
space turns out to be invariant (at least when ε < 3

7). However, this set has several non-recurrent
subregions. Accordingly, the construction consists in identifying and in removing these subregions,
one after another, until no further reduction is feasible.

The map Hε,2 commutes with the reflexion symmetries Su and Sv respectively defined by

Su(u, v) = (−u, v) (mod 1) and Sv(u, v) = (u,−v) (mod 1), ∀(u, v) ∈ T2.

(The composition Su ◦ Sv is nothing but the inversion of both coordinates inherited from Gε,2.)
Given a subset X ⊂ T2, we shall denote by O(X) = X ∪ Su(X) ∪ Sv(X) ∪ Su ◦ Sv(X), the orbit
of this set under the associated group. Throughout the construction, we shall also frequently take
advantage of the following translation invariance

Hε,2(u+ 1
2 , v + 1

2) = Hε,2(u, v), ∀(u, v) ∈ T2.

11Several properties of Hε,2 are actually two-dimensional analogue of properties of the map Gε,1.
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The torus T2 decomposes into six domains where Hε,2 is continuous (Figure 8). These atoms are
generated by two basic polygons; one is the following trapezoid

I =
{

(u, v) ∈ T2 : 0 < u < 1
2 , 0 < v < 1

4 , u+ v < 1
2

}
and the other one is the triangle

II =
{

(u, v) ∈ T2 : 0 < u < 1
4 ,

1
4 < v < 1

2 , u+ v < 1
2

}
.

Now, the decomposition writes

u

v

I SuHIL

SvHIL Su SvHIL

II SuHIIL

SvHIIL SuSvHIIL

I+H1�2,1�2L
SvHIL+H1�2,1�2L

SuHIL+H1�2,1�2L
SuSvHIL+H1�2,1�2L

II+H1�2,1�2LSuHIIL+H1�2,1�2L

SvHIIL+H1�2,1�2LSuSvHIIL+H1�2,1�2L

1
2 1

1
2

1

Figure 8: Decomposition of the torus T2 into continuity atoms for Hε,2. One atom is I1 = O(I) =
I ∪ Su(I) ∪ Sv(I) ∪ Su ◦ Sv(I); one atom is I2 = II ∪ Su(II); one atom is the symmetric image
I3 = Sv(I2) and the three other atoms are obtained by applying the translation X 7→ X + (12 ,

1
2) ={

(u+ 1
2 , v + 1

2) = (u, v) ∈ X
}

. The solid (red) segments represent discontinuity lines, respectively
T1 × {14} and T1 × {34} for the horizontal lines and D = {(u, v) ∈ T2 : u± v = 1

2 (mod 1)} for the
four inclined lines.

T2 = I1 ∪ I2 ∪ I3 ∪ ((I1 ∪ I2 ∪ I3) + (12 ,
1
2)) (mod 0) (4)

where
I1 = O(I), I2 = II ∪ Su(II) and I3 = Sv(I2),

and Hε,2 is continuous on each Ii and each Ii + (12 ,
1
2).

Borrowing a notation from the previous section, consider the set

Aε = Hε,2(I1 ∪ I2 ∪ I3).

The decomposition (4) implies we have Aε = Hε,2(T2) (mod 0); hence the attractor is certainly
contained in this set. From the expression of Hε,2 above, we get

Hε,2(u, v) = 2(1− ε)(u, v), ∀(u, v) ∈ I,

and

Hε,2(u, v) = 2(1− ε)(u, v) + (0,
2ε

3
), ∀(u, v) ∈ II.

Using these expressions and the symmetries, one obtains the following relation (Figure 9)

Aε = T2 \ (Sε ∪O(Pε))
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HΕ ,2HIL

HΕ ,2HIIL

H1-ΕL�2

1�2+Ε�6

1-Ε�3

1-Ε
u

v

1
2 1

1
4

3
4

1

u

v

1
2 1

1
2

1

Figure 9: Images Hε,2(I) and Hε,2(II) of the basic sets (left panel) and image Aε = Hε,2(T2) (mod 0)
of the full torus (right panel) for ε = 0.28. The latter follows from applying symmetries to the
former. No point can be mapped in the white region of the right panel (union of the strip Sε and
of the four concave pentagons O(Pε)). This picture also indicates the regions where points have
respectively two pre-images (light grey) and four pre-images (dark grey). Discontinuity lines are
repeated for reference.

where Sε is a strip around the axis T1 × {12}, i.e.

Sε =
{

(u, v) ∈ T2 : 1
2 −

ε

6
< v < 1

2 +
ε

6

}
,

and Pε is a concave pentagon adjacent to this strip.

As announced above, even though Aε is invariant (at least when ε < 3
7),12 this set cannot

be the Milnor attractor of Hε,2. Indeed, consider the following horizontal strip around the axis
T1 × {0 (mod 1)}

Bε =
{

(u, v) ∈ T2 : 0 6 v < (1− ε) ε
3

}
∪
{

(u, v) ∈ T2 : 1− (1− ε) ε
3
< v 6 1

}
.

Claim B.1 We have H−1ε,2 (Bε) ⊂ Bε ∪ (T2 \ Aε) for all ε < 1
2 .

Proof: The set Bε is defined as the largest horizontal strip that contains the image of the restriction
of Sε to the central atom of the partition, i.e. Hε,2

(
Sε ∩ (I + (12 ,

1
2))
)
. By translation invariance,

this image coincides with Hε,2

(
(Sε + (12 ,

1
2)) ∩ I

)
.

The strip Sε + (12 ,
1
2) is actually contained in Bε. This shows that Bε has pre-images that are

located either inside Bε or in Sε. Moreover, we have Sε ⊂ T2 \ Aε. In order to conclude the proof,
it suffices to show that there are no pre-images elsewhere. This is granted by the trivial inequality
(1 − ε) ε3 <

ε
3 which implies Bε does not intersect the images of the triangular sets I2 and I3. In

other words, Bε can only intersect the images of I1 and I1 + (12 ,
1
2) and we are done. 2

Claim B.1 implies no orbit can return to Bε after it has exited this set. Since the only orbits
staying forever in this set are the one included in the horizontal axis v = 0 (mod 1); a set that has
zero Lebesgue measure in T2, viz. the Milnor attractor must be included in Aε \Bε, see Figure 10.

12As long as Hε,2 is expanding, the image Hε,2(I1) covers I1. The decomposition (4) then implies a sufficient
condition for invariance of Aε is that, for every (u, v) ∈ II, we have

either (u, v) ∈ Aε or (u, v) + ( 1
2
, 1
2
) ∈ Aε (or both).

Direct calculations show that this property holds when ε < 3
7
.
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1
2 1

1
2

1

1
2 1

1
2

1

1
2 1

1
2

1

Figure 10: Construction of the Milnor attractor by successive elimination of non-recurrent regions.
Left panel. Original set Aε = Hε,2(T2) = T2 \ (Sε ∪O(Pε)) (grey region) and boundaries (red lines)
of the strip Bε. Center panel. The set Aε \ Bε (grey region) and boundaries (red lines) of the strips
Cε. Right panel. The set Aε \ (Bε ∪ Cε) (grey region) and boundaries (red segments) of the four
triangles Dε.

The strip Bε has been obtained as the neighborhood of a (repelling) one-dimensional invariant
set that can only be reached from the region I1 ∪ I1 + (12 ,

1
2) of phase space. The same criterion

can be applied to other sets, in particular to the intersection of the images Hε,2(O(Pε)) of the
pentagons above with the same region. Nonetheless, one can obtain a larger set13 by considering
an appropriate neighborhood of the main diagonal {(u, u) : u ∈ T1}. Let Cε be the following set
(Fig. 10)

Cε = O
({

(u, v) ∈ T2 : 0 6 u, v 6 1
2 , −2(1− ε) ε

3
6 v − u 6

ε

3

})
.

Claim B.2 We have H−1ε,2 (Cε) ⊂ Cε for all ε < 1
2 .

Proof. A strip around the diagonal can be defined as {(u, v) ∈ T2 : −a 6 v − u 6 b} for some pair
(a, b) of non-negative numbers. The boundaries of Cε above result from the following considerations.
We want Cε to only have pre-images in I1 ∪ I1 + (12 ,

1
2) and we want all these pre-images to be

included in Cε.
The first constraint imposes that the part of Cε that lies in the lower left quadrant {(u, v) : 0 6
u, v 6 1

2} be the largest strip around the diagonal that does not intersect the dark grey region in
Fig. 9. This part writes

Cpart =
{

(u, v) ∈ T2 : 0 6 u, v 6 1
2 ,−a 6 v − u 6 b

}
,

with a 6 ε and b 6 ε
3 . Now, pre-images of points in this set that are located in the lower left

quadrant write ( u
2(1−ε) ,

v
2(1−ε)); hence they obviously belong to Cpart. Moreover, those pre-images

located in the upper right quadrant - which write ( u
2(1−ε) ,

v
2(1−ε)) + (12 ,

1
2) - must be contained in

Sv ◦ Su(Cpart) =
{

(u, v) ∈ T2 : 1
2 6 u, v 6 1,−b 6 v − u 6 a

}
Therefore the following inequalities must be satisfied: b 6 2(1−ε)a and a 6 2(1−ε)b. Computing the
maximal coordinates (a, b) that simultaneously satisfy the four inequalities, we obtain a = 2(1−ε) ε3
and b = ε

3 . Applying the symmetries Su and Sv then gives the desired conclusion. 2

13One checks that Hε,2(O(Pε)) ∩ (I1 ∪ I1 + ( 1
2
, 1
2
)) ⊂ Cε.
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As before, since the only orbits that may never leave Cε are those contained in the diagonal and
the anti-diagonal {(u,−u) (mod 1) : u ∈ T1}, the set Cε cannot be part of the Milnor attractor,
viz. Aε \ (Bε ∪ Cε), see Fig. 10. Besides, later on, we shall need the following comment in order to
evaluate the structure of the resulting set

Remark B.3 The intersection, in the lower left quadrant, of the lower boundary v = u−2(1− ε) ε3
of Cε with the right boundary u + v = 1 − ε of Hε,2(I), lies above the horizontal line v = 1

4 iff

ε < 5−
√
13

4 .

One can now consider the image of the remaining part of the central strip Sε, namely

Dε = Hε,2(Sε ∩ (I2 ∪ I3)).

The set Dε consists of two triangles that are symmetric around the vertical axis {0 (mod 1)} × T1

(Fig. 10) and we have the following property.

Claim B.4 H−1ε,2 (Dε) ⊂ Bε ∪ Cε ∪ Dε ∪ (T2 \ Aε) for all ε < 1
2 .

No orbit can stay forever in Dε. Hence, the Milnor attractor must be contained in Aε\(Bε∪Cε∪Dε),
see Figure 11.

1
2 1

1
2

1

1
2 1

1
2

1

1
2 1

1
2

1

Figure 11: Construction of the Milnor attractor continued from Fig. 10. Left panel. The set
Aε \ (Bε ∪ Cε ∪ Dε) (grey region) and boundaries (red lines) of the four triangles Eε = O(Epart).
Center panel. The set Aε \ (Bε ∪ Cε ∪ Dε ∪ Eε) (grey region) and boundaries (red lines) of the

quadrilaterals Fε. Right panel. The final set Aε \ (Bε ∪ Cε ∪ Dε ∪ Eε ∪ Fε) for ε < 5−
√
13

4 ∼ 0.349.

Proof of the Claim. Consider for simplicity the triangle

Dpart = Hε,2(Sε ∩ Sv(II)) =
{

(u, v) ∈ T2 :
ε

3
6 v − u, v 6 (2− ε) ε

3

}
,

the properties of other parts of Dε will follow from symmetries. As its expression indicates, the set
Dpart has four pre-images. One is obviously Sε ∩Sv(II) which is a subset of T2 \Aε. By translation
invariance, another one is (Sε∩Sv(II))+(12 ,

1
2) which is a subset of Bε. A third pre-image is obtained

by the pure contraction (2(1− ε))−1Id|T2 ; hence it is contained in Dpart ∪ Cε. The last pre-image is
the triangle {

(u, v) ∈ T2 : 1
2 6 u,

ε

6(1− ε)
6 v − u, v 6 1

2 +
(2− ε)ε
6(1− ε)

}
.

Explicit calculations show that this set is included in the union of the upper right pentagon Pε
with Cε. 2
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Remark B.5 The upper (horizontal) boundary v = (2 − ε) ε3 of the triangle Dpart lies below the
line v = 1

4 for all ε ∈ (0, 12).

Additional restrictions on the attractor can be obtained by determining the regions for which
all pre-images belong to Aε \(Bε∪Cε). The construction of Cε suggests the image of a neighborhood
of the point (14 ,

1
4) ∈ II (and its symmetric images) as a good candidate. Optimizing this set yields

the following conclusion. Let the following triangle located in the lower right part of the image
triangle Hε,2(II), see Fig. 9

Epart =
{

(u, v) ∈ Hε,2(II) : v − u 6 2(2− ε) ε
3

}
,

and let Eε = O(Epart).

Claim B.6 We have H−1ε,2 (Eε) ⊂ Cε for all ε < 1
2 .

Proof. A candidate for Epart can be defined as {(u, v) ∈ Hε,2(II) : v − u 6 a} for some a > 0; the
constraint v− u 6 a results from requiring that the upper left boundary of the triangle be parallel
to some boundaries of Cε.
Now, the value of a that defines Epart is obtained from the following considerations. We want Epart
to only have pre-images in II ∩ Cε and in (II + (12 ,

1
2)) ∩ Cε.

The constraint that Epart has only two pre-images imposes that this set does not intersect the
dark grey region of Hε,2(II) in Fig. 9. Associated explicit calculations yield a 6 4ε

3 . Furthermore,
the constraint that the pre-image in II belongs to Cε is clearly stronger than requiring that the
pre-image in II + (12 ,

1
2) belongs to Cε (because the strip above the diagonal that composes Cε is

narrower in the former region than in the latter). Explicit calculations on pre-images show that
this constraint yields the inequality a 6 2(2 − ε) ε3 . The Claim then follows from the fact that
2(2− ε) ε3 6 4ε

3 which holds for all ε > 0. 2

Remark B.7 The left boundary v = u + 2(2 − ε) ε3 of Epart lies below the inclined line v = u + 1
2

for all ε ∈ (0, 12).

Repeating the same strategy, we observe that the lowest left corner of the triangle Su(Epart) is

mapped to the point ((1 − ε)ε, (1−ε)ε3 ) that lies at the intersection of the boundaries of Bε and Cε
in I. Hence, any point in a sufficiently small neighborhood of this point has only two pre-images:
one inside Bε ∪ Cε and the other one belongs to the triangle Su(Epart). Consequently, any such
neigborhood cannot be recurrent. By computing the largest set with that property, we obtain the
following quadrilateral (Fig. 11)

Fpart =
{

(u, v) ∈ T2 : (1− ε) ε
3
6 v,−ε 6 v − u 6 −2(1− ε) ε

3
, u+ v 6 4(1− ε)(2− ε) ε

3

}
and the following conclusion (whose proof is left to the reader)

Claim B.8 Let Fε = O(Fpart). We have H−1ε,2 (Fε) ⊂ Bε ∪ Cε ∪ Eε for all ε < 1
2 .

Remark B.9 The line u+ v = 4(1− ε)(2− ε) ε3 lies below the line u+ v = 1
2 iff ε < 5−

√
13

4 . Under
the same condition, the intersection of the lines v = u − ε and v = (1 − ε) ε3 lies below the line
u+ v = 1

2 .

Altogether, the information collected in this appendix is summarized in the following statement.
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Proposition B.10 For every ε ∈ (0, 12), the Milnor attractor of the map Hε,2 must be contained
in the set Mε defined by

Mε = Aε \ (Bε ∪ Cε ∪ Dε ∪ Eε ∪ Fε) (mod 0).

Moreover, we have
Hε,2(Mε) =Mε (mod 0),

and the restriction of this set to the lower left quadrant of the fundamental domain writes

Mε ∩
{

(u, v) : 0 6 u, v 6 1
2

}
=

6⋃
i=1

Pi,ε (mod 0) if ε <
5−
√

13

4

=
3⋃
i=1

Pi,ε ∪ P5,ε (mod 0) if ε >
5−
√

13

4

(in particular the sets P4,ε and P6,ε are empty in the second case) where the polygons {Pi,ε}6i=1 on
which Hε,2 is continuous are shown in Fig. 12.

P1,Ε

P2,Ε

P3,Ε

P4,Ε

P5,Ε

P6,Ε

1
2 1

1
2

1

HΕ ,2HP1,Ε L

HΕ ,2HP2,Ε L

HΕ ,2HP3,Ε L

HΕ ,2HP4,Ε L

HΕ ,2HP5,Ε L

HΕ ,2HP6,Ε L

1
2 1

1
2

1

P1,Ε

P2,Ε

P3,Ε

P5,Ε

1
2 1

1
2

1

HΕ ,2HP1,Ε L

HΕ ,2HP2,Ε L

HΕ ,2HP3,Ε L

HΕ ,2HP5,Ε L

1
2 1

1
2

1

Figure 12: Decomposition of the set Mε into continuity atom in each quadrant (left panel) and

representation of their image (right panel). Top: ε = 0.28 < 5−
√
13

4 . Bottom ε = 0.4 > 5−
√
13

4 .

Analytic expressions for the boundaries of the polygons {Pi,ε}6i=1 can be easily deduced from the
previous analysis. As is always the case in the paper, those boundaries that are composed of pieces
of discontinuities lines are excluded of these sets.

Sketch of proof. That the Milnor attractor must be contained in Mε is a consequence of the
construction in this appendix. The existence of the polygons Pi,ε is granted by the Remarks after
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proofs, especially Remarks B.3 and B.9. Finally, one checks that the construction implies the
following relations (Fig. 12)

Hε,2(P1,ε) = Sv

(
3⋃
i=1

Pi,ε

)
(mod 0),

and

Hε,2(P3,ε ∪ Su(P3,ε)) = Sv

 6⋃
i=4

⋃
k=0,1

Sku(Pi,ε)

 (mod 0) if ε <
5−
√

13

4

= Sv (P5,ε ∪ Su(P5,ε)) if ε >
5−
√

13

4
,

which, together with symmetries, imply Hε,2(Mε) =Mε. 2

B.2 Symmetry breaking for Mε, proof of Proposition 4.4

B.2.1 Decomposition of Mε into two asymmetric invariant sets

Throughout this section, we assume ε > 5−
√
13

4 so that the sets P4,ε and P6,ε are empty. Using that
4−
√
10

2 > 5−
√
13

4 , the inequality ε > 4−
√
10

2 in Proposition 4.4 is equivalent to the condition P5,ε does
not intersect the vertical axis {12}×T1 (i.e. we have P5,ε ∩Su(P5,ε) = ∅). In this case, the previous
construction of Mε implies (Fig. 12, bottom panels)

Hε,2(P3,ε) = Su ◦ Sv(P5,ε).

In addition, we have

Hε,2 ◦ Su(P5,ε) ⊂
3⋃
i=1

Pi,ε (mod 0).

Let

Nε =
⋃
k=0,1

Skv

(
3⋃
i=1

Pi,ε ∪ Su(P5,ε)

)
(mod 0).

Then we have Mε = Nε ∪ Su(Nε) and the arguments above imply Nε (mod 0) is invariant under

Hε,2 when ε > 4−
√
10

2 . The multiplicity entropy argument implies that the restriction Hε,2|Nε must
have an a.c.i.m. whose density is uniformly positive on an open ball.

This proves that, when ε > 4−
√
10

2 , Hε,2 has at least two Lebesgue ergodic components and every
ergodic component must break the symmetry Su, and therefore must break the symmetry Su ◦ Sv.
Applying the inverse change of coordinates M−1, the same conclusion holds for Gε,2. The first part
of Proposition 4.4 is proved.

B.2.2 Existence of six Lebesgue ergodic components

Let ε∗ be the unique real root of the polynomial 12ε3−34ε2 + 33ε−9. Numerical calculations show
that ε∗ > 0.444.

Claim B.11 For every ε > ε∗, there exists 1
4 < a(ε) < b(ε) < 1

2 −
ε
6 such that

24

ha
l-0

09
03

23
7,

 v
er

si
on

 1
 - 

10
 N

ov
 2

01
3



• the union set

Q1,ε =

2⋃
t=0

Ht
ε,2

({
(u, v) ∈

3⋃
i=1

Pi,ε : v 6 a(ε)

})
,

defines a forward invariant set, asymmetric with respect to both Su and Sv, viz.

Hε,2(Q1,ε) ⊂ Q1,ε (mod 0) and Su(Q1,ε) ∩Q1,ε = Sv(Q1,ε) ∩Q1,ε = ∅.

• the union set

Q2,ε =
2⋃
t=0

⋃
k=0,1

Ht
ε,2 ◦ Skv

({
(u, v) ∈

3⋃
i=1

Pi,ε : a(ε) 6 v 6 b(ε)

})
,

defines a forward invariant Su-asymmetric set, viz.

Hε,2(Q2,ε) ⊂ Q2,ε (mod 0) and Su(Q2,ε) ∩Q2,ε = ∅.

As argued in the previous section, each set Q1,ε and Q2,ε must contain a Lebesgue ergodic compo-
nent of Hε,2. Applying Su and Sv, we conclude that there must be at least six such components.
The proof of Proposition 4.4 is complete.

Proof of the Claim. Given a > 1
4 , let

Qa =

{
(u, v) ∈

3⋃
i=1

Pi,ε : v 6 a

}
.

We are going to determine the quantity a(ε) such that the set
2⋃
t=0

Ht
ε,2(Qa(ε)) be forward invariant.

This requires considering the first two images of Qa.

The discontinuity line u + v = 1
2 meets the lower boundary v = u + ε

3 of
3⋃
i=1

Pi,ε at a point with

vertical coordinate v = 1
4 + ε

6 . Hence, if a 6 1
4 + ε

6 , we are sure that Qa ∩ P3,ε = ∅. Moreover, we
have

Hε,2(P1,ε) ⊂

{
(u, v) ∈

3⋃
i=1

Pi,ε : v 6
1− ε

2

}
(mod 0).

We have Qa ∩ P1,ε = P1,ε since a > 1
4 . Hence, the condition 1−ε

2 6 a implies Hε,2(Qa ∩ P1,ε) ⊂ Qa

and we are left with the analysis of

Q1
a = Hε,2(Qa ∩ P2,ε) =

{
(u, v) ∈

3⋃
i=1

Sv(Pi,ε) : v 6 a2

}
(mod 0)

where a2 = 2(1− ε)a+ 2ε
3 . Assuming a2 6 3

4 , then Q1
a does not intersect Sv(P1,ε). Moreover

Hε,2(Q
1
a ∩ Sv(P2,ε)) =

{
(u, v) ∈

3⋃
i=1

Pi,ε : v 6 a3

}
(mod 0),

where a3 = 2(1 − ε)a2 − 1 + 4ε
3 . Therefore, under the condition a3 6 a (which turns out to be

equivalent to a 6 1
3), we have

Hε,2(Q
1
a ∩ Sv(P2,ε)) ⊂ Qa (mod 0).
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On the other hand, using ε > 4−
√
10

2 we obtain

Hε,2(Q
1
a ∩ Sv(P3,ε)) ⊂ {(u, v) ∈ Su(P5,ε) : v 6 a4} ,

where a4 = 2(1− ε)a2 − (1− ε), and then

H2
ε,2(Q

1
a ∩ Sv(P3,ε)) ⊂

{
(u, v) ∈

3⋃
i=1

Pi,ε : v 6 a5

}
(mod 0),

where a5 = 2(1 − ε)a4 + ε
3 . Obviously, if a5 6 a, then this set is included in the original set

Qa. Moreover, provided that all inequalities above hold, the reasoning here implies
2⋃
t=0

Ht
ε,2(Qa) ⊂

Qa (mod 0) as desired. In order to ensure that Qa breaks the Sv-symmetry,14 one needs to make
sure that the inequality a2 6 1− a holds.

To conclude the proof of the first item, we need to compute the value of a and check all conditions.
Solving the equation a5(a) = a yields a(ε) = 6−9ε+4ε2

3(7−10ε+4ε2)
. Moreover, one checks that

1
4 < a(ε) < min

{
1
4 +

ε

6
, 13

}
if

4−
√

10

2
< ε < 1

2 .

Now, the inequality 1−ε
2 6 a(ε) is equivalent to 12ε3 − 34ε2 + 33ε− 9 > 0 and this polynomial has

a single real root ε∗. Finally one also check that the following holds

a2(a(ε)) 6 min
{
3
4 , 1− a(ε)

}
if 0 < ε < 1

2 ,

and the proof of the first item is complete.

We proceed similarly to prove the second item. Given a(ε) < b < 1
2 −

ε
6 , consider the set15

⋃
k=0,1

Skv (Qb) where Qb =

(u, v) ∈
⋃
i=2,3

Pi,ε : a(ε) 6 v 6 b

 .

By symmetry it suffices to consider the images of Qb. We want the part of this set that intersects
P2,ε to be mapped inside Sv(Qb). This is equivalent to the inequalities 1−b 6 a2(ε) and b2 6 1−a(ε)
where b2 = 2(1− ε)b+ 2ε

3 .

Moreover, the part of Qb that intersects P3,ε is mapped into Sv◦Su(P5,ε) and then into
3⋃
i=1

Sv(Pi,ε) (mod 0).

When this happens, we want this image to sit in Sv(Qb). This imposes two inequalities. One in-
equality is b4 6 1− a(ε) where b4 = 2(1− ε)b3 − 1 + 5ε

3 and b3 = 2(1− ε)b+ ε.

In order to get the second inequality, we observe that the part of Qb that intersects P3,ε must obey
v > v(ε) = 1

4 + ε
6 . Hence, the image in Sv ◦ Su(P5,ε) has to satisfy v > v2(ε) = 2(1− ε)v(ε) + ε and

the second desired inequality is 2(1− ε)v2(ε)− 1 + 5ε
3 > 1− b.

Solving b4(b) = 1−a(ε) for b yields b(ε) = 9−14ε+6ε2

3(7−10ε+4ε2)
. Now one checks that, for all ε < 1

2 , we have

b(ε) < 1
2 −

ε
6 and

max

{
2(1− ε)b(ε) +

2ε

3
, 2(1− ε)(2(1− ε)b(ε) + ε)− 1 +

5ε

3

}
< 1− a(ε).

14By construction, it already breaks the Su-symmetry.
15The assumption v > a(ε) prevents Qb to intersect the set P1,ε.
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Under the same condition, the first inequality below holds

b(ε) > max

{
a(ε), 2− 2(1− ε)(2(1− ε)v(ε) + ε)− 5ε

3

}
.

One checks that the second inequality holds provided that 0.4 < ε < 1
2 . The second item is proved.

2

B.3 L.e.o. property, proof of transitivity in Proposition 4.3

Recall that a mapping F defined on some topological space X (endowed with some σ-algebra and
Borel measure) is said to be locally eventually onto (l.e.o.) if for every open set U ⊂ X, there
exists t ∈ N such that F t(U) = X (or F t(U) = X (mod 0)). Every l.e.o. map must be transitive.
Accordingly, the transitivity claim for Hε,2 in Mε, as stated in Proposition 4.3 of section 4.2, is a
consequence of the following result.

Proposition B.12 For every ε < 1−
√
2
2 , the map Hε,2|Mε is l.e.o.

This section is devoted to the proof of this Proposition which consists in proving the following
statements16

(a) For every ε < 1 −
√
2
2 and every open set U ⊂ Mε, there exists t ∈ N such that Ht

ε,2(U)
contains a Su-invariant square.

(b) For every ε < 1 −
√
2
2 and every Su-invariant square U ⊂ Mε, there exists t ∈ N such that

Ht
ε,2(U) =Mε (mod 0).

For convenience, we prove the second statement before the first one.

B.3.1 Proof of statement (b)

Let ε < 1−
√
2
2 be arbitrary. (Notice that 1−

√
2
2 < 5−

√
13

4 ; hence P4,ε and P6,ε are non-empty.) The
images of the atoms of the partition ofMε, especially of P2,ε and P3,ε (see Fig. 12) indicate that, in
order to show that an iterate of a Su-invariant square coversMε (mod 0), it suffices to ensure that
an (earlier) iterate covers either the set P2,ε ∪ Su(P2,ε) or its symmetric image Sv(P2,ε ∪ Su(P2,ε)).

The proof relies on the following properties

• The image of any Su-invariant rectangle U ⊂ Mε under Hε,2 consists of either one or two
Su-invariant rectangles.

• The horizontal width of any Su-invariant rectangle inMε is dilated by a factor 2(1− ε) under
the action of Hε,2.

• Let J =
(
1
4 ,

1
2 −

ε
6

)
be defined by

(P2,ε ∪ Su(P2,ε)) ∩ {0 (mod 1)} × T1 = {0 (mod 1)} × J .
16The term Su-invariant square (resp. Su-invariant rectangle) denotes any square (resp. rectangle) in T2 which

the vertical axis {0 (mod 1)} × T1 separates into two rectangles that are image one another under the action of Su.
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If an Su-invariant rectangle U ⊂Mε is such that

U ∩ {0 (mod 1)} × T1 = {0 (mod 1)} × J . (5)

Then we have
Hε,2(U) ∩ {0 (mod 1)} × T1 = {0 (mod 1)} × −J ,

Together with the symmetry Sv and the fact that Hε,2 is a piecewise affine conformal expanding
map, these properties imply that for any Su-invariant rectangle U ⊂Mε satisfying (5), there exists
t ∈ N such that Ht

ε,2(U) covers either P2,ε ∪ Su(P2,ε) or Sv(P2,ε ∪ Su(P2,ε)).

Therefore, all we have to show is that, for any initial Su-invariant square in Mε, there exists an
iterate under Hε,2 that contains an Su-invariant rectangle satisfiying (5) (or for which the symmetric
rectangle under Sv satisfies (5)).

To that goal, it suffices to consider the one-dimensional dynamics on the vertical axis {0 (mod 1)}×
T1 and to show that, for any initial arc in this set, there exists an iterate that covers either
{0 (mod 1)} × J or {0 (mod 1)} × −J .

The intersection of Mε with the vertical axis {0 (mod 1)} × T1 consists of the set K × T1 where

K =
(

(2− ε) ε
3
, 12 −

ε

6

)
∪
(
1
2 +

ε

6
, 1− (2− ε) ε

3

)
.

Let Kε,2(v) = 2v − 2ε
3 (g(v) + g(2v)) (mod 1) be the one-dimensional map defined on K by the

restriction of Hε,2 to K × T1. We are going to prove that Kε,2 is l.e.o. by proceeding similarly as
for Lorenz-type maps of the interval [41].

Let I = I1 be a connected arc included in K and consider the following inductive process. Given
t ∈ N, assume that It is given and let the set It+1 be defined by

It+1 =

{
Kε,2(I

t) if {14 ,
3
4} 6⊂ I

t

Kε,2(largest of two arcs that either 1
4 or 3

4 splits It into) if {14 ,
3
4} ⊂ I

t

By construction, every It is connected and, unless we simultaneously have {14 ,
3
4} ⊂ I

t and {14 ,
3
4} ⊂

It+1, the following inequality on arc lengths holds

|It+2| > (2(1− ε))2

2
|It|.

We have (2(1−ε))2
2 > 1 iff ε < 1 −

√
2
2 . However all sets It must be contained in K; hence both It

and It+1 must meet the discontinuity set {14 ,
3
4} for t sufficiently large.

Assume w.l.o.g. that 1
4 ∈ I

t, the other case can be treated by applying u 7→ −u (mod 1). If, in
addition we have 3

4 ∈ I
t+1, then Fig. 12 implies we must have −J ⊂ It+1 as desired.

If otherwise 1
4 ∈ I

t+1, then it follows that (14 ,Kε,2(
1
4 − 0)) = (14 ,

1−ε
2 ) ⊂ It+1. Moreover, the arc

(14 ,
1−ε
2 ) contains the point 1

3 when ε < 1 −
√
2
2 . However, the pair {13 ,

2
3} is a 2-periodic orbit of

Kε,2 where the first component belongs to J and the second one lies in −J . Therefore, every
neighborhood of 1

3 contains a sufficiently long cylinder set17

J ∩K−1ε,2 (−J ) ∩K−2ε,2 (J ) ∩K−3ε,2 (−J ) · · ·

Consequently, for every neighborhood U of 1
3 , there exists tU ∈ N such that KtU

ε,2(U) ⊃ J . Applying

this statement with U = (14 ,
1−ε
2 ) ⊂ It+1, it follows that we have

either K
t
( 14 ,

1−ε
2 )

ε,2 (It+1) ⊃ J or K
t
( 14 ,

1−ε
2 )

ε,2 (It+1) ⊃ −J ,

as desired. The proof of statement (b) is complete.

17Every such cylinder set is non-empty because we have Kε,2(J ) ⊃ −J and Kε,2(−J ) ⊃ J .
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B.3.2 Proof of statement (a)

Translation invarianceHε,2(u+ 1
2 , v+ 1

2) = Hε,2(u, v) and invariance of the vertical axis {0 (mod 1)}×
T1 under Hε,2 imply

Hε,2({12} × T1) = {0 (mod 1)} × T1.

In particular, the image under Hε,2 of every open ball intersecting {12}×T1 contains a Su-invariant
square. Accordingly, statement (a) will be an immediate consequence of the following property.

Lemma B.13 Let ε ∈ (0, 1−
√
2
2 ) be given. For every open set U ⊂Mε not intersecting {0 (mod 1)}×

T1, there exists tU ∈ N such that HtU
ε,2(U) contains an open ball that intersects {12} × T1.

The proof is not as direct as the statement suggests. In particular, since segments can be repeatedly
cut into pieces while iterating, we need to combine length considerations with arguments of area
growth in order to make sure that discontinuity lines are eventually crossed in a suitable way.

Proof of the Lemma. The proof consists in establishing two claims. The first one relies on conformal
expansion of Hε,2 and deals with iterates of convex polygons whose boundaries are parallel to discon-
tinuity lines. By this, we mean that any boundary is either an horizontal segment or a segment par-
allel to the diagonal

{
(u, u) (mod 1) : u ∈ T1

}
or to the anti-diagonal

{
(u,−u) (mod 1) : u ∈ T1

}
.

Obviously, such polygons have at most 6 edges.

Claim B.14 For any convex polygon U with boundaries being parallel to discontinuity lines, and
included in a single atom18 ofMε, there exists tU ∈ N such that HtU

ε,2(U) contains a similar polygon
that intersects two discontinuity lines.

Proof. The Claim follows immediately from the following basic properties, using also that Mε has
finite area. Let U ⊂Mε be a convex polygon with boundaries parallel to discontinuity lines. One
of the following case applies

- either the interior of U is included in a single atom,

- or the interior intersects a single discontinuity line,

- or it intersects two discontinuity lines.

If the interior of U is included in a single atom, then Hε,2(U) ⊂ Mε is a convex polygon with
boundaries parallel to discontinuity lines (and strictly larger area).

If the interior of U intersects a discontinuity line, then Hε,2(U) ⊂Mε consists of the union of two
convex polygons with boundaries parallel to discontinuity lines; and one polygon at least has area
larger than U .

The geometric properties above are easy to establish (details left to the reader). As for the area
consideration in the last claim, using that the largest piece the discontinuity line splits U into must

have area larger than 1
2 |U |; we deduce that its image must have area larger than (2(1−ε))2

2 |U | and
(2(1−ε))2

2 > 1 for every ε ∈ (0, 1−
√
2
2 ). 2

In the case the two discontinuity lines that a polygon of HtU
ε,2(U) intersects are inclined, Fig. 12

top indicates that this polygon must also intersect {12}×T1 and we are done. Otherwise,19 the fact

18An atom is defined to be a connected component on which Hε,2 is continuous.
19In that case, HtU

ε,2(U) must contain a convex polygon that intersect one horizontal and one inclined discontinuity
lines.
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that every edge must be parallel to a discontinuity line implies that the intersection with the two
discontinuity lines must contain a segment - and indeed a strip - parallel to either the diagonal or
the anti-diagonal. In this case, the Lemma follows from the claim below, together with symmetry
considerations.20 By inclined strip, we mean a strip having two edges parallel to the diagonal.

Claim B.15 Consider any inclined strip U lying across P2,ε (resp. P5,ε). This means that an edge
is contained in an horizontal discontinuity line and another edge is contained in discontinuity line
parallel to the anti-diagonal. Then, there exists tU ∈ N such that HtU

ε,2(U) contains an open ball

that intersects {12} × T1.

Proof. First consider the case U lies across P2,ε. Then Hε,2(U) is an inclined strip lying either
across Sv(P2,ε) or across Sv(P3,ε) (see Fig. 12). In the first case, H2

ε,2(U) contains an inclined strip

across P2,ε which is further away than U from the vertical axis {0 (mod 1)}×T1 and has horizontal
width 2(1− ε) times larger.

Repeating the argument, we conclude that for any inclined strip U across P2,ε, there exists t ∈ N
such that Ht

ε,2(U) contains a (2(1− ε))t broader inclined strip across Sv(P3,ε).

Now, an inclined strip across Sv(P3,ε) is mapped onto an inclined strip lying across the union
Su(P4,ε ∪ P5,ε). However, the image of any inclined strip lying across (the extended part of)
Su(P4,ε) intersects {12} × T1; hence we only have to consider the case of an inclined strip across
Su(P5,ε) that hits its bottom horizontal edge.

It results from the definition of H2,ε that the iterate of such strip must contain an inclined strip
across P2,ε. From the argument above, it follows that a further iterate must eventually cover
a broader strip across Su(P4,ε ∪ P5,ε) with larger horizontal width. Hence, some iterate must
eventually intersects the line {12} × T1. This completes the proof in the case U lies across P2,ε.

In the case U lies across P5,ε, the image H2,ε(U) lies across Su(P2,ε∪P3,ε) and reaches their upper
horizontal boundary. Therefore, it fits one the symmetric cases that were previously considered.
Consequently, some iterate must intersects the vertical axis {12}×T1 and the proof is complete. 2

B.4 Dynamics in contractive regime, proof of Proposition 4.5

The analogous picture to Fig. 9 for ε ∈ (12 , 1) shows that

Hε,2(I) ⊂ I

and Hε,2(II) may still intersect the same three sets as in Fig. 9. By using symmetries and transla-
tional invariance, we conclude that the following alternative must hold for every orbit that never
hit a discontinuity

• either the orbit end up entering the set I1 and therefore converges to the stable fixed point
(0, 0),

• or the orbit switches forever back and forth between II and Sv(II) (or between Su(II) and
Su ◦ Sv(II)). In this case, it must asymptotically approach the 2-periodic orbit on the axis
{0 (mod 1)} × T1 with components (0, 13) and (0, 23).

Proposition 4.5 follows immediately when applying the change of variable M−1. In particular, the
periodic orbit generates 3 distinct periodic orbits in the original variables (y1, y2).

20In principle, one should also consider similar strips in Hε,2 ◦Sv(P3,ε) (and symmetric strips). However, the Claim
is trivial in this case because the strip itself contains an open ball that intersects { 1

2
} × T1.
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