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Abstract—The concept of randomness is fundamental in
many domains and in particular in cryptography. Intuitively,
a system, which is unpredictable is more difficult to attack
and as a consequence, creating sequences that look like
random represents a major issue. In this paper, we first study
theoretically how a source of symbols with positive entropy can
be turned into a true random generator called Bernoulli. We
concentrate on a special type of generators, which consists in
randomly choosing k elements out of n elements. After studying
some existing algorithms, which are of Las Vegas type, we
introduce new constructions from a binary generator taken
as a primary random source of symbols. Our method is based
on combinatorial block designs and we construct algorithms of
Monte Carlo type involving random walks. We analyze in detail
properties of our general method. Several explicit constructions
of k-out-of-n generators are given. We show that the speed
of convergence to the uniform distribution is better than any
known method using algorithms with bounded running times.
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I. INTRODUCTION

Random or pseudo-random generators of numbers are

omnipresent in cryptography. The concept of randomness

is used for various purposes. Salt and nonce are well known

examples of random values. A nonce (number used once)

is used to check the freshness of a message or as an

initialization vector. In conjunction with password, salt is

frequently used in order to complicate a dictionary attack.

Many cryptographic primitives also require random or pseu-

dorandom inputs like keys or values to make algorithms

probabilistic. It is well known that digital signatures or chal-

lenges in authentication protocols require the use of random

quantities. For these reasons, finding of good pseudo-random

generator is a stake in first importance. There exist in the

literature lots of pseudo-random generators, which imitate

in some sense a sequence of independent random variables

Xn, uniformly distributed like, for example, the Blum Blum

Shub generator (BBS) [5].

However, some applications require more complex gener-

ators, called k-out-of-n generators. They consist in picking

randomly k elements in a set of n elements. The need

for such generators is multifarious. They help to reach

load balancing in certain distributed systems like high-

availability clusters for example. They are also useful in

security protocols, like threshold signatures [27] or time-

stamping schemes [6], [7]. Suppose we decide to create a

service of authentication (signatures and time-stamps). Most

of protocols use the concept of trusted third party even

though it may be difficult to build a third party server that

can be trusted. Indeed a server may be corrupted or victim of

Denial of Service attacks (DoS). Moreover, the problem may

not have a malicious origin but a hardware or software one.

An important requirement of existing protocols is to prevent

the server from failing. In fact, schemes relying on a unique

third party server cannot be fully trusted. Therefore, such a

scheme should use a multi-server architecture that could be

described as follows: the protocol uses n third party servers.

For each request to the system, k servers out of the n servers

are randomly chosen to process the request. These k servers

are said to be the active servers. In this configuration, an

attacker does not know a priori what are the active servers

for a given request. The attack is then much more difficult to

operate. Moreover, the randomness of the generator allows

the system to be load balancing.

The above example is at the origin of this work as

we noticed that the construction of a uniform k-out-of-n
generator from a unbiased (or not) 0-1 valued Bernoulli

generator were not so much studied in the literature where

uniform random number generators in the unit interval are

commonly used. The underlying general problem is in fact

to construct unbiased Bernoulli generators from a binary

Bernoulli one, supporting a possible bias.

The paper is organized as follows. Section II recalls

necessary background, regarding (true) random generators

from a theoretical point of view. To this aim, basic properties

of symbolic Bernoulli dynamical systems are given. They

serve as theoretical models of random sources of symbols

with positive entropies. Section III reviews some existing

solutions of the k-out-of-n problem. Both first ones are

very simple and of classical conception, while the third

one called RANKSB algorithm in [17] is due to Nijenhuis

and Wilf. This former algorithm leads to important bias in

comparison to the uniform distribution. Most of them are Las

Vegas algorithms. Section IV is devoted to our constructions

that are supported by Monte Carlo algorithms, hence with



a bounded running times. Such algorithms approach the

uniform distribution exponentially fast. We first propose a

generator based on the existence of some special combi-

natorial objects, namely block t-designs or including some

Steiner systems. This construction generates k elements

from a set of n elements in a uniform fashion from a binary

generator. It consists in randomly picking a block, called

word, from the blocks of the design. This word is then

modified in order to obtain a vector of weight k and length

n with the desired property. We will see that it can be useful

to introduce the notion of block codes, since codewords of

a fixed Hamming weight in some codes hold a design.

The second type of constructions is based on random

walks on a finite set following the action of a finite num-

ber of generators of a group acting transitively. The first

construction uses the permutation group Sn. The second

construction is very related to the method based on block

designs. The main difference is in the way of randomly

picking a word in the appropriate set. The algorithm makes

use of the automorphism group of the design and executes

a random walk on its blocks.

This article is an extended version of [1]. We present

in detail our methods, including mathematical foundations.

Compare to the conference version, our construction makes

use of block designs and not just Steiner systems. Indeed,

block designs are widespread and, as a consequence, our

construction can be applied for a wide range of parameters

k and n. In order to illustrate our methods, we give several

explicit constructions. For each chosen couple of parameters

k and n, we exhibit a correct design and calculate the speed

of convergence of the generator.

II. RANDOMNESS AND MATHEMATICAL FOUNDATIONS

A. From a binary random number generator to a q-ary one

In [18], the NIST defines a random bit sequence as

follows. “A random bit sequence could be interpreted as the

result of the flips of an unbiased fair coin with sides that are

labeled “0" and “1," with each flip having a probability of

exactly 1/2 of producing a “0" or “1." Furthermore, the flips

are independent of each other: the result of any previous coin

flip does not affect future coin flips". Similarly, replacing the

set of issues {0, 1} by a given finite set A, one can define a

random A-valued sequence as an A-valued independent and

identically distributed random variables Xn(·) with common

law the uniform distribution on A. For our purpose, it is

convenient to translate these notions in term of Bernoulli

dynamical systems. To this aim, we recall basic definitions

and general results related to symbolic dynamical systems

and entropy.

Assume that A, also called alphabet, is equipped with the

discrete topology, has q elements (or letters) with q ≥ 2, and

set Ω(A) = AZ the product space endowed with the usual

compact product topology. Elements ω of Ω(A) are infinite

bilateral sequences

ω = (. . . , ω−3, ω−2, ω−1;ω0, ω1, ω2, . . . )

with origin pointed at ω0. The alphabet A is usually

endowed with the uniform distribution denoted by U(A)
but we also consider other distributions. The space Ω(A)
is equipped with the σ-algebra of its Borel subsets. Any

probability µ on A, induces the infinite product probability

µ∞ on Ω(A), which is defined from cylinder sets. More

precisely, for any a := a0 . . . an−1 in An, let

[a] := {ω ∈ Ω ; ∀ i ∈ {0, . . . , n − 1}, ωi = ai}
be the cylinder set of base a, then

µ∞(σk[a]) = µ({a0}) . . . µ({an−1})
for any k ∈ Z. The shift σ : Ω(A) → Ω(A) is defined by

σ(ω)n = ωn+1. Now, the triplet B(A, µ) := (Ω(A), σ, µ∞)
is by definition the Bernoulli (random generator) on A with

source distribution µ. In case µ = U(A) we set U∞(A)
for µ∞ and B(A, U(A)) is simply denoted by B(A). Let

π0 : Ω(A) → A be the central projection (π0(ω) = ω0), then

the maps B(A)n := π0◦σn defined on the probability space

(Ω(A), U∞(A)) form an A-valued sequence of independent

random variables identically distributed with distribution law

U(A). This corresponds to a q-ary random number generator

for q = #A.

B. Symbolic random sources, entropy and factors

To fix some notations and for convenience of the reader,

we recall basic definitions and facts from ergodic theory. For

more details and proofs we refer to the monographs [32]

and [25], and specific references below. Our mathematical

model of random source of letters in A should be identified

to a symbolic dynamical system (SDS) with symbols in A,

that is to say a triple (Ω(A), σ, ν) where ν is a Borel measure

on Ω(A), which is σ-invariant, i.e., ν = ν ◦ σ−1. The

entropy of such a system is, by the classical Kolmogorov-

Sinai Theorem or by definition,

H(σ, ν) := − lim
N

1

N

∑

a∈AN

ν([a]) log ν([a])

with the convention 0. log(0) = 0.

Let Ω′ := (Ω(A′), σ′, ν′) and Ω := (Ω(A), σ, ν) be

symbolic dynamical systems. Their direct product is the

SDS Ω × Ω′ = (Ω(A × A′), σ × σ′, ν ⊗ ν′) and so

H(σ×σ′, ν × ν′) = H(σ, ν)+H(σ′, ν′). This construction

means that the source corresponding to Ω and Ω′ are inde-

pendent. If there is a measure preserving map f : Ω′ → Ω
commuting with the shifts, i.e.,

{

ν = ν′ ◦ f−1 ,
σ ◦ f = f ◦ σ′ (ν-almost everywhere) ,

(1)

then Ω is said to be a factor of Ω′ with factor map f . In

that case H(σ, ν) ≤ H(σ′, ν′). In the following, the value



H(σ,ν)
H(σ′,ν′) will be called entropy rate and denoted by τ(ν, ν′)
or simply by τ . If f is invertible (up to negligible sets),

with measure preserving inverse map, then Ω is said to

be isomorphic to Ω′ with conjugate map f and if Ω′ is

a Bernoulli random generator, then by extension Ω is also

called a Bernoulli SDS.

We have H(σ−1, ν) = H(σ, ν) and more generally

H(σ±k, µ) = kH(σ, ν) for any natural number k. In fact the

k-th iterate (Ω(A), σk, ν), k 6= 0, is canonically identified

with (Ω(Ak), σ(k), ν(k)), where σ(k) is the shift on Ω(Ak)
and ν(k) is induced by ν restricted to cylinder sets of Ω(Ak)
viewed as particular cylinder sets from Ω(A). Therefore

H(σ(k), ν(k)) = kH(σ, ν).
This construction has the following important conse-

quence. Assume that we have got a binary source with

positive entropy h, for example a source extracting from

random jitter in an electrical circuit or quantum effects in

semiconductors or timing of running current process, or a

combination of these sources. Then, we derive a source of

binary blocks of length k having entropy kh.

In case of a Bernoulli system B(A, µ) (hence ν = µ∞

with the above definition), its entropy is easy to compute:

H(σ, µ∞) = −
∑

a∈A

λ({a}) log λ({a}).

In particular H(σ, U∞(A)) = log(#A).
As a consequence of a deep result of Y. Sinai (see

[28]), if the entropy H(σ′, ν′) of Ω′ = (Ω(A′), σ′, µ′) is

greater than or equal to log #A then there exists a factor f
from (Ω(A′), σ′, µ′) onto the uniform Bernoulli generator

B(A). Properties (1) shows that f is determined by the

central coordinate map f0 = π0 ◦ f since we have f =
(. . . , f−2, f−1; f0, f1, f2, . . . ) with fk = f0 ◦ σk (k ∈ Z).

In particular f0 is constant equal to a on Ca := f−1([a]).
Moreover, all partitions {σ′m(Ca) ; a ∈ A} (m ∈ Z) are

independent in between. Hence, building such a partition is

usually intractable by computer except in particular cases

pointed out below. Another consequence of the above con-

struction and Sinai’s theorem is that, from any given random

binary source of positive entropy, theoretically there exists a

factor built from of a suitable power of this source, which is

B({0, 1}), the factor map consisting in distributing binary

sequences in two parts equally likely and independently in

the time. This is the most hard problem to be solved in

practice for constructing, from a suitable physical random

source, a binary random generator according to the NIST

definition.

Following results of D. S. Ornstein [19], we recall that the

family of Bernoulli dynamical systems is remarkably stable.

In particular, they are characterized by their entropy (two

such systems of equal entropy are isomorphic), any direct

product of Bernoulli systems and any non trivial iterate (and

also any root) of a Bernoulli system are Bernoulli. Moreover

any factor of a Bernoulli system is also Bernoulli. These

properties imply that any probability algorithm that takes

in input a Bernoulli source and output a random source of

symbols always gives rise to a Bernoulli SDS, isomorphic

to some B(A, µ). In this paper we propose algorithms that

take as inputs the outcomes of an appropriated Bernoulli

source B({0, 1}k) and output a random source of letters in

a given alphabet A whose distribution of letters is exactly

or approximate accurately the uniform distribution. We may

distinguish three sorts of such random algorithms.

(A1) Algorithms that output the uniform distribution on

A in a bounded running time.

(A2) Las Vegas algorithms: they output the uniform

distribution on letters with unbounded running time but with

a finite expectation.

(A3) Monte Carlo algorithms: they end in a bounded

running time, output a distribution usually distinct to the

uniform distribution but arbitrarily closed to it in term of

total variation.

The following theorem depicts the first case.

Theorem 1: If an algorithm of type (A1) takes input from

issues of the source B({0, 1}k) and produce a uniform

Bernoulli source of entropy log2 q, then q = 2s with s ≤ k.

Proof: By assumption, the algorithm can be identi-

fied to a factor maps f with central coordinate map f0

having its values in {0, 1, . . . , q − 1}. That leads to the

partition {f−1
0 ({j}) ; 0 ≤ j < q} of Ω({0, 1}k) with

U(Ak)(f−1
0 ({j}) = 1/q and there exists an integer L ≥ 1

such that each f−1
0 ({j}) is the union of some cylinder sets of

the form CL(a) := {ω ∈ Ω({0, 1}k) ; (∀i)(|i| > L or ωi =
ai+L)}, a0 · · · a2L ∈ ({0, 1}k)2L+1. This implies that q
divides 2kL and since log q ≤ k one has q = 2s with s ≤ k.

Obviously, having in hands a uniform binary source, like

tossing an unbiased coin, for cryptographic applications is

impractical. But such an abstract uniform Bernoulli genera-

tor of binary sequences serves as a benchmark for evaluation

of random generators and pseudo-random generators. In

fact, security of most cryptographic algorithms and protocols

using pseudo-random generators is based on the assumption

that it is infeasible to distinguish use of a suitable binary

pseudo-random number generator (PRNG) from use of a

(truly) random number generator (RNG) defined as the SDS

B({0, 1}). As an example, the pseudorandom generator BBS

has been proven secure in the sense that an attacker cannot

predict, in a reasonable time, the next bit of the outcome

with a probability greater than 1/2 (see [5]).

Putting apart the independency, the first major problem is

then to construct generators Gn of elements (called states

or symbols) of a finite set A, such that the distribution law

Pn of Gn converges to the uniform distribution U(A) on A
as n tends to infinity. In order to quantify this convergence,

we use the total variation distance between Pn and U(A).



This distance is defined by

d(Pn, U(A)) =
1

2

∑

a∈A

∣

∣

∣
Pn(a) − 1

#A
∣

∣

∣

where Pn(a) is the probability that the generator Gn out-

comes the state a.

A classical method to solve this problem is to introduce a

transitive and irreducible Markov chain of transition matrix

T , with space of states A, such that the uniform distribution

on A is the stationary distribution of the chain. Constraints

of the problem are essentially on the incidence matrix of the

chain since each state a can only transit on a number τ(a)
of states such that 0 < τ(a) ≤ τmax where τmax is a small

constant compare to #A. The stationary distribution is then

approached by considering Markov random walk on a finite

graph. In fact, the general theory of finite Markov chains

shows that (by Perron-Frobenius’s theorem) there exist two

constants C > 0 and ρ ∈]0, 1[ such that for every pair of

states (i, j), one has

∣

∣

∣
(Tn)ij −

1

#A
∣

∣

∣
≤ Cρn . (2)

When #A is big, computation of constants C and ρ satis-

fying (2) is generally not effective, even if we assume that

n is large enough. In fact, if m0 is an integer such that for

a constant c ∈]0, 1] we have (Tm0)ij ≥ c 1
#A for all pairs

of states (i, j), then inequality (2) becomes

∣

∣

∣
(Tn)ij −

1

#A
∣

∣

∣
≤ (1 − c)⌊n/m0⌋ . (3)

More details concerning finite Markov chains can be found

in [26] or [13]. Random walks on groups or finite graphs is

treated in [23], [10] and a survey on recent results on the

subject can be found in [24].

III. EXISTING ALGORITHMS

Construction of a k-out-of-n generator greatly depends on

the requirements of the applications. They could involve the

level of security, the amount of resources (CPU, memory,

etc.) needed or the generators used as a primary source of

randomness. In this former case, our reference, the generator

BBS, corresponds to the abstract model B({0, 1}). Given

the set Pn
k := {F ⊂ E ; #F = k} endowed with the

uniform distribution, the ultimate goal is then to construct

from B({0, 1}) a sequence of independent random variables

Xm of distribution Pm such that d(Pm, U(Pn
k )) ≤ Ce−cm

for m ≥ m0, where C, c and m0 are explicit constants

that can be used in practice. Now we review some standard

k-out-of-n generators according to above classification A1–

A3.

(1) An algorithm of type (A1) exists if and only if
(

n
k

)

is a power of 2. This implies that n = 2s and k = 1. In

that case, the algorithm is just the identity map: the output

is equal to the input given by the generator B({0, 1}s) or

by iterating B({0, 1}) s times.

(2) The most obvious algorithm is based on the construc-

tion of a set of k elements by randomly picking an integer

between 1 and n, then renew the process to obtain an other

element between 1 and n but distinct from the first one

and so on. It is typically a Las Vegas algorithm. From a

probabilistic point of view, this process needs an average

of n
(

1
n + 1

n−1 + · · · + 1
n−k+1

)

random runs (see [14]), an

average, which is O(n) for 1 ≤ k ≤ n/2.

(3) The probably oldest probabilistic algorithm to uni-

formly and randomly pick k elements among n elements

relies to the Fisher-Yates shuffle algorithm for generating

a random permutation σ of En = {1, . . . , n} but stoping

the construction as soon as the values σ(1), . . . , σ(k) are

constructed. The Fisher and Yates original method consists

to randomly pick an element e1 from En with the uniform

distribution then pick an element from En \ {e1} with the

uniform probability and so on, k times. The underlying

probabilistic model is based on the representation of integers

in factorial basis. More precisely, let Ik := {0, . . . , n−1}×
{0, . . . , n − 2} × · · · × {0, . . . , n − k} equipped with the

uniform probability. Any element i := (i1, i2, . . . , ik) of Ik

corresponds univocally to the integer ni ∈ {0, . . . , n! − 1}
given by its expansion in the factorial basis:

ni = ik.(n−k)!+ik−1.(n−k+1)!+· · ·+i2.(n−2)!+i1.(n−1)!

and the corresponding subset Pi = {pi1 , . . . , pik
} of En

given by pi1 = i1 + 1, then pi2 is the (i2 + 1)-th
coordinate of the n-tuple M2 deduced from the n-tuple

M1 = (1, 2, . . . , n−1, n) by exchanging the n-th coordinate

with the (i1 + 1)-th one. For 2 ≤ s ≤ k − 1, pis
is

constructed by induction as the (is + 1)-th coordinate of

the n-tuple Ms deduced from Ms−1 by exchanging the

(n− s + 2)-th coordinate with the (is−1 + 1)-th coordinate.

Notice that there exist k! integers i, which give the same

subset. The major drawback of this process is that it requires

to have independent uniform generators on s letters, for

n − k < s ≤ n. The given construction leads to a factor

map from B(A′, µ′) onto B(A, µ) with A′ = Ik and A

equal to Pn
k . The entropic rate is thus

log (n
k)

log n!−log(n−k)! .

A better version of the Fisher-Yates algorithm was in-

troduced by R. Durstenfeld in [11] and later by D. Knuth

in [14] with his Algorithm P (Shuffing) on page 145.

A random number generator G uniformly distributed in

[0, 1] is used in Algorithm P. It can be formally obtained

from B({0, 1}) by computing G(ω) =
∑∞

n=0 ωn2n−1

(ω ∈ Ω({0, 1}). G is applied for computing a random

integer k(ω) = 1 + ⌊jG(ω)⌋, between 1 and j. In this

way, computation of ⌊jG(ω)⌋ could never stop (but only

for n particular issues of ω). Nevertheless, the algorithm

is of type (A2). Recently, R. Rolland in [22] proposed

an algorithm of Las-Vegas type, which is analogous to



Fisher-Yates algorithm. This algorithm constructs a k-out-

of-n random generator involving only a uniform Bernoulli

random generator B({0, 1}ℓ) with n ≤ 2ℓ.

(4) RANKSB algorithm proposed in [17] takes into ac-

count some algorithmic constraints (in particular in terms

of CPU and execution time), which are not verified by

the preceding methods. We give a simplified version of

RANKSB. It consists in subdividing the interval [1, n] in

k sub-intervals Rj with approximately the same length,

and randomly choose the number rj of elements to be

selected in each Rj . If we don’t take into account that

rj ≤ #Rj , the k-tuple (r1, . . . , rk) of integers rj ≥ 0 such

that r1 + · · · + rk = k follows binomial law constructed

from k independent runs of integers in {0, . . . , n}, with

the uniform law. In order to avoid that rj be greater than

#Rj , we recompute the subdivision in sub-intervals Rj

then in each Rj we select rj elements using method (2),

(3) or any others. The algorithm uses a source of entropy

k log n corresponding to B({1, ..., n}k), to obtain the factor

corresponding to a shift of Bernoulli on the set of k-tuples

(r1, . . . , rk) as above (distributed according to the binomial

law), which is of entropy

Hk := −
∑

r1+···+rk=k

1

kk

(

k

r1, . . . , rk

)

log
( 1

kk

(

k

r1, . . . , rk

)

)

.

When k is small, let us use (2) to pick the rj elements in

Rj so that the corresponding entropy rate is (in average)

assumed closed to 1. The entropy rate of the algorithm is

then Hk/k log n. Since Hk is less than log kk, this entropy

rate is then less than log k/ log n. Notice that if n/k is small,

the output distribution has a non negligible bias.

In the sequel we describe k-out-of-n generators, which

are of Monte Carlo type.

IV. PROPOSED ALGORITHMS

In this section, we propose two types of constructions.

The first one is based on some remarkable configurations

of points in binary vectors spaces, namely, block designs

[15]. It leads to optimal uniform generators and exists for a

wide range of parameter values k and n since designs are

very common. The second type of constructions is based on

random walks on some groups or finite sets.

A. Block t-design based constructions

A combinatorial block t-design D with parameters t-
(v, k, λ) is an incidence structure (P,B) (where elements of

B, called blocks, are subsets of P) satisfying the following

conditions:

• #P = v,

• ∀B ∈ B,#B = k,

• ∀S ⊂ P such that #S = t, #{B ∈ B ; S ⊂ B} = λ.

It is known that a necessary condition for the existence

of a t-design is that

bs = λ

(

v−s
t−s

)

(

k−s
t−s

) , for all s satisfying 0 ≤ s < t,

and where bs corresponds to the number of blocks that

contain any s-set (i.e., set of s elements) of points from

P . The Web site [9], maintained and regularly updated by

Dan Gordon, gives a database of known t-designs.

A Steiner system is a particular case of a block design. It

is simply a block design with parameters t-(v, k, 1) and is

currently denoted by S(t, k, v). A Steiner system for t = 2
is called balanced incomplete block design and for v = s2+
s+1, k = s+1, the system corresponds to the combinatorial

notion of finite projective plane. A necessary condition for

the existence of a Steiner system is that the number
(

v−s
t−s

)

(

k−s
t−s

)

is an integer for all s satisfying 0 ≤ s < t. This condition

is not sufficient and there is no Steiner system with, for

example, parameters (2, 6, 36), (3, 7, 37) or (5, 6, 18). In

fact, there is no known general sufficient condition on the

existence of Steiner systems. For t = 2 and 3, there exist

infinitely many families of Steiner systems and for t ≥ 4,

we refer to [8] or [31].

There exist many ways to construct a design. The easiest

one is probably to consider an error correcting code. Indeed,

there exist codes whose words of a fixed weight hold de-

signs. For example, words of weight 3 in the Hamming codes

yield 2-designs and 5-designs can be constructed from Golay

codes. Quadratic residue codes constitute another example of

family of codes that yield designs. An other way to obtain

designs is to consider Hadamard matrices. In this article,

examples of such constructions are given. Finally, there

exist many other constructions like, for example, recursive

methods [20].

For any design D, its group of automorphisms, denoted

by Aut(D), plays a fundamental role to understand the

geometrical structure of D. Elements σ of this group belong

to the permutation group S(P) of P and verifies the

following condition

Bσ = B
where Bσ denotes the set of σ(B) with B ∈ B.

A brief description of our construction of a k-out-of-n
generator from a design can be expressed as follows. First,

consider a k-(n, b, λ) design (P,B) and after indexing P
by i, 1 ≤ i ≤ #P identify each block B in B with a

binary string of length #P , the place of 1’s indicating the

elements of B. Now, choose randomly a block m from

the blocks of the design. By construction, the Hamming

weight of m is b. Then, randomly choose b − k coordinate

positions of 1 in m, replace the corresponding 1 by 0. We



get the output m′. Since we are only concerned by the set

of positions of the 1’s, we may identify it to {1, . . . , b} so

that the elimination of b− k digits 1 is done by selecting at

random, independently of the random choice of m, a subset

of b−k elements in {1, . . . , b}, issuing m′ independently of

the possible λ-blocks m that cover m′. Hence, the algorithm

outputs a random word of length n with Hamming weight

k. Notice that finding a k-out-of-n generator is equivalent to

finding a n−k-out-of-n generator. Of course this algorithm

needs uniform random generators on sets of symbols, which

are not necessarily of cardinality a power of 2, hence it is

usually of type (A2).

Example 1: As an example, we explain in detail the

construction of a 5-out-of-24 generator, which is based on

a S(5, 8, 24). In this case, the blocks of the design can be

represented as the words of weight 8 in the extended binary

Golay code G24. Our construction is based on the following

property [16, page 67]: every binary vector of Hamming

weight 5 and length 24 is covered by exactly one word of

G24 of weight 8. It turns out that a random generator in P24
5

is easily obtained from a random generator of the words of

weight 8 of the Golay code (and vice versa).

We recall the main combinatorial properties of G24. In

the sequel W (m) denotes the Hamming weight of a binary

string m (also called vector as element of the underlying

vector space); the weight distribution of G24 is classical and

given by the following table:

weights 0 8 12 16 24

number of words 1 759 2576 759 1

Table 1: Weight distribution of the words of the Golay code G24

A remarkable property of this code is that the set of words

of a given weight forms the blocks of a design. Hence, the

words of weight 8, called octads, form the blocks of a 5-

(24, 8, 1) design and words of weights 12 form the blocks

of a 5-(24, 12, 48) design. It is worth noticing that, in the

case of octads, the parameter λ of the design is equal to 1.

This means that a vector of length 24 and Hamming weight

5 is covered by exactly one octad of the code. Thus, octads

form a Steiner system with parameters S(5, 8, 24). Note that

there exist in G24 other Steiner systems like S(4, 7, 23),
S(3, 6, 22) or S(2, 5, 21), leading to similar constructions

of generators.

Since G24 decode at most three errors, it happens that

when changing three bits from the value 1 to the value 0
in an octad, one can construct

(

8
5

)

vectors of weight five.

If we repeat this process for every octad, we obtain a total

of 759 ×
(

8
5

)

=
(

24
5

)

vectors of weights five, which is the

cardinal of P24
8 .

This leads to the following construction:

(a) choose a base {b1, . . . , b12} of G24;

(b) choose a random generator G on 12 bits (corre-

sponding to a 12 iterations of a binary Bernoulli);

(c) pick a binary vector g := g1 · · · g12 from the random

generator G;

(d) compute the word m(g) :=
⊕12

j=1 gjbj ;

(e) if W (m) = 8 then m = 0a110a21 . . . 0a810a9 and

do

(e1) randomly pick a vector x = x1 . . . x8 of

weight three and length eight (there exist
(

8
3

)

= 56
such vectors. They can be kept in memory);

(e2) compute

m′′ :=0a1(1⊕ x1)0
a2(1⊕ x2) . . . 0a8(1⊕ x8)0

a9 ;
(f) if W (m) = 16, then m := m ⊕ 124 and go to (e);

(g) if W (m) = 0 or W (m) = 24, then go to (c);

(h) if W (m) = 12, then ask G a binary vector g′ :=
g′1 · · · g′12 and compute m′ := m(g′)
if W (m′) = 8 then m := m′ and go to (e)

else if W (m′ ⊕ m) = 8 then m := m′ ⊕ m and go to

(e)

else go to (c);

(i) output m′′.

This algorithm makes use of the generator Γ = B8 ×
B({1, . . . , 56}) where B8 is the generator induced by

B({0, 1}12) on the set P8 of words of weight eight or

sixteen. Since the counting probability of P8 is µ(P8) =
2×759

212 = 0, 37 . . . , the entropy of Γ is equal to h(Γ) =
(12 log 2+log 56)/µ(P8) = 33.30 . . . . It gives in output the

uniform generator B(P24
5 ) with entropy log

(

24
5

)

. Hence we

obtain the entropy rate

log
(

24
5

)

h(Γ)
= 0, 319 . . . .

In this example, we obtained the blocks of the design by

considering the words of a fixed weight in the Golay code.

This is not the only method as we will show later.

B. Random walks methods

In this section, we show how random walks can lead

to a distribution as closed as desired to the uniform k-

out-of-n generator. The first construction applies random

walk on a finite group and in particular on the symmetric

group Sn. However, this method is not practical for large

values of n since the size of the group becomes huge. The

second construction makes use of a Markov walk on the

set of blocks of a k-design. In both case the convergence

to the uniform distribution is exponential. We illustrate

our method by some examples. We consider codes, like

Hamming, Golay, or quadratic residue codes, in order to

obtain the appropriate design. We also give an example

related to Hadamard matrices.

1) Random walk on a finite group, generalities: this topic

in cryptographic context was investigated by Sloane in a nice

survey [29]. Let us introduce objects and notations necessary

for our study.

A random walk on a finite group G is currently defined

by a probability Q on G and a homogeneous Markov chain



Γn, of space of states G, of transition matrix T given by

Tg,h = Q(gh−1) = P (Γn+1 = g|Γn = h). If the support

of Q generates G, the chain is irreducible and its stationary

distribution is the uniform distribution U(G) on G. From the

identity (Γ0 = {e}), and a sequence of independent random

variables Xn, the walk can be described inductively by Γ1 =
X1, Γn = XnΓn−1, the law of Γn being given by Q(1) = Q
for Γ1 and convolution product Q(m)(g) = Q∗Q(m−1)(g) =
∑

h∈G Q(m−1)(gh−1)Q(h) for Γm (≥ 2). Here, we suppose

that the chain is irreducible and aperiodic. Hence there exist

an integer m0 and a constant c > 0 such that Tm0

g,h ≥ c 1
#G

and then inequality (3) can be applied. This inequality can

be translated in terms of distance (2), and can be improved

in the case of symmetric walks (Q(g) = Q(g−1)) or for

particular groups previously analyzed in a probabilistic way.

For more details, see [2], [3], [10], [23], [24].

One application in cryptography is the popular stream par-

ity de-skewer. Here G is the additive group {0, 1} := Z/2Z

and Q(0) = 1
2 − β, Q(1) = 1

2 + β with 0 ≤ 2β < 1. Then

T = 1
2J + βS with J :=

(

1 1

1 1

)

and S :=
(

−1 1

1 −1

)

.

Using JS = SJ = 0, J2 = 2J and S2 = 2S we get the

explicit formula

Tn =
1

2
J + (2β)nS

and consequently

d(Qn, U({0, 1})) = e−n log(1/2β).

Moreover, for k ≥ 1 fixed, the sequence of random variables

(Γkn)n≥1 defines the Bernoulli SDS B({0, 1}, Q(k)) whose

entropy is, after simplification,

Hk = log 2 − 1

2
(1 + (2β)k) log(1 + (2β)k)

+
1

2
(1 − (2β)k) log

( 1

1 − (2β)k

)

.

Hence, Hk − log 2 ∼ (2β)2k as k tends to infinity.

2) Random transposition on the symmetric group Sn

and k-out-of-n generators: random walks on the symmetric

group Sn have been intensely studied (see the preceding

references). Consider a uniform Bernoulli generator B(Sn)
on the group of permutations Sn. This generator defines

a sequence of random variables Σn(·) = B(Sn)n. Then

Cn = Σn({1, . . . , k}) is a sequence of random variables

uniformly distributed in the set Pn
k .

An interesting method to construct generators distinct

from Fisher-Yates shuffle algorithm is to choose a set E of

generators of Sn and use a Bernoulli B(E). A result of [10]

states that the speed of convergence is in e−γ when the walk

has a sufficiently large number of steps γ: more precisely,

for E = {Id, (1, 2), (1, 2, . . . , n), (n, n − 1, n − 2, . . . , 1)}
one has

d(G(36n3(log n+γ)), U(Sn)) ≤ αe−γ , (4)

where α > 0 is a universal constant and for all integers

γ ≥ 0. Then, random variables Γm (see above) represent a

generator converging to the Bernoulli generator B(Sn); it

outputs, at each step, a permutation σ and σ({1, . . . , k}). Let

Γm[k] denotes this generator. Its distribution Q
(m)
k on Pn

k is

given, for each set A of k elements of En = {1, . . . , n}, by

Q
(m)
k (A) =

∑

σ∈Sn
σ({1,...,k})=A

Q(m)(σ).

We observe that #{σ ∈ Sn ; σ({1, . . . , k}) = A} = k!(n−
k)! so that

d(Γm, U(Sn)) =
1

2

∑

A∈Pn
k

∣

∣

∣
Q

(m)
k (A) − k!(n − k)!

n!

∣

∣

∣

≤ d(Γm[k], U(Pn
k )) .

This last bound validates the construction of Γm[k] with

the same convergence property than that of Γm. However,

this generator is not practical for large value of n, and in

particular for n = 24.
3) Homogeneous symmetric random walk on a finite set:

Let M be a finite set of elements and let E be a set of

bijections of M. We set

µ := #M and χ := #E.

A general random walk on M with instructions in E is

given by a distribution law L on M and a sequence of E-

valued random variables (Xn)n of given distribution Pn. An

outcome x = (xk)k of the random sequence (Xk)k≥1 leads

to a walk on M consisting to start from an initial point

m0 in M, selected according to the law L (step 0) and the

location of the walk after n steps is mn = xn ◦xn−1 ◦ · · · ◦
x1(m0). In the sequel, we only pay attention to a Markov

symmetric homogeneous and uniform walk, that means a

walk satisfying the following properties:

(j) The initial point m0 is fixed.

(jj) Symmetry: for all Y in E the inverse map Y −1

belongs to E and the identity map belongs to E.

(jjj) The random variables Xn are independent, with

uniform distribution Pn := U(E).

Therefore, the space of states of the corresponding Markov

chain is M and the stochastic transition matrix T is given

by

Ti,j :=
#{Y ∈ E ; Y (i) = j}

χ
((i, j) ∈ M2) .

According to property (jj), the matrix T is symmetric and so,

has the uniform distribution on M for stationary probability.

For our applications we assume that

(jv) The chain is mixing.

This assumption is equivalent to the fact that a power of S
has all entries positive. Hence, we may define the following

important parameter of the chain

κ := min{k ≥ 0 ; ∀ (i, j) ∈ M2, (T k)i,j > 0}.



In other words κ is the minimum number of necessary steps

to go from any state to any state.

Our next goal is to estimate the so called spectral hole

of S. To this aim we use the symmetry of the chain by

considering appropriated quadratic forms on the vector space

R
M equipped with the euclidean scalar product denoted by

〈ξ|ξ′〉 =
∑

(i,j)∈M2 ξiξ
′
j , with norm || · ||. Each generator

Y in E, acting on M is identified to an automorphism

of R
M permuting the canonical basis. It is represented by

an orthogonal matrix, still denoted by Y . The action of Y
applies at i will be denoted by Y ·i. Explicitly, Y is given by

Yi,j = 1 if j = Y ·i and Yi,j = 0 otherwise. The inverse Y −1

of Y corresponds to the transpose matrix Y ∗. The stochastic

transition matrix T defined above is now given by

T :=
1

χ

∑

Y ∈E

Y.

By symmetry of T and Perron-Frobenius’s theorem, T has µ
eigenvalues λν (0 ≤ ν < µ) whose the largest one is equal

to 1, with multiplicity 1. Let ρ be the greater eigenvalue of

T distinct from 1, we ordered real eigenvalues as follows:

−1 < λµ−1 ≤ · · · ≤ λ1 = ρ < λ0 = 1 .

Theorem 2: With the preceding definitions and notations,

we have

−1 +
2

χ
≤ λµ−1 and ρ ≤ 1 − 4

κ(κ + 1)χ
.

Proof.

1. The first inequality is easy to prove. By (jj), diagonal

terms of T are equal to 1/χ, hence the matrix χ
χ−1 (T − 1

χI)

is stochastic with eigenvalues χλν−1
χ−1 between −1 and 1. In

particular −1 ≤ χλµ−1−1
χ−1 , which gives −1 + 2

χ ≤ λµ−1, as

expected.

2. The second inequality is more complex to prove. It

relies on the comparison of two quadratic forms on RM.

To every symmetric matrix A indexed on M we as-

sociate the quadratic form QA(ξ) = 〈Aξ|ξ〉. Eigenvalues

α0 ≤ α1 ≤ · · · ≤ αµ−1 of A are given by Courant-Fisher

theorem (also called mini-max theorem) [12]:

αν = min
F

{m(F ) ; dim(F ) = ν + 1}, 0 ≤ ν < µ,

the minimum being calculated over the set of all subspaces

F of R
M of dimension ν + 1 and

m(F ) := max{〈Aξ|ξ〉 ; ||ξ|| = 1, and ξ ∈ F}.

A straightforward consequence of this theorem is

Corollary 1: Let QA and QA′ two quadratic forms on

R
M, of symmetric matrices A and A′ and eigenvalues λν , λ′

ν

respectively (indexed in decreasing order). If for a constant

C > 0 we have QA′ ≤ CQA, then λ′
ν ≤ Cλν for every

index ν, 0 ≤ ν < µ.

For our purpose, choose A = I − T . Then we have

QI−T (ξ) =
1

2

∑

i,j

(ξi − ξj)
2Ti,j

=
1

2χ

∑

Y ∈E
i∈M

(ξi − ξ
Y ·i

)2

The bound will result from the following main lemma.

Lemma 1: Consider the symmetric matrix B = I − 1
µJ

where J has all its coefficients equal to 1. Then

QB ≤ χκ(κ + 1)

4
QI−T . (5)

Proof. For every pair (i, j) of states, let Y i,j =
Y i,j

k(i,j) · · ·Y
i,j
0 with Y i,j

0 = I be a composition of elements

of E such that j = Y i,j ·i with k(i, j) minimal. Set

|Y i,j | := k(i, j). We have |Y i,j | ≤ κ and

ξi − ξj =

|Y i,j |−1
∑

s=0

(ξ
Y

i,j
s ···Y

i,j
0 ·i

− ξ
Y

i,j
s+1

···Y
i,j
0 ·i

).

Applying Cauchy-Schwarz inequality gives

(ξi − ξj)
2 = |Y i,j |

|Y i,j |−1
∑

s=0

(ξ
Y

i,j
s ···Y

i,j
0 ·i

− ξ
Y

i,j
s+1

···Y
i,j
0 ·i

)2

≤ χ|Y i,j |
|Y i,j |−1

∑

s=0

(ξ
Y

i,j
s ···Y

i,j
0 ·i

− ξ
Y

i,j
s+1

···Y
i,j
0 ·i

)2Tλijs

where λijs := Y i,j
s · · ·Y i,j

0 ·i, Y i,j
s+1 · · ·Y i,j

0 ·i .
Multiply these inequalities by 1/µ and add all of them, first

by summing on j and then on i. The summation on the left

side simply gives

1

µ

∑

(i,j)∈M2

(ξi − ξj)
2 = 2QB(ξ).

Hence, the summation on the right side is greater than

2QB(ξ). By collecting all right terms according to the values

taking by |Y i,j | for i fixed we get

(χ/2)
1

µ

κ
∑

k=1

k(2QI−T )

since by minimality, there is no loop in the path going from

i to j and constructed from Y i,j . Therefore, summing over i
now leads to the desired inequality QB(ξ) ≤ κ(κ+1)χ

4 QI−T .
Eigenvalues of 1

µJ being 1 and 0, those of B are then

1 (with multiplicity µ − 1) and 0. Then Corollary 1 gives

1 ≤ κ(κ+1)χ
4 (1 − ρ), which is the second inequality of

theorem 2.

Using Theorem 2 and the fact that T is a symmetric

stochastic matrix of order µ, we get the following inequality

∣

∣

∣

∣

∣

∣Tn − 1

µ
J
∣

∣

∣

∣

∣

∣

2
≤

(

1 − 4

κ(κ + 1)χ

)n

,



where
∣

∣

∣

∣

∣

∣ ·
∣

∣

∣

∣

∣

∣

2
denotes the quadratic norm of operators. Now

let P
(n)
m be the distribution of the walk obtained from the

state m0, and set

d(n) := max
m∈M

d(P (n)
m , U(M)).

Let Im0 be the column vector in R
M with all entries

0 except the entry corresponding to m0. From Cauchy-

Schwarz inequality and symmetry of Tn,

d(P (n)
m , U(M)) =

1

2

∑

j∈M

∣

∣

∣
Tn

i,m0
− 1

µ

∣

∣

∣

≤ 1

2

√
µ
(

∑

j∈M

(

Tn
i,m0

− 1

µ

)2)1/2

≤ 1

2

√
µ
∣

∣

∣

∣

∣

∣

(

Tn − 1

µ
J
)

Im0

∣

∣

∣

∣

∣

∣

2
.

Since

||(Tn − 1

µ
J)Im0

||2 ≤ |||(Tn − 1

µ
J)|||2||Im0

||2

≤
(

1 − 4

κ(κ + 1)χ

)n

,

we obtain

d(n) ≤
√

µ

2

(

1 − 4

κ(κ + 1)χ

)n

that can be transformed into

d(⌈ab + bγ⌉) ≤ e−γ . (6)

with

a =
1

2
log µ − log 2

b = − 1

log
(

1 − 4
κ(1+κ)χ

) .

This inequality exhibits the speed of convergence of the

walk to the uniform distribution.

In the next subsection, we apply this general theory to the

specific case of random walks on the blocks of a design.

4) Random walk using the automorphism group of a

design: We now introduce an efficient uniform k-out-of-n
generator, using a random walk on a block of a k−design.

The walk consists in acting on the block a set E of

appropriate generators of the automorphism group of the

design.

Gk-n(N) Algorithm

INPUT : N
OUTPUT : a binary vector of Hamming weight k and length

n
Choose a block m of weight b among the blocks of a k −
(n, b, λ) design. The automorphism group A of the design

must be transitive on the blocks.

If A is (b − k)-transitive on the blocks,

then

(b.1) replace m by m′, replacing the first b− k coordinates

equal to 1 in m by zeros

(b.2) randomly act on m′ the generators of G, N times

(b.3) output the obtained word.

else

(c.1) randomly act on m the generators of G, N times, and

obtain m′

(c.2) randomly choose k coordinates equal to 1 in m′ using

a k-out-of-b generator

(c.3) output the obtained word.

We give in the sequel, examples of constructions for

various parameters k and n.

Example 2: Generator 5-out-of-24 associated to the

Mathieu group M24

Let G24 be the extended binary Golay code. The Mathieu

group, M24, is the automorphism group of G24 and can be

generated by the following four permutations acting on the

coordinates of the words of the Golay code:

S : i 7→ i + 1, V : i 7→ 2i, U : i 7→ −1/i

and

W :







∞ 7→ 0, 0 7→ ∞,
i 7→ −(i/2)2 if i is a quadratic residu modulo 23,

i 7→ (2i)2 otherwise.

G5-24(N) Algorihm

INPUT : N
OUTPUT : a binary vector of Hamming weight 5 and length

24
(a) choose an octad of G24 : m
(b) replace m by m′, replacing the first three coordinates

equal to 1 in m by zeros

(c) randomly act on m′ the four generators or their inverse

or the identity, N times

(d) output the obtained word.

Note that M24 is 5-transitive on octads. This is why step (b)

can be done before acting the generators.

We have now to explicitly construct the random gener-

ator of octads. Since the size of M24 is huge (#M24 =
210.33.5.7.11.23), the speed of convergence of a walk on

the Mathieu group would be mediocre.

Thus we introduce a Markov walk on the set M of octads

by the action of the four aforementioned generators of M24:

S, V , U et W . Let I be the identity. Now we make the walk

symmetrical by taking the following transition set

E := {I, S, S−1, U, V, V −1, W, W−1},

with the uniform probability.

To show that G5-24(N) Algorihm realizes a uniform 5-out-

of-24 generator asymptotically with exponential speediness,

we determine equation (6) with the correct parameters.



We have to calculate the minimal number of times we

have to act elements of E on a given octad in order to obtain

all the octads. Since the walk is symmetric, this number

corresponds to κ. Taking into account that the identity

belongs to E, Table 2 shows that κ = 7.

Number of octads Numbers of steps

683 6
76 7

Table 2: number of steps to obtain, during the walk, all octads
from a specific octad

With the above notations, we have µ = 759, χ = 8, and

κ = 7. We obtain

d(292 + 111γ) ≤ e−γ .

The following histogram (Fig. 1) gives a statistical view

of what is going on in the case of a very short walk. It

represents the number N(f) of octads obtained f times

during 7590 walks of length 11 (7590 is equal to ten times

the number of octads). The distribution is rather good.

N(f)

f

Figure 1. Number N(f) of octads obtained f times during 7590 walks
of length 11

Example 3: Random walk on a ternary Golay code

In the previous example, we focused on the binary Golay

code. There also exists a ternary Golay code with parameters

[12, 6, 6] whose words of Hamming weight equal to 6 yield

a 5-(12, 6, 1) design. The number of blocks of the design

being equal to 132. Thus, with a similar construction, we

can obtain a 5-out-of-12 generator. The automorphism

group of the design is of order 95040 = 26.33.5.11 and

is 5-transitive on the blocks of the design. This group is

generated by the following four permutations on the set of

12 coordinates.

A1 = (5, 9, 12, 7)(6, 10, 11, 8) of order 4

A2 = (3, 12, 7, 9)(4, 6, 10, 8), of order 4

A3 = (1, 3)(4, 8)(7, 11)(9, 12) of order 2

A4 = (2, 4, 5, 8)(6, 9, 10, 12) of order 4

and we consider

E := {A1, (A1)−1, A2, (A2)−1, A3, A4, (A4)−1, I},
where I represents the identity permutation. We have χ = 8
and κ = 6 from Table 3.

Number of blocks Numbers of steps

74 5
58 6

Table 3: number of steps to obtain, during the walk, all blocks
from a specific block

With the appropriate parameters, equation (6) becomes

d(146 + 83γ) ≤ e−γ .

Example 4: Generator 2-out-of-31

In this example, we consider a 2-(31, 7, 7) design whose

automorphism group A is not 2-transitive on its blocks.

The number of blocks is 155. The group A is a permutation

group acting on the set of 31 coordinates. It is of order

465 = 3.5.31 and is generated by the following two

permutations

A1 = (1, 16, 15, 13, 9)(2, 18, 19, 21, 25)(3, 20, 23, 29, 10)
(4, 22, 27, 6, 26)(5, 24, 31, 14, 11)(7, 28, 8, 30, 12)
and

A2 = (2, 29, 10, 5, 20, 6, 17, 15, 21, 3, 26, 19, 9, 8, 11)
(4, 23, 28, 13, 27, 16, 18, 12, 30, 7, 14, 24, 25, 22, 31).

Consider the set of generators

E := {A1, (A1)−1, A2, (A2)−1, I}
and act the elements of E on a block m, N times, in order

to obtain a random block m′. This block can be represented

by a vector of weight 7 and length 31.

Computation gives κ = 6 and with the appropriate parame-

ters, equation (6) becomes

d(95 + 52γ) ≤ e−γ .

Then we have to randomly choose 2 coordinates equal to

1 in m’ using a 2-out-of-7 generator. To do this we consider

a 2-(7, 3, 1) design. The automorphism group of the design

is PSL(2, 7) and is 2-transitive on its blocks. We just have

to replace the first 1 in m′ by a zero and carry out a walk on

this vector. We then obtain a random vector of weight 2 and

length 31. Notice that generators 2-out-of-31 and 2-out-of-7

can be executed in parallel.

Example 5: 3-out-of-16 generator.

It is important to choose a correct design in order to

carry out the walk. In fact, to obtain a uniform generator,

our method requires to consider designs with automorphism

group that is transitive on the blocks.



We introduce here an example of automorphism group of

a design, which is not transitive on the blocks. The design

is constructed from a Hadamard matrix. Recall that the

order of a Hadamard matrix is necessarily a multiple of 4

and Sylvester construction shows that there exist Hadamard

matrices of order 2i for all positive integer i. Let H be the

following Hadamard matrix of order 16
























1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 − − − − − − − −
1 1 1 1 − − − − 1 1 1 1 − − − −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 1 − − − 1 1 − 1 − − 1 − − 1 1
1 1 − − 1 − − 1 − 1 1 − − − 1 1
1 1 − − − − 1 1 − − 1 1 1 1 − −
1 − − 1 − − 1 1 1 1 − − 1 − − 1
1 − − 1 1 1 − − − − 1 1 1 − − 1
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − 1 − − 1 1 − − 1 − 1 − 1
1 − 1 − − 1 1 − − 1 1 − − 1 − 1
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 − − 1 1 − 1 − − 1 − 1 − 1 1 −
1 − − 1 − 1 − 1 1 − 1 − − 1 1 −
1 1 1 1 − − − − − − − − 1 1 1 1

























where the symbol "−" stands for "−1". This matrix yields a

3-(16, 8, 3) design with 30 blocks. The automorphism group

is of order 2688 = 27.3.7 and is generated by the following

permutations on the set of 16 coordinates:

A1 = (1, 5)(2, 10)(3, 12, 15, 8, 14, 6)(4, 7, 16, 11, 13, 9)
A2 = (2, 3, 4)(6, 8, 7)(9, 12, 10)(13, 16, 15)
A3 = (5, 10)(6, 9)(7, 12)(8, 11).
When acting the generators on the blocks, we obtain 2 orbits.

One of order 28 and the other one of order 2. It means that

from a given block, it is not possible to obtain all other

blocks during the walk.

Let us now consider the design D whose blocks are the

words of weight 12 of the extended Hamming code of

parameters [16, 12, 3]. This is a 3-(16, 12, 55) design with

140 blocks. The automorphism group of D is a permutation

group A acting on a set of cardinality 16. It is of order

322 560 = 210.32.5.7 and is generated by the following

automorphisms:

A1 = (5, 13)(6, 10)(7, 16)(9, 15)
A2 = (5, 16)(6, 9)(7, 13)(10, 15)
A3 = (3, 6)(4, 7, 10, 12)(8, 13, 15, 14)(9, 11)
A4 = (1, 5)(3, 6)(7, 12)(8, 15)
A5 = (2, 10, 13, 12, 4)(3, 16, 11, 8, 15)(5, 7, 9, 6, 14).
Consider the set of 8 generators

E := {A1, A2, A3, (A3)−1, A4, A5, (A5)−1, I}.

Then, choose a block m of the design and, since Aut(D)
is 3-transitive, just perform a walk on its first 3 coordinates

using the elements of E. Here κ = 6 and so we get a random

word of weight 3 and length 16 as desired.

Number of blocks Numbers of steps

4 4
119 5
19 6

Table 4: number of steps to obtain, during the walk, all blocks
from a specific block

The speed of convergence is given by

d(148 + 83γ) ≤ e−γ .

V. CONCLUSION

In this paper, we introduced a type of generators, which

has not been deeply studied in the literature. Yet, k-out-of-

n generators have a wide practical interest, particularly for

developing secure applications. Our constructions make use

of t-designs in order to obtain uniformity and run random

walks in order to control the accuracy of convergence.

We proposed methods to efficiently construct such gen-

erators and studied in detail special cases. The speed of

convergence of our generators is better than any known k-

out-of-n generators.
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