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Abstract Masking schemes to secure AES implementations against side-channel at-

tacks is a topic of ongoing research. The most sensitive part of the AES is the non-

linear SubBytes operation, in particular, the inversion in GF(28), the Galois field of

28 elements. In hardware implementations, it is well known that the use of the tower

of extensions GF(2) ⇢ GF(22) ⇢ GF(24) ⇢ GF(28) leads to a more efficient in-

version. We propose to use a random isomorphism instead of a fixed one. Then, we

study the effect of this randomization in terms of security and efficiency. Considering

the field extension GF(28)/GF(24), the inverse operation leads to computation of its

norm in GF(24). Hence, in order to thwart side-channel attack, we manage to spread

the values of norms over GF(24). Combined with a technique of boolean masking in

tower fields, our countermeasure strengthens resistance against first-order differential

side-channel attacks.

Keywords AES · side-channel attack · countermeasure · masking technique ·
composite field arithmetic

Mathematics Subject Classification (2000) 94A60 · 11T71

1 Introduction

Securing cryptographic primitives on embedded devices is still a challenge today.

One of the major threats in constrained environment is side-channel attacks intro-

duced by Kocher et al. in [17]. Such attacks can be performed easily by an attacker

with little knowledge about implementation details. Differential side-channel attacks

exploit relationships between the processed data by the device and the side-channel
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leakage measured by an attacker. If we consider power consumption as the side-

channel leakage, a power model can be assumed by the attacker [22,4]. Using this

model, he can produce hypothetical values predicting the leakage information at sev-

eral moments in time. These predictions are compared to the real power consumption

of the device. The comparison is done using various statistical tests, for example the

distance of means [17], the Pearson correlation factor [4] or, more recently, mutual

information [12].

The Advanced Encryption Standard (AES) is the standard for symmetric encryp-

tion [26], replacing the older Data Encryption Standard (DES) [25]. It is used in many

embedded systems and therefore its side-channel resistance has been studied in de-

tails over the years. Researchers have proposed different types of countermeasures,

some more practical than others. The most general method to counter side-channel

attacks is to randomize the intermediate values of the cryptographic algorithm. As

the side-channel leakage is dependent on the values processed by the smart cards, the

data is then de-correlated from the side-channel observations. In the case of the AES

algorithm, several countermeasures have been proposed based on masking intermedi-

ate values of the AES. Most of them are concentrated on the SubBytes transformation

which is the only non-linear transformation involved in the AES.

The most efficient SubBytes hardware implementation uses composite field arith-

metic. Consequently, techniques introduced in [39,30,31] compute the SubBytes op-

eration of the AES in a subfield of GF(28). In these articles, the construction of the

subfield is fixed arbitrarily whereas in [35] the authors propose to use a construc-

tion that minimizes the computation cost of composite field operations. In this work,

we randomize the tower field construction GF(2) ⇢ GF(24) ⇢ GF(28) and study

its impact on the side-channel resistance of the AES. When computing the inverse

map in GF(28), we have, in our case, to compute the norm in the field extension

GF(28)/GF(24). Hence, in order to thwart side-channel attack, the distribution of

the masked norm values for a given element of GF(28), by considering all represen-

tations in use, should spread uniformly over GF(24). We introduce efficient methods

to reach this requirement and analyze their efficiency from both the implementation

and the side-channel resistance sides.

The paper is organized as follows. In Section 2, we give a brief description of

the AES. Section 3 summarizes the major masking methods proposed for AES. Our

proposition is based on a random tower field construction which is studied in Sec-

tion 4. The effect of this randomness on norm values is analyzed in Section 5. A the-

oretical analysis of the security of our proposition against side-channel attacks leads

to additional masking methods. In Section 6, we report the results of a differential

power analysis attack on our propositions. We conclude this article in Section 7.

2 Advanced Encryption Standard

We give a brief description of the AES round function, omitting the key schedule.

More details can be found in [26]. The AES is defined for 128-bit blocks and key

sizes 128, 192 and 256 bits. The 128-bit plaintext is viewed as a 4⇥ 4 byte matrix,

called state, bytes corresponding in some way to elements of GF(28).
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The AES operates on states by iterating transformation rounds. The initial round

consists in the AddRoundKey operation, the next rounds consist in applying succes-

sively the transformations SubBytes, ShiftRows, MixColumns and AddRoundKey,

but the last round omits the MixColumns transformation. AddRoundKey is a bit-

wise XOR operation between the state and the round key. The round keys are derived

from the original key with the Key Expansion algorithm. ShiftRows is a cyclic shift

operation on each of the four rows of the state. The first row is unchanged, the second

is cyclically shifted by one byte to the left, the third by two bytes and the fourth by

three bytes. MixColumns considers each column of the state matrix as coefficients of

a degree three polynomial and multiplies them modulo z4 + 1 with a fixed polyno-

mial. SubBytes is the main building block of AES regarding the side-channel aspect.

Each byte of the state matrix is replaced by its substitute in an SBox. This SBox is

the composition of two transformations: an inversion in GF(28) and an affine trans-

formation.

3 Related work on masking methods for AES

The goal of a side-channel countermeasure is to make the power consumption of

a device as independent as possible of the intermediate values of a cryptographic

algorithm. Masking techniques have been extensively studied in the literature. The

general principle of a masked implementation is to replace intermediate values v by

some combinations C(v,m) of v and a random value m. Currently, v and m are binary

strings and C(v,m) = v⊕m corresponds to the bit-wise XOR addition.

Higher-Order Differential Power Analysis (HODPA) is a class of side-channel at-

tacks proposed to counter masking methods. When classical DPA analyzes the infor-

mation of one point in time of a power consumption curve, the principle of HODPA

is to combine different relevant points. For example, if an attacker is able to find the

point in time when the mask value r is generated by the device and the point when v0

is computed, he can use these informations to retrieve the correct value v. In response,

higher-order masking techniques are proposed. However effectively counteracting n-

order side-channel attacks is still a difficult task. In this study, we are only concerned

with first-order attacks as they are the most practical.

The only non-linear part of the AES is the inversion over GF(28) in the Sub-

Bytes operation. Using a masking method, usually we have to compute the inverse

of the input v+ r1 such that we obtain v−1 + r2 with r1,r2 two random values. We

review in the following some of the main masking schemes. We first present masking

techniques that apply to generic AES software implementations. Then, we consider

the methods using tower fields. These methods are particularly suitable for efficient

hardware implementations.

The Transform Masking Method (TMM) [1]. The principle is to transform a boolean

mask v+ r1 into a multiplicative mask v.r0, perform the inversion and transform back

into a boolean mask v−1+r2. Trichina et al. [37] simplify the complexity of the TMM

method by considering that the masks r1 and r2 are equal. This method is sensitive
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to the zero value side-channel attack. If v = 0 in GF(28) then no multiplicative mask

can conceal this special value.

Embedded Multiplicative Masking [15]. The authors propose a solution to the zero

value problem. The idea is to embed the field GF(28) into the ring

Rk = GF(2)[x]/(pq)⇠= GF(28)⇥GF(2k)

where p is the eighth-degree AES polynomial and q is an irreducible polynomial,

co-prime to p, of degree k. Consider the random mapping:

ρ : GF(28)! Rk

v 7! v+ rp mod pq,

where r is a randomly chosen polynomial of degree less than k. Then the value v = 0

in GF(28) is mapped into 2k possible values in Rk and should be less noticeable for

an attack.

Random-Value Masking Method [21]. Let us consider the case when a precomputed

lookup Sbox table is used to compute the SubBytes operation. Messerges’s method

consists in remasking lookup tables with the current mask used with the value. As the

mask needs to change in order to thwart DPA, the tables are recomputed within the

AES algorithm. In [16], Itoh et al. simplify the previous idea and propose to use only

limited sets of fixed precomputed mask values. This countermeasure is very costly in

time.

Masked Modular Exponentiation [3]. The authors’ idea is to compute the inverse of v

in GF(28) as v254 using a special square-and-multiply algorithm. The authors propose

the algorithms Perfectly Masked Squaring and Perfectly Masked Multiplication in

order to obtain, at the end, the inverse masked with a boolean random value. This

method is particularly costly in time.

Masking using Log Tables [38]. Let γ be a generator of GF(28). Then all pairs (α, i)
such that α = γ i for 0  i  255 are precomputed and stocked into two tables defined

such as

log(α) = i and alog(i) = α.

Operations in GF(28) can be implemented using the log and alog tables. In particular,

the propagation of the mask in the computation of the inverse is easier. Let v0 = v+ r

be the value v masked with a random r that has to be inverted. Then with v = γ i

and r = γ j one has v0
−1 = (γ i)−1(γ j−i + 1)−1. Hence, the mask after the inversion

becomes (γ j−i +1)−1. This method needs to store log tables in memory. This can be

intractable in embedded systems.
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Resistant Sbox based on Fourier Transform [32]. First identify the GF(2)-vector

space GF(2)n to GF(2n) from some base and then to {0, . . .2n − 1}. Now, any ele-

ment X in GF(2n) can be written as a column vector X = t(xn−1, . . . ,x0) and also iden-

tified to the integer val(X) = ∑0k<n 2kxk. Finally, any map F : GF(2n) ! GF(2n)
should be identified to the integer-valued map X 7! val(F(X)) still denoted by F

in spite of possible confusion. The classical integer-valued scalar product A · X =

∑0k<n Akxk on GF(2n) allows to identify the additive group GF(2n) to its dual and

consequently the Discrete Fourier Transform (DFT) bF of the function F is also de-

fined on GF(2n) by

bF(A) = ∑
X2GF(2n)

F(X)(−1)A·X .

Notice that bF is Z-valued and its DFT leads to the classical inversion formula

F(X) =
1

2n ∑
A2GF(2n)

F̂(A)(−1)A·X .

Prouff et al. [32] observe that if the function F denotes a SBox, the above relation

can be used to compute a masked SubBytes operation. However, Coron in [8] shows

a side-channel weakness in such computation and proposes the following masked

transformation that uses four random masks R1, R2, R3, R4 from GF(2n) (identi-

fied to GF(2)n). Let X be a sensitive vector and let eX = X ⊕ R1 be the masked

vector by R1, then the masked DFT takes the input eX and gives the output F 0 :=

(−1)(
eX⊕R2).R1F(X)+R3 mod 2n computed from the equation

F 0=

$
1

2n

⇣
R0+ ∑

A2GF(2n)

F̂(A)(−1)(A·
eX)+(R1·(eX⊕A⊕R2)) mod 22n

⌘%

where R0 = 2nval(R3) + val(R4). In [18], Li et al. show that there is still a flaw in

Coron’s SBox algorithm due to a biased mask.

Random isomorphisms on the AES Field [34]. The authors suggest the use of random

representations of elements in GF(28) as a protection against side-channel attacks.

There exist 256− 16 elements in GF(28) which are of degree 2 over the subfield

GF(24) and so of degree eight over GF(2). Therefore, there exist 240 possible rep-

resentations of the field GF(28) to be used in AES. The principle is to randomly

choose, at the beginning of the encryption, one of these representations, map the in-

put plaintext and adapt round functions to the new representation. The output of the

encryption is then mapped in the original AES field. This method requires to change

AES round function for each representation and hence is costly in time.

In the following, we consider methods that combine arithmetic of subfields. This

method is efficient for hardware implementation since arithmetic on such smaller

fields is easily implemented in hardware.
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Boolean masking in tower field [29,30,7]. The tower field

GF(2)⇢ GF(22)⇢ GF(24)⇢ GF(28)

was introduced as a speed improvement for the AES [39]. Computation of the inverse

is transferred to a subfield of GF(28). Protecting this operation is also assured at the

lower level. In [30], Oswald et al. proposed a masked inversion technique into GF(24)
for hardware implementations. A software version of this method is presented in [31]

with GF(28) viewed as an extension GF(24)[θ ] of GF(24) where θ is quadratic over

GF(24) with irreducible polynomial of the form z2+z+λ . The inversion operation is

computed by appropriated combinations of four lookup tables whose entries depend

on masked values.

We note that although Oswald et al. proved that, with their scheme, all intermedi-

ate values are masked, the study is only done at the algorithmic level. In a hardware

implementation of this countermeasure Mangard et al. [19] show that it can be vul-

nerable to first-order side-channel attacks. The weakness is due to glitches in Com-

plementary Metal Oxyde Semiconductor (CMOS) circuits. In this paper, we do not

treat this problem. Specific solutions are presented in [27,33].

4 Random tower field constructions

First, we fix some useful notations. For a given irreducible polynomial Q(z) over the

field GF(2) we set GF2(Q) := GF(2)[z]/(Q(z)) and if P(z) is an irreducible polyno-

mial over GF2(Q) we set GF2(Q,P) :=GF2(Q)[z]/(P(z)) in order to exhibit explicitly

the tower construction.

4.1 The SubBytes transformation

The irreducible polynomial R(z) = z8 + z4 + z3 + z + 1, specified in the AES, is

used to create the Galois field GF(28) := GF2(R). This construction is referred as

the standard definition of the field of 28 elements and we associate the basis Σ :=
[ζ 7,ζ 6, . . . ,ζ ,1], referred as the standard basis, where ζ is the class of z modulo

(P(z)). Consequently, any element x = x7ζ 7 + x6ζ 6 + · · ·+ x0 of GF(28) is repre-

sented in AES algorithm by the 8-bits column vector X := t [x7, . . . ,x0] (the transpose

of the row vector [x7, . . . ,x0]), hence x = ΣX . Practically, x is identified to the integer

x727+x626+ · · ·+x0. The Frobenius automorphism is intrinsically given in any field

extension of GF(2) by σ : x 7! x2. It is represented in the standard basis by the matrix

S := Σ−1 ◦σ ◦Σ =

2
66666666664

1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 1 1 0 0 0 0 0

1 0 0 1 0 1 0 0

1 1 1 1 0 0 0 0

0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 0

0 1 0 1 0 0 0 1

3
77777777775

.
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The SubBytes operation is the only non-linear round step of the cipher. It takes as an

input a vector x from GF2(R) which is transformed by composing successively the

following maps:

1. the multiplicative inverse in GF2(R), given y = x−1, but fixing the inversion of

x = 0 to y = 0,

2. the affine transformation

y 7! ω(y)+δ (1)

defined in the standard basis by ΩY +∆ with:

Ω =

2
66666666664

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

3
77777777775

and t∆ =
⇥
0 1 1 0 0 0 1 1

⇤
. (2)

In the original description of AES the SubBytes is performed by means of a lookup

table (the so-called Rijindael S-box). Here we do not use such a method of compu-

tation since it takes too much memory size for masking power consumption and so

computation on-the-fly is preferred.

4.2 Tower field constructions of GF(28) and inversion problem

Notice that calculation of the inverse in GF2(R) requires the inversion of a seventh-

degree polynomial modulo a eighth-degree polynomial. This operation is very costly

compared to the inversion of a first-degree polynomial modulo a second-degree one,

even if the coefficients are taken from the subfield GF(24). Consequently, the field

GF(28) is constructed using tower extensions GF2(Q,P) where Q denotes a biquadratic

irreducible polynomial over GF(2). Notice that there are three possible polynomials

Q.

Let P(z) := z2 +ψz+ λ be any irreducible quadratic polynomial over the field

GF2(Q). There are 120 possible such polynomials P. Now, GF(28) is achieved as the

quotient GF2(Q,P) = GF2(Q)[z]/(P(z)). As usual, each element of GF2(Q) is canon-

ically identified in GF2(Q,P) so that GF2(Q) is viewed as a subfield of GF2(Q,P).
Let α be the natural root of P(z), that is to say the class of the monomial z mod-

ulo (P(z)). Then [α,1] is a GF2(Q)-basis and it is convenient to write elements of

GF2(Q,P) as the sum aα +a0. Recall that the multiplicative law (depending upon P,

but not figured out) is given by the formula:

(aα +a0)·(bα +b0) = (ψab+ab0+a0b)·α +(λab+a0b0).

The efficiency of tower field constructions of type F((22)2)2 , in the AES case, has

been already studied in detail. In [24], the authors adopt polynomials basis while

Canright [6] uses normal basis. Recently, Nogami et al. [28] propose mixed bases.
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Our constructions lead to different basis. In fact, let θ be the natural root of Q(z)
in GF2(Q), that is to say θ is the class of z in GF2(Q) = GF(2)[z]/(Q(z)), then, we

consider the so-called natural GF(2)-basis

Ξθ ,α := [θ 3α,θ 2α,θα,α,θ 3,θ 2,θ ,1]

that sums up our construction of GF2(Q,P).
The Frobenius automorphism of the extension GF2(Q,P)/GF2(Q) is σ4. The

conjugate over GF2(Q) of α being α +ψ , the conjugate over GF2(Q) of aα + a0

is aα +ψa+a0. The norm NP : GF2(Q,P)! GF2(Q) is by definition the product of

conjugates (over GF2(Q)). An easy calculation gives

NP(aα +a0) = λa2 +ψaa0+a02. (3)

Finally, the inverse of aα +a0 can be written as

(aα +a0)−1 = (aα +ψa+a0)NP(aα +a0)−1 . (4)

Once GF2(Q,P) is constructed, let

µ : GF2(Q,P)! GF2(R) (5)

denote any field isomorphism. Let y 2 GF2(R). Our goal is to compute y−1 from the

composite field GF2(Q,P) by using µ , that is to compute (µ−1(y))−1, so that the

SubBytes function (Eq. 1) is given by

SubBytes(y) := ω ◦µ((µ−1(y))−1)+δ . (6)

4.3 Choice of polynomials Q(z) and P(z)

There are 3⇥ 120 possible pairs (Q(z),P(z)) that build GF(28) as GF2(Q,P) but in

practical applications we do not select all of them.

Choice of Q(z). The biquadratic polynomial Q(z) is chosen primitive. There are two

such polynomials, namely z4 + z+ 1 and z4 + z3 + 1. We fix our choice of Q(z) as

the operations of multiplication, squaring and inverse in GF(24) are generally either

given by precomputed lookup tables or by hardware modules. With the above nota-

tions, by primitivity of Q(z), all invertible elements of GF2(Q) are of the form θ k

with k 2 {0, . . . ,14}. Computation of multiplication, square and inversion in GF2(Q)
depend on this polynomial.

Choice of P(z). Irreducible polynomials P(z) := z2 +ψz+λ are taken among the 64

(i.e., ϕ(255)/2) primitive polynomials. We will also restrict our choice to primitive

polynomials with ψ = 1. There are exactly four such polynomials and they are con-

jugate by the Galois group action on λ . Since z2 + z+ θ 7 is one of them, all others

are z2 + z+θ 14, z2 + z+θ 13 and z2 + z+θ 11.

Remark 1 In [39], the authors select Q(z) = z4 + z+1 and P(z) = z2 + z+θ 11 where

θ (in GF2(R)) is a root of Q(z), whereas in [35] the authors choose the same Q(z) but

with P(z) = z2 + z+θ 14. In our case, P(z) is chosen randomly.
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4.4 Finding isomorphisms between GF2(Q,P) and GF2(R)

In this subsection we explain the way to represent any isomorphism (Eq. 5) by matri-

ces M and in the next subsection we compute one matrix M from a concrete example.

With the above choice of P(z), its root α becomes a primitive element in GF2(Q,P).
Consequently, a simple way to construct an isomorphism µ (Eq. 5) is to map α to

a primitive element γ of GF2(R) such that the field isomorphism holds. In order to

respect the multiplicative law, we introduce the map f : GF2(Q,P) ! GF2(R) de-

fined by f (α i) = γ i. This map is linear if and only if α and γ are roots of the same

primitive polynomial over GF(2) or, equivalently, the Zech’s logarithms (also called

Jacobi’s logarithms) Lα and Lγ corresponding to α and γ respectively are identi-

cal. This equality means that for all i 2 {1, . . . ,255} the equality α i + 1 = αr (i.e.,

r = Lα(i)) is sent to the equality γ i +1 = γr (i.e., r = Lγ(i)). An algorithm based on

this fact is proposed in [35]. But in the case of the Galois field GF(28), it is enough

to verify only that α + 1 = αa (a = Lα(1)) is sent to γ + 1 = γa resuming the proof

that f is linear by verifying only the equality

f (α +1) = γ +1 .

This fact is a straightforward corollary of the following theorem.

Theorem 1 Let α and γ be two primitive elements of GF(28) and let Lα , Lγ be

their corresponding Zech’s logarithms. Then α and γ are conjugate if and only if

Lα(1) = Lγ(1).

Proof The proof is obtained by computer calculation. First recall that two conjugate

primitive elements give rise to the same Zech’s logarithm. Now, computation of the

values Lζ (1) when ζ runs in the 16 conjugate classes of primitive elements leads to

16 distinct values. ut

Remark 2 The same theorem holds if we replace GF(28) by GF(2n) with 1  n  9

and n = 11,13.

Once µ is constructed, any field isomorphism from GF2(Q,P) to GF2(R) is of the

form µk := σ k ◦ µ (0  k  7) that maps α to the conjugate σ k(γ) of γ . In fact, one

has the commutation formula

σ ◦µ = µ ◦σ , (7)

where σ in the right member of the equality acts in GF2(Q,P). Therefore, µk =
σ i ◦µ ◦σ j with i+ j = k.

4.5 Matrices representing isomorphisms

By definition, the matrix

Mµ(θ),µ(α) = Σ−1 ◦µ ◦Ξθ ,α

represents µ : GF2(Q,P)! GF2(R) in the above basis Ξθ ,α : GF(2)8 ! GF2(Q,P)
and Σ : GF(2)8 ! GF2(R). Also SkMµ(θ),µ(α) represents σ k ◦µ in the same bases.
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Let τ be an automorphism of GF2(Q,P). Replacing θ by τ(θ) and P(z) := z2 +
ψz+λ by Pτ(z) := z2+τ(ψ)z+τ(λ ) leads to the basis Ξτ(θ),τ(α) = τ ◦Ξθ ,α . There-

fore, due to commutation formula (Eq. 7), the matrix representing µ in the bases

(Ξτ(θ),τ(α),Σ) is SkMµ(θ),µ(α) with σ k = τ . We may also keep θ fixed but replace α

by its conjugate α 0 over GF2(Q). In that case, we obtain the basis Ξθ ,α 0 = σ4 ◦Ξθ ,α

and the matrix representing µ after this change is S4Mµ(θ),µ(α). Combining these

changes of basis, we see that all matrices M that occur in the above representations of

isomorphisms µ with all possible primitive polynomials P(z) (or with restriction to

only primitive polynomials of the form P1,λ if necessary) are practically constructed

as the following. Choose in GF2(R) a root ξ of Q(z), choose a quadratic primitive

polynomial Pψ,λ (z) = z2 +ψz+ λ and choose in GF2(R) a root γ of Pψ,λ (z). Now

build the GF(2)-basis

Lξ ,γ := [ξ 3γ,ξ 2γ,ξ γ,γ,ξ 3,ξ 2,ξ ,1]

of GF2(R). Therefore, the associated conversion matrix M of the basis Σ to the new

basis Lξ ,γ is by definition

Mξ ,γ := Σ−1 ◦Lξ ,γ

and the linear map µ : GF2(Q,P) ! GF2(R) that sends the basis Ξα,θ onto the ba-

sis Lξ ,γ (with µ(α) = γ , µ(θ) = ξ ) is, by construction, an isomorphism (which is

represented by Mξ ,γ in the bases (Ξθ ,α ,Σ)).

Since we have fixed the choice of Q(z), by taking all possible quadratic primitive

polynomials Pψ,λ (z) = z2 +ψz+ λ , we get 64⇥ 8 distinct conversion matrices Mi

(1  i  512) issued from the above constructions. Restriction to polynomials P1,λ (z)
reduces this number to 32, which is quite enough for our purpose as we shall see after

performing side-channel simulation attacks.

4.6 A worked example

Construction of extensions GF2(Q,P) and matrices M can be summarized into three

steps that we exhibit through a typical example.

Step1: initiation. The field GF2(R) of the AES is created. Choose a root ξ of Q(z) :=
z4 + z+1 in GF2(R). For example:

ξ := ζ 6 +ζ 4 +ζ 3 +ζ 2 +1 .

Step 2: choice of P(z). Take P(z) := z2+z+θ 11 and find, according to Subsection 4.4,

a root γ of P(z) in GF2(R). For example:

γ := ζ 4 +ζ 3 +ζ 2 +ζ +1 .
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Step 3: computation of Mξ ,γ . Compute in GF2(R) each element ξ ν γε (0  ν  3,0 

ε  1) of the basis Lξ ,γ . One gets the columns Σ−1(ξ ν γε) of Mξ ,γ . In our example

Mξ ,γ =

2
66666666664

1 0 1 0 1 1 0 0

1 1 1 0 1 1 1 0

0 0 1 0 1 1 0 0

0 0 1 1 0 0 1 0

1 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 0 1 0 0 0 0

0 0 1 1 1 1 1 1

3
77777777775

.

Now, taking into account the standard basis Ξθ ,α , formula (Eq. 6) becomes

SubBytes(y) = ΣY 0+δ (8)

with y = ΣY and Y 0 = ΩMξ ,γ Ξ−1
θ ,α

(
[Ξθ ,α M−1

ξ ,γ
Y ]−1

)
. The term [Ξθ ,α M−1

ξ ,γ
Y ]−1 corre-

sponds to the computation of the inverse of µ−1(y) in GF2(Q,P).

5 Masking norm distribution

We analyze the distribution of the norm values occurring in (Eq. 3) and its conse-

quence on the side-channel leakage from a theoretical point of view.

5.1 Random tower field constructions and distribution of norms

We leave out of our study the element 0 2 GF(28) as our technique provides no

randomizing effect for this value. Hence this proposal needs to be applied jointly

with an additive masking method.

The most sensitive part of the SubBytes using (Eq. 4) is the inversion in GF2(Q)
that corresponds to the inverse of the norm of elements x in GF2(Q,P). Consequently,

we have to study the distribution of NP(µ
−1(y)) (y 2 GF2(R)) in all mappings µ or,

equivalently, to study of N(τy) where N(·) is the norm from GF(28) to the sub-

field GF(24) and τ belongs to the Galois group of GF(28). To this aim we recall

the following classical but important algebraic properties. The norm map N(·) is a

surjective homomorphism with #N−1(1) = 17 and N(y) = y17. Moreover, N(·) com-

mutes with any automorphisms τ . It follows that the partition of GF(28)⇤ in sets

N−1(x) (x 2 GF(24)⇤) is itself partitioned into orbits of the Galois group action on

GF(24)⇤, which are the so-called conjugacy classes. There are five such classes de-

noted S1, . . . ,S5. More precisely, let χ be any primitive element of GF(24), then

– S1 = {1} and N(y) = 1 for 17 values y in GF(28),
– S2 = {χ5,χ10} and N(y) 2 S2 for 34 values y in GF(28),
– S3 = {χ,χ2,χ4,χ8} and N(y) 2 S3 for 68 values y in GF(28),
– S4 = {χ3,χ6,χ9,χ12} and N(y) 2 S4 for 68 values y in GF(28),
– S5 = {χ7,χ11,χ13,χ14} and N(y) 2 S5 for 68 values y in GF(28).
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Fig. 1: The figure represents the number of elements of GF(28) in each conjugacy

class S1, . . . ,S5 of values of the norm considering all possible mappings.

The distribution of N(y) for all y2GF(28) and for all mappings is presented in Fig. 1.

These results imply that given an element of y2GF(28), we can expect, at most, 4

different values for its norm. While the number of representations of y grows with the

number of considered conversion matrices M, the bottleneck is placed in the maximal

size of the sets Si. Furthermore, this maximal size can be achieved with each one

of the 64 polynomials P(x) and, due to the fact that σ4 is the identity on GF(24),
only four of the eight primitive elements γ give the maximal sets Si for any given

P(x). These observations are visualized in Section 6 with the help of an experimental

analysis of the side-channel leakages.

5.2 Improving the distribution of the norm

From a given y in GF2(R), our aim is to maximize the number of norm values com-

puted from various representations of y in fields GF2(Q,P). We have just exposed

that randomizing the tower field construction only gives, at most, 4 different norm

values issuing from y, i.e. the norms NP(µ
−1(y)) belong, independently of P(z) and

µ , to one of the above sets Si that has a maximal size of 4 elements. We would like to

increase the set of possible outputs so that norm values better spread over GF2(Q)⇤.

To this goal in mind, we propose two masking techniques and explain their respective

advantages.

Method using the order of field elements

We start from the fact that GF(28)⇤ is equal to the direct product of its cyclic sub-
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groups C3, C5 and C17, of order 3, 5 and 17 respectively. In addition, ker(N(·)) =C17

and GF(24)⇤is the direct product of its subgroups of orders 3 and 5. The Galois

group of GF(28) acting on GF(28)⇤ lets the cyclic groups invariant and the conju-

gacy classes are in one-to-one correspondence with the orbits of the Galois group

action on the set of orders ord(y) (y 2 GF(28)⇤). Finally, the restriction of the norm

map N(·) on GF(24)⇤ corresponds to the Frobenius automorphisms. It follows the

following description of the above sets Si in terms of orders:

– S1 = {y 2 GF(28) ; ord(y) 2 {1,17}} (=C17),

– S2 = {y 2 GF(28) ; ord(y) 2 {3,51}},

– S3 = {y 2 GF(28) ; ord(y) 2 {15,255}},

– S4 = {y 2 GF(28) ; ord(y) 2 {5,85}},

– S5 = {y 2 GF(28) ; ord(y) 2 {15,255}}.

In order to modify the norm NP(µ
−1(y)) to be in different sets Si, we modify x =

µ−1(y) to change the order. In fact, just before the computation of the norm of x, if

we knew its order, we could multiply it by an element w of an adequate order so that

the resulting norm belongs to another class of conjugacy. However in practice, we

do not easily get the order of x. Moreover, this method may not be adequate as the

choice of w would be dependent on the value of x, hence of y, so that side-channel

information could be exploited. It is then better to choose w at random. Let Oi denote

the set of elements of order i in GF(28). Let O0 be the union of O3 with a set of two

elements in O17, hence |O0|= 4. Notice that |O5|= 4. Now the mask value w will be

taken of the form uv with (u,v) chosen at random in O0⇥O5.

Our proposition for the inversion step in GF2(Q,P), with P(z) fixed, consists in

the following operations.

Inversion Masking Algorithm

Initialization

1. Precompute a matrix M0 = Mξ ,γ , the matrices Mk = SkM0, k = 1,2,3 and their

inverses; each matrix Mk determines an isomorphism µk : GF2(Q,P) ! GF2(R)
with µk = σ k ◦µ0.

2. Precompute NP(u) and NP(v) for all u 2 O0 and v 2 O5.

Randomization

3. Randomly choose a conversion matrix Mr from {M0, . . . ,M3}.

4. Randomly choose u in O0 and v in O5.

Input y output y−1

5. Compute x = µ−1
k (y) = Ξθ ,α M−1

r Σ−1y = aα + a0 and compute x0 := xuv in

GF2(R).
6. Compute the norm NP(x

0), then its inverse NP(x
0)−1 in GF2(Q).

7. Compute the right norm inverse NP(x)
−1 = NP(x

0)−1NP(u)NP(v).
8. Once the norm inverse is computed, compute the inverse x−1 in GF2(Q,P)
using formula (Eq. 4).

9. Output y−1 = ΣMrΞ
−1
θ ,α(x

−1).



14 Alexis Bonnecaze et al.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

er
o

f
el

em
en

ts
in

G
F

(2
8
)

Number of different norms in GF(24)

RTFC 4
RTFC 4 +Method 1

Fig. 2: Repartition of the values NP(µ
−1
k (y)) and NP(µ

−1
k (y)uv) y 2 GF(28) for k, u

and v taken from appropriated sets. We compare a random tower field construction

with 4 mappings (RTFC 4) and the same construction using in addition the masking

method 1 (RTFC 4 + Method 1).

Remark 3 In the case of an actual AES implementation, matrices and norm values

computed during the initialization phase are stored once and for all before starting

any AES computation.

The choice of the sets O0 and O5 seems relevant. We compute for each y2GF2(R)
all possible norm values using our randomization technique and consider the number

of distinct norms we can obtain for each given y. The results are presented in Figure 2.

We clearly see an improvement. Indeed, using only the randomization between 4

mappings elements of GF2(R) to GF2(P,Q) we have at most 4 possible norms. If we

add the multiplication by elements of O0 and O5, for each y 2 GF2(R), these values

belong to GF2(Q) and are given by the formula NP((σ ◦µ0)
−k(y)uv) with (k,u,v) 2

{0, . . . ,3} ⇥ O0 ⇥ O5. The sets O3, O5 and O17 are invariant under the Frobenius

automorphism which also commutes with NP. Moreover NP(O17) = {1}, NP(O
0) =

C3 and NP(O5) = O5. These facts imply that the set of norm values we obtain for

each y is given by

E(y) := {σ k(NP(x))uv ; (k,u,v) 2 {0, . . . ,3}⇥C3 ⇥O5}

with x = µ−1
0 ◦σ4(y). If NP(x) 2C3 (order 1 or 3) then E(y) is the set C3.O5, product

in GF2(Q)⇤ of the elements in C3 by the elements of order 5, consequently #E(y) =
3⇥ 4 and going back to GF2(R) we get 3⇥ 17 elements y that give rise to 12 norm

values. If NP(x) is of order 5 or 3⇥5 then E(x) is the subgroup C3.C5 (= GF2(Q)⇤).

Hence #E(y) = 15 and there are (ϕ(5)+ϕ(15))⇥ 17 = 204 elements y which are

involved.
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A full masking method

In the above proposition, if we replace O0 by C3 and O5 by C5 then the norm NP(µ
−1
k (y)

uv) can take all the values of GF2(Q)⇤. This advantage is not significant with respect

to our experimentation performing side-channel attacks whose results are given in

the next section. In addition, during the random choices we have to prevent a possi-

ble bias due to the fact that the cardinality of C3 and C5 are not a power of 2.

5.3 Implementation

As previously mentioned, both our methods are based on multiplicative maskings.

It is well known that this kind of maskings does not thwart zero input attacks. In

order to solve this problem, one should find a conversion function that maps additive

maskings into multiplicative ones. We propose to use a Dirac function to treat this

issue. This solution has recently been introduced and analysed by Genelle et al. [13,

14].

If we consider a classical implementation of the SubBytes using the tower field

technique, the memory overhead of our method is then very small. For the two mask-

ing methods proposed we need to store four conversion matrices Mk and four cor-

responding inverse matrices M−1
k . A matrix is stored in 8 bytes, hence those eight

matrices are stored in 64 bytes. The elements of the sets O0 and O5, for the first

method, and of C3 and C5 for the second, consist in 8 bytes. We also need to precom-

pute NP(u) and NP(v) for u 2 O0,v 2 O5 for the first method, and u 2 C3,v 2 C5 for

the second. As the polynomial P is modified by the choice of a matrix Mk, we have

to precompute NP(u) for the four polynomials P fixed implicitly. The first method re-

quires to store 4⇥4 = 16 bytes for NP(u),u 2 O0 and also 16 bytes for NP(v),v 2 O5,

hence 32 bytes in total. The second method needs 3⇥4 = 12 bytes for NP(u),u 2C3

and 5⇥ 4 = 20 bytes for NP(v),v 2 C5, hence also 32 bytes in total. Both methods

also have a computational overhead of two multiplications in GF(28) and two multi-

plications in GF(24).

6 Experimental analysis of the countermeasure

Let K be a random variable representing a part of the secret. Let X be a random vari-

able representing a part of the input, or output, of the cryptographic algorithm. In our

context, K and X are binary strings. Suppose an attacker wants to target an intermedi-

ate value computed with the function F(·) that takes as parameters (X ,K). Let L be a

random variable representing the side-channel leakage generated by the computation

of F(X ,K). In practice, the attacker is only able to obtain n realizations of the ran-

dom variable L, denoted VL = (l1, . . . , ln), as he inputs n different values of X , denoted

VX = (x1, . . . ,xn). Using a distinguisher function D, he combines these two vectors

plus an hypothesis on the value of the secret k0. If the distinguisher D is relevant and

if the leakage vector VL brings enough information on F(X ,K), then the correct value

k taken by K can be recovered. In the literature, a certain amount of work has been

done for creating a model for F(X ,K). For example, it has been proposed to consider
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the Hamming weight of the output of F [23], the Hamming distance [5] or simply

its value [12]. The choice of a leakage model should be decided depending on the

considered platform attacked. Other researches were conducted on the distinguisher

function D that plays a fundamental role in the attack. Depending on its choice, the

function is able to extract more or less information from the side-channel leakages.

We cite some of the most used functions: the simplified T-Test proposed by Kocher

et al. [17], the Pearson correlation factor [5], the mutual information [12]. It has

been shown by Mangard et al. [20] and Doget et al. [10] that univariate side-channel

attacks are equivalent in regard to the choice of distinguisher, given that they are pro-

vided with the same information about the leakages. We consider here the Pearson

correlation factor as the distinguisher function D [5]. It is one of the most used at-

tack on most embedded devices. The side-channel attack using this distinguisher is

called Correlation Power Analysis (CPA). The power consumption of most devices

was observed to be closely linear in the Hamming weight of the processed data at a

given time [22,5]. Hence the use of the Pearson factor is particularly well suited as it

records linear relationships between variables.

A side-channel attack, given a vector VL of size n, outputs a vector containing the

key candidates sorted according to the test result given by D. Let Rn =
h
k01, . . . ,k

0
|K|

i

being this sorted vector, the most likely key candidate being k01. A success rate [36]

of order ν is the probability that the correct key is among the ν-th first candidates

found by the side-channel attack. A success function of order ν can then be defined

as: Sν(Rn) = 1 if k 2 [k01, . . . ,k
0
ν ], else Sν(Rn) = 0. The success rate of order ν of a

side-channel attack A is then defined as

Succν
A
(n) = Pr [Sν(Rn) = 1] .

In practice, this probability is only estimated by performing m times a side-channel

attack A and computing the mean. We can only consider a success rate of order 1

as a meaningful metric of the efficiency of a side-channel attack. Another convenient

metric is the guessed entropy [36]. It measures, in our context, the average number

of key candidates to test, after a side-channel attack has been performed, in order to

find the secret key. If we keep the same notations as before, let G(Rn) be the function

that outputs the rank of the correct key in the sorted vector of key candidates Rn. The

guessed entropy of a side-channel attack A is then defined as:

GEA (n) = E(G(Rn)),

where E denotes the expectation. As with the previous metric, in practice, it is eval-

uated by performing m times the side-channel attack.

We evaluate our propositions on a software AES implementation on 8-bit archi-

tecture and place the attacker in the best possible scenario. We use a simulator of

power consumption to obtain the power curves. This simulator outputs, at each cycle,

the Hamming weight of the processed data. The power consumption is then perfectly

linear in the Hamming weight of the data. The possible measurement noise is elimi-

nated.
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Fig. 3: Side-channel attacks results using the guessed entropy and firsts-order success

rate metrics from simulated curves. Comparison between AES implementations: ba-

sic using a tower field construction (TFC), using a randomized construction with 4

mappings (RTFC 4), using a randomized construction with 512 mappings (RTFC

512) and a randomized construction with 4 mappings combined with the masking

method 1 (RTFC 4 + Method 1).

As previously mentioned, the sensitive part of the SubBytes operation in a tower

field construction is the inversion, hence, the computation of NP(µ
−1
k (y)uv) (see In-

version Masking Algorithm, step 6). In order to compare the effect of our proposi-

tions, we first consider a tower field construction with a fixed primitive polynomial

P(z) of the form z2 + z + λ and we arbitrarily fix a mapping. This is simply de-
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noted ‘TFC’ (Tower Field Construction) in Figure 3. Then, we choose 4 mappings

constructed with 4 of the 8 primitive elements in GF(28) such that we only take ele-

ments without their conjugate over GF2(Q). This implementation is denoted ‘RTFC

4’ (Random Tower Field Construction with 4 mappings). The observation of Sec-

tion 5.1 is tested practically with an implementation using all possible mappings for

a total of 512. This implementation is denoted ‘RTFC 512’. Finally, we examine a

random tower field construction combined with our first masking method (see Inver-

sion Masking Algorithm) which is denoted ‘RTFC 4 + Method 1’.

The side-channel resistance of each implementation is evaluated by applying the

metrics first-order success rate and guessed entropy defined previously. In order to

have metrics estimated properly, we perform m = 20 times each side-channel attack

on n= 500 measurements of power consumptions. The results are presented in Fig. 3.

We first notice that the AES implementation using composite field arithmetic

without masking is broken with around 50 power curves. A random tower field con-

struction gives a clear improvement of the side-channel resistance. Both guessed en-

tropy and success rate metrics indicate that an attacker would need 6 times more

curves compared to the unprotected AES. We remark that a random construction us-

ing only 4 mappings is as resistant as one using every possible mappings. It confirms

the properties of the norm described in Section 5.1. Finally, the implementation using

our masking method combined with a random tower field construction clearly gives

the best results. We note that both masking methods proposed in Section 5.2 give

similar attack results. For a small memory and computational overhead our propo-

sitions provides a clear improvement of the side-channel resistance of a AES using

tower field construction.

We also evaluate different AES implementations on an AVR 8-bit ATmega 2561

processor [2] running at 16 MHz. We perform m = 4 times each side-channel attacks

on n = 5000 power consumption measurements. In Figure 4, we compare an AES

using basic tower field construction with our propositions ’RTFC 4’ and ’RTFC4 +

Method 1’. The practical implementation confirms our simulated results and clearly

shows the gain obtained from our last solution.

7 Conclusion

In this paper, we propose a masking technique for SubBytes operations in AES using

a tower field construction. The resulting implementation of AES is particularly well

suited for hardware. The SubBytes is then performed in a subfield of the original

field of AES for efficiency and security reasons. This tower field construction can be

randomly chosen in order to improve security against side channel attacks. Our study

shows that the different representations of an element of the field produce at most

four distinct norms. We then analyze the relation between the order of an element

and its norm and extend the method so that the number of norms may be optimal

for field elements. Experimental analysis shows that our method is both efficient and

resistant against first-order side-channel attacks.
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Fig. 4: Side-channel attacks results using the guessed entropy and firsts-order success

rate metrics from implementations on an AVR 8-bit ATmega 2561 processor. Com-

parison between AES implementations: basic using a tower field construction (TFC),

using a randomized construction with 4 mappings (RTFC 4) and a randomized con-

struction with 4 mappings combined with the masking method 1 (RTFC 4 + Method

1).
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