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Abstract – Zoonotic West Nile virus (WNV) circulates in natural transmission cycles involving certain
mosquitoes and birds, horses, humans, and a range of other vertebrates are incidental hosts. Clinical
infections in humans can range in severity from uncomplicated WNV fever to fatal meningoencephalitis.
Since its introduction to the Western Hemisphere in 1999, WNV had spread across North America, Central
and South America and the Caribbean, although the vast majority of severe human cases have occurred in
the United States of America (USA) and Canada. By 2002–2003, the WNV outbreaks have involved
thousands of patients causing severe neurologic disease (meningoencephalitis and poliomyelitis-like
syndrome) and hundreds of associated fatalities in USA. The purpose of this review is to present recent
information on the epidemiology and pathogenicity of WNV since its emergence in North America.
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1. INTRODUCTION

West Nile virus (WNV) is an emerging mos-
quito-borne RNA virus of global significance
that can infect the central nervous system
(CNS) of various host species and cause severe
neurological disease [59]. Zoonotic transmis-

sion of WNV occurs between avian hosts and
ornithophilic mosquito vectors [64, 141].
Horses and humans are regarded as dead-end
hosts while sensitive to WNV-induced menin-
goencephalitis [59, 83]. For the first decades
after its isolation in Uganda in 1937 [155],
WNV was the frequent cause of epizoonotic
in horses during which a high mortality was
observed. It was mostly associated with* Corresponding author: philippe.despres@pasteur.fr
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asymptomatic, self-limiting childhood infec-
tions in humans [131]. The first introduction
of WNV in the Western Hemisphere occurred
in 1999 in New York City (NYC) of United
States of America (USA) [4, 5], presumably
by the transport of infected humans, birds or
mosquitoes [85]. WNV amplified and extended
its distribution across the USA where it has
been declared endemic within the 10 years
[57, 58]. The spread of WNV continues in the
Western Hemisphere [54]. Neurological disease
is a WNV complication that was increasingly
observed in humans following to the introduc-
tion in USA [121, 123]. Up to now, WNV
was responsible for over 12 000 cases of men-
ingitis/encephalitis and over 1 100 human fatal-
ities, survivors often suffering long-term
neurological sequelae. Mass mortality of resi-
dent birds, especially crows, was also observed.
The American WNV strains causing the out-
breaks in USA might be derivative of a highly
neuroinvasive Israeli strain introduced in the
Western Hemisphere in 1999 [52]. WNV path-
ogenesis is complex and involves viral and host
factors as well as antiviral immunity in the
periphery and the CNS [44]. Control of WNV
infection is orchestrated by host cell defenses
that are partly mediated by Type-I interferon
(IFN) [50]. However, WNV has evolved strate-
gies able to counteract the IFN-mediated antivi-
ral immunity in the infected host [55]. In the
present review, we discuss on the emergence
of zoonotic WNV in the USA since 1999 and
the recent informations on the specific viral
and host factors that may have an influence
on virus virulence in host species.

2. WNV IS A NEUROTROPIC FLAVIVIRUS

WNV is a member of Flavivirus genus (Fla-
viviridae family) [26]. The flaviviruses are posi-
tive sense, single-stranded RNA viruses [94].
Classically, they are subdivided into 10 serolog-
ical complexes. WNV belongs to the Japanese
encephalitis virus (JEV) serogroup of flavivi-
ruses. JEV serogroup also contains Murray Val-
ley encephalitis virus (MVEV), St. Louis
encephalitis group (SLEV), and Usutu virus

(USUV) [102, 138]. The WNV species also
contains the Kunjin (KUNV) subtype that is
endemic in Australia and Malaysia [56]. The
flaviviruses of the JEV serocomplex are the
leading cause of arboviral encephalitis in verte-
brate hosts including humans.

After virus inoculation in the dermis by
the bite of a chronically infected vector, most
infections by members of the flavivirus JEV
serogroup result in no symptoms or a mild
febrile illness [57, 117]. It was shown that
mosquito saliva modulates early infection
steps and alters the host immune response
against arboviruses including WNV [147,
148]. Less than 1% of flavivirus infections
cause natural infection of the CNS [34, 57,
115]. Following CNS infection, disease syn-
dromes range from mild meningitis to severe
encephalitis with variable morbidity and mor-
tality [34, 117] and possible sequelae [75,
122]. Once inside the CNS, encephalitic flavi-
viruses infect neurons [33, 78, 151, 164],
cause severe immunopathology [2, 90] and
apoptosis [43, 89, 129, 132, 169].

Highly neurovirulent flaviviruses exhibit an
upregulation of genes involved in IFN signal-
ing, T-cell recruitment, MHC class I and II anti-
gen presentation, and apoptosis [162, 163]. The
mechanism by which encephalitic flaviviruses
cross the blood-brain barrier (BBB) and invade
the CNS has still not been fully elucidated [34,
74, 107]. It was first assumed that neuroinva-
siveness depends on initial virus spread before
the establishment of an immune response
[107]. Some studies suggest disruption of
BBB as mode of entry [37, 81, 121]. Alterna-
tively, endocytosis into the CNS across vascular
endothelium was demonstrated [51, 95].
Another suggested mode of CNS entry was
the infection of olfactory neurons that are
unprotected by the BBB [63, 105, 113]. Cohort
and case-control studies have shown that hyper-
tension and vascular disease may predispose to
neuroinvasive disease [103, 121, 124].
Although asymptomatic in a majority of cases,
WNV infection has been associated with neuro-
tropic human manifestations including men-
ingo-encephalitis and acute flaccid paralysis
[43, 59, 123].
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3. MOLECULAR BIOLOGY OF WNV

WNV replication and assembly occur in the
reticulum endoplasmic (ER) of infected cells
[25]. Genomic RNA encodes a large polypro-
tein precursor, which is processed by host and
cellular proteins to yield individual structural
(C, prM/M and E) and nonstructural (NS) pro-
teins NS1, NS2A, NS2B, NS3, NS4A, NS4B
and NS5 [25] (Fig. 1). The NS proteins are
assumed to be involved primarily in the replica-
tion of viral RNA. Within infected mammalian
cells, WNV NS1 is secreted to high levels
[101]. Recent studies revealed an involvement
of NS1 in modulation of signaling pathways
of the innate immune response to WNV
[166]. Interestingly, it has been observed that
a larger NS1-related protein, designated NS1’,
might play a critical role in neurovasiveness
of the members of JEV serogroup [109]. The
NS3 protein is a viral enzyme which exhibits
serine protease activity from its N-terminal
domain and ATPase and helicase activity from
its C-terminal domain. The viral RNA-depen-
dent RNA polymerase, the product of NS5

gene, is responsible for replication of the viral
genome within putative complexes comprising
both viral and host proteins. NS3 and NS5 have
been identified as the major components of the
viral RNA replicase complexes (RC). Viral RC
were shown to induce rearrangement of intra-
cellular membranes. The functions of small
membrane-associated NS2A, 2B, 4A and 4B
proteins remain still largely unknown.

4. WNV STRATEGY FOR EVADING HOST
INNATE IMMUNITY

WNV has developed strategies for enhanc-
ing viral replication in the host by blocking
the action of type-I IFN and evading the antivi-
ral activity of IFN-stimulated genes (ISG) [50,
55, 68, 92, 96, 97, 118, 146, 157]. Flaviviral
IFN antagonists are involved in the inhibition
of type-I IFN signaling. The nonstructural pro-
teins NS1, NS2A, NS4B and NS5 may contrib-
ute to the control of IFN-a/b signaling by WNV
[97, 118, 119] (Fig. 1). It has been observed that
NS2A has the ability to inhibit the activation of

Figure 1. Schematic representation of WNV genomic RNA and the translation of the viral proteins.
Functions of individual proteins are shown. See the text for details.
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IFN-b transcription [96, 98]. The transcription
factors involved in IFN-b mRNA expression
whose activity is affected by NS2A are still
unknown. A single amino acid substitution in
WN NS2A (A30P) has been shown to enhance
activation of IFN-a/b expression in vitro and
in vivo [98]. Also, the A30P substitution in
NS2A attenuates the neuroinvasiveness and
neurovirulence of WNV in mouse model.
Recent report showed that NS4B is able to
block the IFN-signaling cascade at the level
of nuclear STAT1 phosphorylation [118, 119].
The N-terminal region of NS4B determines its
IFN antagonist activity whereas the central part
of NS4B is believed to influence flavivirus vir-
ulence [165]. Expression of NS5 has been
recently shown to block the IFN-stimulated
JAK-STAT signaling [93].

The IFN-inducible 20, 50-Oligoadenylate
Synthetases (OAS) are part of a regulated
RNA decay pathway known as the OAS/RNase
L pathway, which has been shown to protect
against flavivirus infection [71, 99, 104, 133,
145, 154]. Recently, a genetic case/control study
on horses naturally infected with WNV showed
a potential role for equineOAS1 polymorphisms
in the host innate resistance to WNV during the
epidemics in USA [143]. Genetic variation in
humanOAS1 is a host genetic risk factor for ini-
tial infection withWNVin North American pop-
ulations [91]. Similar to human and horseOAS1,
we and others provided evidence that the murine
Oas1b plays a critical role in resistance to severe
WNV infection in a mouse model of virally-
induced encephalitis [71, 99, 104, 133]. Serial
passage of WNV in mouse cells expressing
Oas1b gave rise to a variant that displays resis-
tance to the antiviral effect ofOas1b [110]. This
is consistent with the assumption that WNV has
the ability to counteract the antiviral activity of
IFN-inducible OAS [71]. The resistance of
WNV to Oas1b could be attributed to the
S365G substitution in the viral NS3 NTPase/he-
licase domain and the V9M substitution in the
hydrophobic 2K peptide that spans the ERmem-
brane between NS4A and NS4B [110] (Fig. 1).
The NS3 and 2Kmutations promoteWNVresis-
tance to Oas1b through enhancement of viral
RNA replication. It is of interest to note that a
single amino-acid substitution in the NS3 heli-

case was sufficient to increase the virulence of
WNV in American crow in North America
[22]. Also, the 2K-V9M substitution has been
detected in a WNV isolate collected from birds
in North America [40]. So far, a singleOAS gene
has been identified in avian species [158].

These observations are consistent with a
model in which the mutations in the nonstruc-
tural proteins could act as viral determinants
to control IFN signaling or the antiviral effects
of ISG such as OAS [23, 146]. This opens a
new avenue for understanding how viral and
host genetic diversity influences WNV pathoge-
nicity in various hosts including humans,
horses, and avian species. Whether viral factors
that promote WNV subversion to antiviral
innate immunity may have consequences for
the amplification of WNV in the nature is a crit-
ical issue that remains to be investigated.

5. ENZOOTIC TRANSMISSION OF WNV

The principle mode of maintenance and
amplification of WNV in nature occurs between
avian hosts and ornithophilic mosquito vectors
while human and horses are regarded as dead-
end hosts unable to uphold transmission cycles
(Fig. 2). Culex ssp. is the key vector in this
transmission cycle [66, 161], however, the virus
has also been isolated from Aedes ssp., Anoph-
eles ssp. and many other mosquito species in
Europe and Africa [61, 62, 64, 168] as well
as in North America [13, 14, 53, 83, 127]. Ticks
and other blood-sucking arthropods were also
found capable of WNV replication and trans-
mission under experimental conditions [64,
65, 130], although the role of these potential
vectors in a natural setting has not been deter-
mined. Avian hosts that maintain a sufficient
viremia to subsequently infect mosquitoes are
mostly passerine species, particularly corvids
[1, 13, 14, 62, 70, 79, 83, 159, 168].

6. EPIDEMIOLOGY OF ZOONOTIC WNV

WNVwas first isolated from a febrile woman
in theWestNile district ofUganda in 1937 [155].
WNV infection was mostly associated with
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asymptomatic, self-limiting childhood infection,
with adults showing a high percentage of immu-
nity [159]. The earliest epidemics were associ-
ated with low mortality, however severe
neurological disease was reported in Israel [15],
France [131], and SouthAfrica [70, 106]. Histor-
ically,WNVwas the frequent cause of epizootics
in horses, during which a high mortality was
observed [69, 120].

At present, WNV is endemic to Europe [61,
82], the Middle East, Africa [49, 113], Asia
[74], Australia [74], and now North America.
The first introduction of WNV into the Western
Hemisphere occurred in 1999 in NYC [5, 24,
28, 128], probably by transport of infected
humans, birds or mosquitoes [54, 140, 141].

Two predominant genetic lineages of WNV
have been identified by phylogenetic analysis
[16]. Lineage 1 contains an antigenically
diverse group of isolates from Europe, the Mid-
dle East, India, Africa, Australia and the Wes-
tern Hemisphere [19]. Lineage 2 contains
isolates from Southern Africa and Madagascar.
Lineage 2 strains were considered less virulent
than lineage 1 strains [9] but recently also
southern African strains have been associated
with cases of severe encephalitis. WNV lineage
1 strains were mostly associated with severe
and neuroinvasive disease, but recent studies
show that viruses with high and low neuroinva-
sive phenotype exist in each of the lineages [9,

10, 21, 164]. Evidence for further genetic lin-
eages was recently reported. It was reported that
a single amino-acid substitution in the WNV
NS3 helicase was sufficient to increase viru-
lence in avian hosts [22, 44]. Change in pathol-
ogy and neuroinvasiveness observed in some
WNV strains was suggested to have originated
from a change in the N-glycosylation pattern of
the envelope protein resulting in altered virion
stability [10, 12, 32, 108, 150].

Since the mid-1990s, three epidemiologic
trends have emerged regarding WNV:
(1) increased frequency of outbreaks in humans
and horses, (2) increase in reported cases of
neuroinvasive disease in humans, and (3) high
case fatality rates in birds coinciding with
human outbreaks, mainly in the USA and Israel
[134]. Beginning in 1996, the Eastern Hemi-
sphere has experienced several WNV-encepha-
litis outbreaks with human fatalities in Algeria
[86], Romania [27, 86, 160], Tunisia [120],
Israel [17, 38, 153] and Russia [100, 136].
These more recent outbreaks have been attrib-
uted to evolution of a new, more pathogenic
WNV variant belonging to lineage 1.

7. EMERGENCE OF WNV IN THE USA

In late August of 1999, an unusual cluster of
encephalitis cases was reported to NYC’s

Figure 2. WNV transmission cycle.
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Department of Health [4, 128]. Initially, labora-
tory findings suggested infection with SLEV
which is serologically related to other flavivi-
ruses in the JEV serogroup [28]. Laboratory
sequencing of virus isolated from brain tissue
of birds identified WNV lineage 1 [67]. Retest-
ing of clinically ill human cases and testing of
horses presenting with CNS disease in Long
Island, NY revealed WNV as the cause of dis-
ease. A total of 62 human cases of WNV were
identified during this outbreak, including seven
deaths. By extrapolation from a household-
based study it was estimated that the NYC
WNV outbreak in 1999 caused around 8 200
asymptomatic infections, causing disease in
approximately 1 700 individuals [115]. This
was the first evidence of WNV activity in the
Western Hemisphere.

Phylogenetic analysis suggests that Ameri-
can strains might be derivatives of an Israeli
strain introduced into the Western Hemisphere
[6, 36, 52, 67, 85]. Again, it is unknown as to
how this virus was introduced into the USA.
Culex pipiens mosquitoes collected during the
NYC outbreak were susceptible and able to
transmit WNV [161]. Overwintering mosqui-
toes showed low levels of WNV RNA by
real-time PCR [29]. WNV spread into several
Canadian states that border to the USA, causing
infections in both humans and birds [46, 167].
Surveillance of WNV-infected horses and birds
detected spread of WNV through Mexico [18],

the Caribbean [8, 39, 47, 80, 87, 139] into
South America [20, 45, 80, 114].

During the first years of circulation in North
America, WNV persistence over the winter
months was attributed to continued transmis-
sion during winter [142], overwintering of the
virus in mosquitoes [29, 126, 140], and vertical
WNV transmission from infected females to
their offspring [7, 111, 142]. WNV infection
of migratory birds was suggested to contribute
to the fast dissemination of WNV in North
and South America [16, 54, 170]. WNV is also
rarely isolated from mammals [1, 62, 137] and
reptiles [77, 112] but, like humans, these spe-
cies are regarded as dead-end hosts unable to
uphold transmission cycles (Fig. 2). Contrasting
to this, non-viremic transmission during co-
feeding between mosquitoes on dead-end hosts
was described [60]. Non-vector routes of WNV
transmission include oral infection [79, 84,
112], intrauterine infection [31, 59], breast-feed-
ing [30, 59], blood transfusion [35, 59].

In the following years monitoring of bird
die-offs and intense mosquito control measures
were established to minimize human infections
[140]. Nevertheless, WNV amplified and
extended its distribution across the lower 48
continental states and has been declared ende-
mic within 10 years of its introduction (see
Fig. 3) [3, 13, 59, 135]. For two years, a
homogenous viral population (genotype
NY99) prevailed in New York State before

Figure 3. The enzootic spread of WNV across the lower continental USA since its first introduction in
Western Hemisphere in 1999. (A color version of this figure is available at www.vetres.org.)

Vet. Res. (2010) 41:67 K.O. Murray et al.

Page 6 of 14 (page number not for citation purpose)

http://www.vetres.org


introduction of a new genotype (WN02) in
2002 containing two non-coding changes in
the E (C2466U) and NS5 (C9352U) gene and
one coding change in the E gene (U1441C,
V159A) [11, 41]. WN02 soon became the
dominant genotype in the USA, displacing its
predecessor by 2004 [156]. This displacement
was a result of both earlier and more efficient
transmission in Culex ssp. mosquitoes [48,
116] and increased adaptation to replication at
higher temperatures by WN02 [73].

Human and equine clinical cases, avian mor-
tality cases, positive sentinel chicken flocks,
and positive mosquito pools are reported to
CDC by each individual state through the Arb-
onet surveillance system. Initially, only WNV
encephalitis and meningitis (also referred to as
neuroinvasive disease) cases were reportable.
Starting with the 2003 transmission season,
CDC requested that uncomplicated fever cases
also be reported, resulting in a dramatic increase
the reported numbers. Since 1999, our knowl-
edge of WNV infection has evolved and chan-
ged. Likewise, CDC definitions of the various
clinical entities associated with infection have
changed, as have the laboratory criteria for
diagnosing infection.

8. WNV INFECTION IN HUMANS

Since its introduction into the USA in 1999,
WNV has been responsible for over 12 000
cases of meningitis/encephalitis and over
1 100 fatalities1. Survivors often suffer long-
term neurological disorders. Neurological dis-
ease is a WNV complication that is increasingly
observed following to the introduction of WNV

into North America [128, 144]. Infection of
spinal anterior horn motor neurons can cause
acute flaccid paralysis during WNV infection
[88, 149]. Upon WNV infection, neurons were
observed to exhibit a direct antiviral response
by secretion of the proinflammatory cytokine
CXCL10 [76]. TNF-a was associated with
accumulation of CD8+ T cells and activated
macrophages in the CNS that contribute to
increased clearance of WNV infection [152].

Very recently, WN viral RNAwas identified
in the urine of 20% of convalescing WNV
patients up to seven years post-infection, lead-
ing to the discovery of persistent infection of
the kidneys with associated renal pathology
[124]. The authors speculate that persistent
infection of the CNS is also possible and war-
rants investigation. Considering the vast num-
ber of human cases across the USA and in
other parts of the world, further research is
needed to understand the pathologic lesions
and outcomes underlying persistent infection.

9. CONCLUDING REMARKS

Complex ecological factors determine the
geographic spread of WNV. Since 1999, a dra-
matic westward and southward spread of
WNV activity has occurred in the USA, likely
due its emergence into areas with immunologi-
cally naı̈ve reservoir populations, leading to vast
numbers of viremic birds, as well as adaptation
to New World Culex species mosquitoes,
including Cx. quinquefasciatus and Cx. tarsalis.
The number of USA counties reporting WNV
activity increased dramatically (Fig. 3). Ten
years after it was discovered in NYC, more than
25 000 cases of WNV had been reported in
humans, including over 1 000 deaths (Tab. I).
This virus is likely to establish an endemic cycle

Table I. Summary of WNV human cases reported annually to CDC, 2002–2009.

1999 2000 2001 2002 2003* 2004 2005 2006 2007 2008 2009

Human cases 62 21 66 4 156 9 862 2 539 3 000 4 269 3 630 1 338 720
Deaths 7 2 10 284 264 100 119 177 124 44 32

* National surveillance practices changed to include reporting of West Nile fever cases.

1 See the web site http://www.cdc.gov/ncidod/
dvbid/westnile/
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of transmission across the USA, Canada, and
Central and South America, leading to a contin-
ued rise in cost associated with acute and long-
term treatment of human cases and vaccination
of horses, as well as the cost of continued sur-
veillance, prevention and control measures.
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