N

N

Immune cell kinetics in the ovine abomasal mucosa
following hyperimmunization and challenge with
Haemonchus contortus
Nicholas Robinson, David Piedrafita, Kenneth Snibson, Paul Harrison, Els N.

Meeusen

» To cite this version:

Nicholas Robinson, David Piedrafita, Kenneth Snibson, Paul Harrison, Els N. Meeusen. Immune cell
kinetics in the ovine abomasal mucosa following hyperimmunization and challenge with Haemonchus
contortus. Veterinary Research, 2010, 41 (4), 10.1051/vetres/2010009 . hal-00903175

HAL Id: hal-00903175
https://hal.science/hal-00903175

Submitted on 11 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00903175
https://hal.archives-ouvertes.fr

Vet. Res. (2010) 41:37
DOI: 10.1051/vetres/2010009

Www.vetres.org

© INRA, EDP Sciences, 2010 Original article

Immune cell Kinetics in the ovine abomasal mucosa
following hyperimmunization and challenge
with Haemonchus contortus

Nicholas Roinson!, David Pieprarita’, Kenneth SNiBson?,
Paul Harrison®, Els N. MEgusen'®

! Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University,
Clayton, VIC 3800, Australia
2 Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Australia
3 Victorian Bioinformatics Consortium, School of Biomedical Sciences, Monash University, Australia

(Received 2 November 2009; accepted 1 February 2010)

Abstract — Sheep were sensitized by repeated infection with Haemonchus contortus L3, followed by a
12 week rest period, and an abomasal cannula was surgically implanted in all sheep. Seven of the sensitized
sheep were subsequently challenged with 50 000 H. contortus L3 while 4 control sheep were challenged
with saline. Biopsy samples were taken using a fibreoptic endoscope on days 0, 1, 2, 3, 5, 7 and 28 after
challenge and leukocyte subpopulations quantified by (immuno)histology. Differential blood cell counts
were performed on the same days. At the end of the trial, sheep showed significantly reduced worm burdens
compared to unsensitized control sheep, confirming their resistance status. Both blood and tissue
eosinophils, as well as tissue Y8 TCR" cells were rapidly elevated by day 1 post L3 challenge (pc), peaking
at day 3 pc. There was a slight increase in tissue CD4 T cells at day 2 pc, peaking at day 3 pc while no
significant changes in CDS8 T cells were observed. B cells (CD45R™") increased later into challenged tissues
with a peak at 5 days pc. All tissue lymphocyte subpopulations as well as tissue and blood eosinophils were
reduced by day 7 pc before increasing again at day 28 pc, suggesting separate responses to larval and adult
antigens. In contrast, globule leukocytes and mucosal mast cells only showed one peak at day 5 pc and
28 pc, respectively. Unexpectedly, globule leukocytes correlated significantly with tissue eosinophils but
not mucosal mast cells. The results are consistent with an early eosinophil-mediated killing of L3, possibly
recruited by IL-5 produced by yd T cells. In contrast to post-mortem studies, abomasal cannulation allowed
sequential analysis of both early and late time points in the same animal, providing a more complete picture
of cellular interactions at both peripheral and local sites, and their correlation with the different stages of
parasite development.
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1. INTRODUCTION and challenge nematode infections in both rodent
and ruminant models (reviewed in [1, 9]). Very

There have been several studies characteriz-  few of these studies have investigated the early

ing the cellular changes that occur with primary
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period of putative larval rejection and most have
concentrated on adult stage interaction with the
host. Several experiments have however shown
that larval rejection can and does occur in both
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Haemonchus contortus and Trichostrongylus
colubriformis [14, 15], and this may be the pre-
dominant mechanism of resistance to gastroin-
testinal nematodes in large animals [I].
Eosinophils, mast cells and globule leukocytes
have all been implicated as effector cells mediat-
ing resistance to gastrointestinal nematodes,
although their precise role in parasite rejection
has not been elucidated.

The kinetics of cellular changes with time of
infection and immunity can be informative of
what immune mechanisms are operating at dif-
ferent stages and how these may interact. These
studies have however been limited due to the
large number of animals needed for sequential
killing when working with outbred populations.
Previous studies have shown that abomasal can-
nulation is an effective tool for collecting muco-
sal tissue samples in sheep [12]. Collection of
consecutive samples from the same animal can
reduce individual variation as well as permit
the sequential observation of cell populations
that are recruited early during the histotrophic
stage of the nematode larvae [12, 19, 21]. In
the present study, a surgical technique of insert-
ing an abomasal cannula to take abomasal
mucosal biopsy samples was employed to
observe changes at the site of H. contortus infec-
tion in immune sheep. Tissue samples obtained
via fibreoptic endoscopy allowed both immuno-
histological and histological characterization of
cellular kinetics at early stages of infection with
subsequent enumeration of worm establishment.
In addition, this procedure allowed direct corre-
lations between cell populations in the same
sheep and revealed significant associations
between critical cell subpopulations.

2. MATERIALS AND METHODS
2.1. Animals and experimental design

Eighteen non-pregnant merino cross breed ewes
were used in the experiment. Ewes were pasture reared
and acquired from a commercial source at 6 months of
age. All sheep were treated initially with the manufac-
turers recommended dose of ivermectin at § mL/sheep
(Ivomec 8 g/L, Merial, USA) and housed indoors
under nematode free conditions for 1 month before
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commencement of the experiment. Sheep were ran-
domly allocated to 3 groups (Tab. I). Groups 1 and 2
comprised a total of 11 sheep that were sensitized by
oral infection with 5 000 L3 H. contortus L3 larvae
once per week for 12 weeks. The sheep were subse-
quently drenched with ivermectin, and maintained
nematode free for a further 12 weeks. Group 2 (7 sheep)
was then challenged with 50 000 L3 H. contortus and
group 1 (4 sheep) sham challenged with saline. Group
3 comprised 7 sheep which were housed nematode free
for 24 weeks without immunization and then chal-
lenged with 50 000 H. contortus L3 larvae (infection
controls). The challenge dose was given just after tak-
ing the Day 0 biopsy sample in groups 1 and 2. Sheep
in all groups were euthanised at 28 days post challenge
(pc) by an intravenous injection of lethabarb (Virbac
Pty. Ltd, Australia).

Larvae used for sensitizing and challenging the
sheep were ensheathed McMaster strain L3
H. contortus. The experiment was approved by the
University of Melbourne School of Veterinary
Science Animal Ethics Committee (Australia).

2.2. Parasitological measurements

Adult worm counts were performed immediately
following euthanasia of the sheep. The abomasum
was collected and opened along the greater curvature.
The entire abomasal contents were counted for adult
worms in a transparent dish over a lightbox.

2.3. Abomasal cannulation

The abomasal cannula design used was based on
[12] and consisted of a 10 mL syringe, modified by
removing the luer end and placing a circular flange
over the syringe. The flange was molded from silastic
rubber (Dow Corning, Sydney, Australia) and was
approximately 7 cm diameter. This type of rubber
was chosen to limit the possibility of mechanical
abrasion of the mucosal surface of the abomasum.

Feed was withheld for 24 h prior to surgery. After
anaesthesia, a ventral midline incision was made to
locate and exteriorize the abomasum. A 2-3 cm
purse-string suture (Silk 2-0) was placed midway
between the lesser and greater curvature approxi-
mately 10 cm from the pyloric sphincter. This location
was chosen to reduce the chance of cannula failure and
to minimize the disturbance of the H. contortus L3 tis-
sue niche. A stab incision was made in the centre of the
purse-string suture. The cannula and inner flange was
placed inside the abomasum through the stab incision
and the purse-string suture was tightened and tied off.
A further stab incision was made in the abdominal wall
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Table I. Experimental protocol.
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Group number (7) Weeks of Challenge* Weeks between last Sampling time points

sensitization® (Day 0) sensitization and challenge (days post challenge)
Group 1 (4) 12 - 12 0,1,2,3,5,7,28
Group 2 (7) 12 + 12 0,1,2,3,5,7,28
Group 3 (7) 0 + — 28

" Sheep were sensitized by weekly infection with 5 000 H. contortus L3 and challenged with 50 000 L3.

approximately 10-15 cm from the laparotomy inci-
sion on the right paramedian area to enable the cannula
to be passed freely through while maintaining the
abomasum in an anatomically correct position. An
external flange was placed over the external syringe
barrel which was then secured in place by the use of
an elastrator ring (NASCO Export, Fort Atkinson,
WI, USA) and metal bolt that was placed transversely
through the syringe to both keep the flange in place and
the stopper (a shortened 10 mL syringe plunger) from
externally dislodging. There were no problems with
cannula failure during the experiment. The external
parts of the cannula did not affect the sheep’s ability
to ambulate or assume a sternally recumbent position.

Post anaesthetic monitoring was carried out with
sheep housed individually for 24 h and then returned
to group housing. Procaine penicillin and benzathine
penicillin was administered during the surgical proce-
dure at the manufacturers recommended dose (1 mL/
20 kg bodyweight, Duplocillin, Intervet Ltd, Upper
Hutt, New Zealand).

2.4. Biopsy procedure

Biopsy specimens were taken from both group 1
(sensitized, saline challenged) and group 2 (sensi-
tized, L3 challenged) sheep using a flexible fibreoptic
endoscope (Olympus, Sydney, Australia). The biopsy
forceps used through the endoscope biopsy port pro-
duced a tissue specimen measuring 2 X 2 X 3 mm.

Sheep were restrained in a custom made sling
which exposed the ventral region of the sheep’s abdo-
men including the cannula. As in previous studies
[12], we found no need for sedation as the sheep
appeared relaxed and did not show any signs of pain
or discomfort during the procedure. While sheep are
restrained in the harness, the cannula stopper was
removed and the abomasal contents collected. The
endoscope was introduced into the abomasum and
the fundic region located which was the furthest dis-
tance from the cannula. Due to the design of the
biopsy forceps, it was found that the most productive
biopsy specimens were taken from the tip of the large

abomasal folds of the fundic region. The fibreoptic
endoscope allowed sufficient visibility (in color) to
differentiate structures within a 3—4 cm distance from
the tip of the scope, and characteristic abomasal folds
were readily visible. Four biopsy specimens were
taken for each time point. At subsequent time points
there was never any evidence of tissue injury from
previous biopsy collection, as observed macroscopi-
cally by eye or examined histologically for signs of
inflammation or regenerative changes. The flexible
endoscope also allowed different regions of the
abomasum to be sampled and, considering the size
of the biopsy relative to the surface area of the
abomasums, the probability of resampling the same
site is minute.

2.5. Peripheral blood

Peripheral venous blood was collected by jugular
venipuncture and placed into 5 mmol of ethylenedi-
aminetetraacetic acid (EDTA). Total WBC count was
performed by adding 10 uL of EDTA treated blood
with 190 pL Turk’s solution (1% glacial acetic acid
and 0.01% gentian violet in distilled H,O). Enumera-
tion of cells was performed using a haemocytometer
and results expressed as cells per litre of blood.

Differential white cell counts were performed on
peripheral blood (PB) smears stained with Diff Quik
(Dade Behring, Inc., IL, USA). For differential cell
counts, the differential percentage were multiplied
by the total WBC count and results expressed as cells
per litre of blood.

2.6. Histological procedures

For paraffin sections, tissue samples were placed
in 10% neutral buffered formalin and processed at
the University of Melbourne Veterinary Histology
Laboratory. Eosinophils and globule leukocytes were
differentiated morphologically on haematoxylin and
eosin stained sections.

For immunostaining, tissue biopsies were embed-
ded in Optimal Cutting Temperature (OCT) medium
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(TissueTek, Miles Inc., USA), frozen on liquid nitro-
gen and stored at —70 °C until used. Five microns of
frozen tissue sections were fixed in 200 mL 100%
ethanol with 2 mL H,O, for 10 min at 4 °C and
stained for cell surface markers using ovine-specific
monoclonal antibodies (mAb) as described previ-
ously [2, 3]. Briefly, mAbs were anti-sheep IgE,
CD4, CD8, CD45, CD45R, yd TCR (86D) and
WCI (T19), a y3-TCR subset.

To stain for mucosal mast cells, frozen sections
were stained with 1% toluidine blue in a solution
of 50% PBS and 50% methanol for approximately
30 s.

2.7. Morphometric analysis

To maximise the number of cells counted per
biopsy in the abomasal mucosa, the entire biopsy
was counted using a counting graticule (Leica Micro-
systems, Wetzlar, Germany) of area 0.2 mm?. This
technique was used for both frozen and paraffin sec-
tions. Each biopsy was recorded as the mean number
of cells per graticule field (£ SEM).

2.8. Statistical analysis

Group comparisons were conducted by compar-
ing group 1 with group 2 at each time point utilizing
unpaired student’s #-test. The linear dependence
between 2 variables within the experimental group
2 was calculated using the Pearson product-moment
correlation coefficient (7). p < 0.05 was considered
significant.

3. RESULTS

3.1. Changes in peripheral blood WBC
after challenge

Analysis of PB samples taken on days —24
and day O before challenge show that both
group 2 (L3 challenged) and group 1 (sham
challenged) did not significantly differ for any
parameter measured (eosinophil, neutrophils
and lymphocytes) (Fig. 1). On day 1 pc, group
2 had significantly elevated PB eosinophils.
The upward trend continued on day 3 and
5 pc with significant difference between eosin-
ophils in group 2 compared to group 1. At the
remaining time points, days 7 and 28 pc, eosin-
ophils remained elevated above the control
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group but not significantly. There were no sig-
nificant differences observed in the other PB
leukocytes at any time point.

3.2. Lymphocyte kinetics into abomasal tissues
after challenge

No difference was observed in total leuko-
cyte (CD45" cells) numbers between groups 1
and 2 before challenge (Fig. 2). Following chal-
lenge, group 2 showed an upward trend which
reached significance at day 3 before reaching a
plateau for the remaining time points.

CD4" cells were only slightly and not signif-
icantly different between groups 1 and
2 at days 0, 1 and 2 pc (Fig. 2). CD4" cells
were significantly above controls on days 3, 7
and 28 pc, with a peak at day 3 and a second
increase from day 7 to day 28 pc. CD8" cells
were not significantly different at any time
point.

¥ TCR" cells in group 2 increased from day
1 pc and peaked at day 3 pc before decreasing
slightly at days 5 and 7 pc (Fig. 2). Like the
CD4 T cells, y6 TCR cells increased again by
day 28 pc. The WCI1 3 TCR (T19") cell sub-
set showed a similar trend with two peaks, one
occurring at day 3 pc decreasing to the lowest
point at day 7 pc before rising again at day
28 pe.

CD45R" cells which comprise mostly B
cells in the abomasum [7] were similar in both
groups 1 and 2 over days 0, 1 and 2 pc (Fig. 2).
At day 3 pc, B cells were significantly higher in
group 2 than group 1 and reached a peak at day
5 pc. CD45R " numbers appreciable declined by
day 7, followed by a slight increase in numbers
to day 28.

3.3. Kinetics of mucosal effector cells
after challenge

Tissue eosinophils, mast cells and globule
leukocyte numbers were low in all sheep follow-
ing the rest period before the challenge (Fig. 3).
Group 1 maintained low levels of these cells
throughout the post saline challenge. Group 2
showed a significant increase in eosinophils by
day 2 pc, reaching a peak at day 3 pc before
declining, but remaining above control levels,
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Figure 1. Peripheral blood eosinophils, neutrophils and lymphocytes (mean £ SEM) in saline challenged
(®) and L3 challenged (V) sensitized sheep, at various days post challenge. * Indicates significant

difference (p < 0.05).

on days 5 and 7 pc. On day 28 pc eosinophil
counts in the L3 challenge group were again sig-
nificantly increased above the control group.
Globule leukocytes started to increase on
day 2 pc reaching a peak on day 5 pc
(Fig. 3). Even though there was a steady decline
after day 5 pc, globule leukocyte numbers on

both days 7 and 28 pc were significantly higher
than controls.

Mucosal mast cells showed no change from
day 0 to day 4 pc, and only started to increase
on day 5 pc reaching significance on day 7 and
continuing their increase to day 28 pc (Fig. 3).
IgE" cells in the L3 challenge group started an
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Figure 2. Total leukocytes (CD45") and lymphocyte subsets (means = SEM) in the abomasal mucosa of
saline challenged (@) and L3 challenged (V) sensitized sheep, at various days post challenge. * Indicates a

significant difference (p < 0.05).

upward trend on day 1 pc which did not reach
significance until day 5 pc when there was a
sharp increase to day 7 pc remaining high at
day 28 pc (Fig. 3). While this late increase in
IgE" cells somewhat mirrors the late increase
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in mucosal mast cells, the absolute number of
IgE" cells vastly surpassed the mast cell num-
bers (> 50 times on day 7 pc), suggesting
another cell population(s) contributes to the
IgE" cell numbers.



Cellular kinetics after H. contortus infection

Vet. Res. (2010) 41:37

14
Mucosal 0.5 1 Mucosal Mast Cells
o 12 p : * *
o Eosinophils
8 10 0.4
=}
E 8 0.3 A
NE *
(gl 6 0.2 A
o 4
@ 0.1
8 2
0 0.0
0 1 2 3 5 7 28 0 1 2 3 5 7 28
1.04 Globule * 141 IgE+
* *
g Leukocytes . 12
g 0.8
10 A
NE 0.6 1 * *
IS 8 1
£ o4] N
IS4
0 | 4
= 02
o 2 |
0.0
0

0o 1 2 3 5 7 28
Days

0 1 2 3 5 7 28
Days
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mucosa of saline challenged (@) and L3 challenged (V) sensitized sheep, at various days post challenge.

* Indicates a significant difference (p < 0.05).

3.4. Adult worm burden

Adult worm counts measured at day 28 pc
showed 3 of the 4 immunized control sheep
(group 1) were negative, and one sheep had
four adult worms. The sensitized and L3 chal-
lenged sheep (group 2) had a small range of
adult worm burden, all of which were less than
200 worms per sheep, and the mean was signif-
icantly higher than that of group 1 (mean:
67.42; SD: 63.21). Group 3 (naive challenged)
which was used as an infection control group
(Tab. I), showed a significantly higher mean
(p <0.05) than that of either group 1 or 2
(mean: 850.0; SD: 865).

3.5. Cellular and parasitological correlations

The highest negative correlation between
worm burden and effector cells was observed

with the mucosal eosinophils on day 1 pc
(r=-0.7; p = 0.08).

To assess correlations between cell popula-
tions, measurements in the challenged group 2
were averaged over days 2, 3, 5 and 7 pc. There
was no correlation between MMC and GL but a
very strong positive correlation between muco-
sal eosinophils and GL (r = 0.81; p = 0.014).
The only other strong correlation was
between Y8 TCR' and WC1" cells (» = 0.86
p = 0.007). There was no consistent correlation
between peripheral and mucosal eosinophils.

4. DISCUSSION

This study provides a detailed examination
of cellular recruitment and kinetics of leuko-
cytes following challenge infection of immune
sheep. It is clear that an organized and very
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specific immune response has been stimulated
in this immune-challenge model which is
higher in magnitude and kinetics compared to
a primary infection response [2]. The present
study differs from previous studies that have
investigated the rapid rejection response medi-
ated by a type I hypersensitivity mechanism
[8, 15]. In these studies, sheep were repeatedly
infected with large doses of H. contortus and
T. colubriformis 13 larvae respectively, and
resistance to challenge infection was investi-
gated immediately following the sensitization
regime. This sensitization and challenge proto-
col results in rapid rejection and exclusion of
challenge larvae from their tissue niche, with
little leukocyte infiltration [7]. In contrast, a vig-
orous immune response was generated in the
present study suggesting that larvae are able
to penetrate the tissue sufficiently to stimulate
the immune system. It is likely that the rest per-
iod after sensitization in the present study
allowed the rapid exclusion process to wane,
as confirmed by the low numbers of globule
leukocytes and mast cells at the time of chal-
lenge. Sheep were however still protected from
the challenge infection as determined by their
low worm burden compared to unsensitized
control sheep. Previous studies using sequential
killing early after challenge were unable to
determine the resistance status of the sheep after
challenge [3].

The immune response in sensitized sheep
was characterized by a rapid rise in both PB
and mucosal eosinophil counts in response to
larval challenge. Eosinophils have been shown
to be able to kill H. contortus L3 larvae
in vitro [20] and to be intimately associated
with damaged L3 in vivo within 24 h of chal-
lenge infection [4]. In the present study, muco-
sal eosinophils were negatively correlated with
worm burden on day 1, consistent with their
role in parasite immunity through killing/dam-
age of infective larvae. Despite the concomitant
early rise of blood and tissue eosinophils, strong
correlations between these two related cell
populations was only apparent on 3/7 days
examined and not significant considering the
number of samples analysed. Previous studies
have also observed unpredictable correlations
between PB eosinophils and abomasal tissue
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eosinophils after GIN infection, both directly
and when the correlation is subjected to tempo-
ral off-setting [10, 22]. This lack of correlation
may explain the conflicting data regarding
eosinophils’ role in resistance when only blood
eosinophils or single time points are examined.

In the present study, significant increases in
globule leukocytes and mast cells were not evi-
dent until 3 to 7 days pc respectively. Consider-
ing the L3 moults into an L4 within 1-2 days
post infection [1], it is unlikely that these cell
populations are involved in the rejection of
incoming larvae in this infection model. How-
ever, it should be recognised that cell number
does not necessarily reflect cell function or
activity. Globule leukocytes are considered to
be derived from mucosal mast cells that migrate
into the epithelial compartment [11]. It was
therefore surprising that no positive correlations
were found between these 2 cell populations.
However, a strong positive correlation was
found between globule leukocytes and mucosal
eosinophils. This may indicate that the genera-
tion of globule leukocytes is dependent on the
same stimuli as eosinophils or on eosinophil-
derived factors.

CD4 T cells have been shown to be impor-
tant in both primary or challenge infection with
H. contortus [6, 16, 17, 19] and a significant
biphasic CD4" response after challenge infec-
tion of immune sheep was also observed in
the present study. The first peak at day 3 indi-
cates a memory response which is most likely
stimulated by the presence of H. contortus L3
larvae entering the abomasal crypts following
challenge, which was also seen in a previous
post-mortem study [3]. CD4 T cell numbers in
the present study appeared to wane following
this initial peak before increasing again when
an adult H. contortus infection has established.
These results are in agreement with previous
studies that have shown immunological
responses of both humoral and cellular origin
which peak at the time of presence of 7. colubri-
formis L3 larval and adult stages in the small
intestine [18, 23].

A clear biphasic response was also observed
with the 8 TCR " cells and the WC1 (T19)" sub-
population, indicating that these cells are also
most likely responding differentially to larval
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and adult H. contortus antigens. Interestingly,
although CD4 T cells are generally thought to
be responsible for eosinophilia through the pro-
duction of interleukin (IL)-5, both the ¥§ TCR*
populations and mucosal eosinophils increased
earlierby day 1 pc, atatime larval damage is evi-
dent [4]. It is possible that yd T cells may recruit
eosinophils early in larval infection, before the
increase in CD4 T cells. The involvement of
WCI1" v3 Tcells in eosinophil recruitment is sup-
ported by previous studies that showed that most
WC1 (T19)" cells present in the mucosa of sheep
infected with 7. colubriformis were strongly
positive for IL-5 [5].

Similar to the CD4 and yd T cells, the B cell
(CD45R ") response also follows a biphasic pat-
tern indicative of a memory response against
both larval and adult antigens. In contrast, total
leukocyte numbers remained elevated and the
IgE" cell population continued to increase
between days 5 and 28. Mucosal mast cells are
known to be IgE", but their number is too small
to account for the increase in IgE" cells and total
leukocytes. IgE producing B cells and plasma
cells have been previously observed in tissues
after infection with gastrointestinal nematodes
[19] and B cells are known to lose surface anti-
gens (including CD45R) upon differentiation
[13]. It is therefore likely that the large increase
in IgE" cells at days 5-28 pc, and the elevated
CD45" numbers on day 7 are due to differentia-
tion of B cells into IgE" plasma cells.

In contrast to previous studies showing
immune exclusion of challenge larvae in hyper-
sensitized sheep, a period of parasite free time
was introduced in the present experiment before
the final larval challenge. This rest period, which
can be compared to the non-infective period on
pasture, allowed the globule leukocyte/mast
cell-mediated hypersensitivity mechanism to
regress and an eosinophil dominated mechanism
to operate. The results of this study highlights
the need for careful consideration of the sensiti-
zation protocols used, as different mechanisms
of immunity may be operating against the same
parasite, as suggested previously [1]. The pres-
ent study also significantly extends the work
done by Balic et al. [3] by using sequential time
points in the same animal to investigate resistant
sheep following a larval challenge. This allowed

Vet. Res. (2010) 41:37

very early time points to be studied while still
being able to relate the findings to resistance
readouts such as total adult worm count. In addi-
tion, meaningful correlations between cell popu-
lations within the same animal could be derived,
providing a more complete picture of cellular
interactions at both peripheral and local sites,
and their correlation with the different stages
of parasite development.
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