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Abstract – Management of fulminant hepatic failure (FHF) continues to be one challenging problem, and
experimental animal models resembling its clinical conditions are still needed. Rabbit hemorrhagic disease
(RHD) fullfils many requirements of an animal model of FHF. This work investigated changes in MAPK,
NF-jB, AP-1 and STAT pathways during RHD-induced liver injury. Rabbits were infected with 2 · 104

hemagglutination units of an RHD virus isolate. Apoptosis was documented by the presence of caspase-3
activity and substantial PARP proteolysis at 36 and 48 h postinfection (pi). Infection induced a marked and
maintained expression of TNF-a from 12 h pi, while there was only a transitory increase in IL-6 expression.
Expression of phosphorylated (p)-JNK, p-p38 and p-ERK1/2 was significantly elevated at 12 h pi. At 48 h
pi p-JNK expression was maintained at a maximum level, while that of p-p38 returned to normality and
there was no p-ERK1/2 expression. Activation of NF-jB and AP-1 and increased expression of VCAM-1
and COX-2 were observed. No significant changes were detected in activation of STAT1 and STAT3, while
SOCS3 expression increased significantly. The current findings suggest that activation of JNK is an essential
component in liver injury mediated by the RHD virus and that lack of activation of STAT3, probably
mediated by SOCS3 over-expression, would contribute to the inhibition of the regenerative response. Data
show the presence of molecular mechanisms contributing to liver damage and the lack of regeneration and
they support the usefulness of this model to investigate novel therapeutical modalities in FHF.

rabbit hemorrhagic disease / fulminant hepatic failure / mitogen-activated protein kinase / nuclear
factor kappa B / signal transducer and activator of transcription

1. INTRODUCTION

Fulminant hepatic failure (FHF) is a severe
liver injury accompanied by hepatic encepha-
lopathy which causes multi-organ failure with
an extremely high mortality rate, even if inten-

sive care is provided. Management of severe
FHF continues to be one of the most challeng-
ing problems in clinical medicine [39]. Liver
transplantation has been shown to be the more
effective therapy, but the procedure is limited
by the increasing incidence of liver disease
due to immunosuppression requirement and
shortage of donor organs [18]. Although* Corresponding author: mjtung@unileon.es
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a number of clinical trials testing different liver
assisting devices are in progress [42], these sys-
tems alone have no significant effect on patient
survival and are only regarded as a useful
approach to bridge patients with FHF until liver
transplantation [48]. As a result, reproducible
experimental animal models resembling FHF
clinical conditions are still needed to improve
our insight into the metabolic and physiological
derangements of FHF and to facilitate the
development of new therapeutic modalities [3].

At present, the most commonly used surgi-
cal and chemical models possess significant
limitations and do not accurately reflect the pat-
tern of human disease in FHF. Moreover, viral
hepatitis remains an important cause of FHF
in many parts of the world, but the use of infec-
tive agents to induce experimental FHF have so
far had very limited success [3]. Rabbit hemor-
rhagic disease virus (RHDV) is a member of
the Caliciviridae family that causes in wild
and domestic rabbits an acute highly fatal dis-
ease that was first reported over two decades
ago [19]. The disease is characterized by severe
necrotizing hepatitis and disseminated intravas-
cular coagulation, neurologic symptoms and
rapid evolution to death within 48 to 72 h after
infection in about 90% of the cases [1]. Hepatic
damage plays a central pathogenic role and is
histologically similar to fatal viral hepatitis
causing FHF in humans [24]. We have shown
by data on animal survival, clinical features,
histological data, changes in blood chemistry
and intracranial pressure monitoring that RHD
fulfils many of the requirements of an animal
model for FHF [46, 47]. We have also reported
that in this model there is a loss in the oxidant/
antioxidant balance [35], and that apoptosis,
induced via both the intrinsic and the extrinsic
signaling pathways, is a constant feature in
experimentally infected rabbits [36]. This
model could therefore be useful to improve
our insight into the pathophysiology of viral
FHF and to facilitate the development and eval-
uation of new therapeutic modalities.

Viral infection causes the deregulation of
various host cellular pathways, some of which
reflect cellular response to infection, while oth-
ers are the result of viral modifications of cellu-
lar environments [14]. A common strategy that

a virus uses to facilitate its infection and replica-
tion is to exploit those altered cellular pathways,
which can also contribute to the pathogenesis
induced by viral infections [29]. Although the
exact significance still remains unknown, recent
reports have shown that several viruses, such as
human immunodeficiency virus type 1, human
cytomegalovirus, hepatitis B virus, herpes sim-
plex virus type 1, and others can induce the
activation of MAPK pathways in infected cells
[53]. Modulation of the redox-sensitive tran-
scription factors NF-jB and AP-1 have also
been reported following infection by the
Epstein-Barr virus, influenza virus or Kaposi’s
sarcoma-associated herpes virus [28] while the
role of STAT in antiviral responses and pathways
regulating apoptosis is well-known [5]. The aim
of the present study was to examine changes in
MAPK, NF-jB, AP-1 and STAT pathways
during RHDV-induced liver cell injury.

2. MATERIALS AND METHODS

2.1. Virus and experimental model

Nine-week-old male New Zealand white rabbits
were kept in a climatized room at 21 �C, with a
12 h light cycle. They were given a standard dry rab-
bit food and water ad libitum. Rabbits were injected
intramuscularly with 2 · 104 hemagglutination units
of an RHDV isolate [35, 46]. We have previously
reported that during experimental RHDV infection,
biochemical data (ALT, AST, bilirubin, coagulation
factor or Fisher index) change remarkably at 36–
48 h postinfection (pi), with a 10–15% survival rate
by 48 h pi [46]. We thus decided to study the effects
of infection on the hepatocyte signaling pathway by
sacrificing a group of control rabbits (n = 6) and
batches of infected animals at 12, 24, 36 and 48 h
pi (n = 6 each) [36]. The research was carried out
in accordance with the Declaration of Helsinki
(2000) of the World Medical Association. All study
protocols were reviewed and approved by the
University of Leon Animal Care Committee.

2.2. Blood chemistry

Laboratory determinations included ALT, AST,
and bilirubin. Analyses were carried out in the Hos-
pital of Leon Clinical Chemistry Laboratory using
standard techniques.
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2.3. Caspase-3 activity

Lysates were prepared by homogenizing liver tis-
sue in 0.25 mM sucrose, 1 mM EDTA, 10 mM Tris
and a protease inhibitor cocktail (Roche Diagnostics
GmbH, Mannheim, Germany). The lysates were then
centrifuged at 14 000 · g for 10 min at 4 �C, and
supernatants (50 lg protein) were incubated for 1 h
at 37 �C in HEPES buffer containing 100 lM con-
centrations of the specific fluorogenic substrate Ac-
DEVD-AMC. Cleavage of the caspase-3 substrate
was monitored at excitation wavelength of 360 nm
and emission wavelength of 460 nm, respectively
using a spectrofluorimeter (Hitachi F-2000 fluorime-
ter, Hitachi Ltd., Tokyo, Japan) [36]. Activity was
expressed as fluorescence units per milligram of pro-
tein per min of incubation. Protein content of samples
was quantified with the Bradford assay.

2.4. Nuclear extract isolation

Nuclear extracts were prepared from liver homog-
enates as described previously [21]. Briefly, 100 mg
of liver from control and RHDV-infected rabbits were
homogenized in 5 · 10�4 L of buffer A (0.01 M
Hepes-KOH pH 7.9; 250 g/L glycerol, 0.420 M
NaCl, 0.0015 M MgCl2, 2 · 10�4 M EDTA,
5 · 10�4 M DTT, 2 · 10�4 M PMSF) and a phos-
phatase inhibitor cocktail (Roche Diagnostics GmbH,
Mannheim, Germany) to disrupt extracellular matrix
and cellular membranes. Homogenates were centri-
fuged at 1 000 · g for 10 min at 4 �C. The pellet
was resuspended in 2.5 · 10�4 L of buffer B
(0.02 M NaCl Hepes-KOH pH 7.9, 250 g/L glycerol,
0.42 M NaCl, 15 · 10�4 M MgCl2, 2 · 10�4 M
EDTA, 5 · 10�4 M DTT, 2 · 10�4 M PMSF),
homogenized and incubated at 4 �C for 30 min. Cel-
lular debris was removed by centrifugation at
14 000 · g for 15 min at 4 �C. The supernatant frac-
tion containing DNA binding proteins was recol-
lected and stored at �80 �C in aliquots until use.

2.5. Western blot analysis

For Western blot analysis of TNF-a, IL-6, ERK1/
2, phospho-ERK1/2, p38, phospho-p38, JNK, phos-
pho-JNK, STAT1 and STAT3, liver tissue was
homogenized in 10 mM Tris buffer (pH 7.4) contain-
ing 100 mM NaCl and protease and phosphatase
inhibitor cocktails (Roche Diagnostics GmbH,
Mannheim, Germany) and centrifuged at
13 000 · g for 30 min [17]. Cleavage products of

PARP, p50, p65, phospho-STAT1 and phospho-
STAT3 were measured in nuclear extracts. Protein
concentration of the cytosolic and nuclear liver frac-
tions was measured by the Bradford assay. Equal
amounts of protein (25–50 lg) were separated by
10–12% sodium dodecyl sulphate-polyacrylamide
gel electrophoresis and transferred electrically to
polyvinyllidene difluoride membranes (Millipore,
Bedford, MA, USA). The membranes were then
blocked with 5% non-fat dry milk in Tris-buffered sal-
ine containing 0.05% Tween 20 (TBST) for 30 min at
37 �C and probed overnight at 4 �C with polyclonal
anti-TNF-a, IL-6, SOCS3, COX-2 (1:1000 Abcam,
Cambridge, UK), ERK1/2, phospho-ERK1/2, p65,
p50, VCAM-1, PARP (1:200 Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), p38, phospho-p38,
JNK1, phospho-JNK1, STAT1, phospho-STAT1,
STAT3 and phospho-STAT3 (1:1000 Cell Signaling
Technology, Danvers, MA, USA). Equal loading of
protein was demonstrated by probing the membranes
with a rabbit anti-b-actin polyclonal antibody (Sigma,
St. Louis, MO, USA; 1:1000). After washing with
TBST, the membranes were incubated for 1 h at room
temperature in TBST containing secondary antibody
(Dako, Glostrup, Denmark; 1:4000). The membranes
were briefly incubated with ECL detection reagent
(ECL; Amersham, Buckinghamshire, UK) to visualize
the proteins and then were exposed in a cassette for
5 min to an X-ray film (Hyperfilm ECL; Amersham
Pharmacia, Uppsala, Sweden) [11, 22]. The film was
then developed in 16% Ilford Phenisol developer solu-
tion and fixed in 16% IlfordHypam rapid fixer solution
(Ilford Imaging UK Ltd., Cheshire, England, UK).
Membranes were scanned with a CCD camera and
quantified using a Scion Image Software (version
4.0.3.2, Scion Corporation, Frederick, MD, USA).
The protein expression rates were normalized through
the corresponding expression rates of b-actin.

2.6. Electrophoretic mobility shift assay
(EMSA)

Activation of transcription factor NF-jB and AP-1
was examined using consensus oligonucleotides of
NF-jB (50-AGT TGA GGG GAC TTT CCC AGG
C-30) and AP-1 (50-CGC TTG ATG AGT CAG
CCG GAA-30) [6, 25]. Probes were labeled by T4
polynucleotide kinase. Binding reactions included
10 lg of nuclear protein in incubation buffer
(50 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM
EDTA, 5 mM mercaptoethanol, 20% glycerol and
1 lg poly(dI-dC)). After 15 min on ice, the labeled
oligonucleotide (30 000 cpm) was added and the
mixture was incubated 20 min at room temperature.
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For competition studies, 3.5 pmol of unlabeled NF-
jB oligonucleotide (competitor) or 3.5 pmol of
labeled NF-jB oligonucleotide mutate (non-competi-
tor) were mixed 15 min before the incubation with the
labeled oligonucleotide. The mixture was electropho-
resed through a 6% polyacrylamide gel for 90 min at
220 V. The gel was then dried and autoradiographed
at �70 �C overnight. Signals were densitometrically
analyzed in an imaging densitometer (Scion Image).

2.7. Statistical analysis

Means and S.D. were calculated for all data. Sig-
nificant differences between means were evaluated
by analysis of variance and in the case of significance
a Dunnett test was also applied. A difference was
considered significant when p was less than 0.05.
Calculations were performed with SPSS+ vrs. 14.0
statistical software (Chicago, IL, USA).

3. RESULTS

3.1. Blood chemistry changes in RHDV-infected
animals

In rabbits experimentally infected with
2 · 104 hemagglutination units of an RHDV
isolate, plasma AST activity and bilirubin con-
centration increased significantly from 24 h pi,
and ALT activity from 36 h pi when compared
to control animals (p < 0.05). Values reached a
maximum at 48 h pi (p < 0.05) (Tab. I).

3.2. RHDV-infected animals showed higher
rates of apoptosis

To determine the presence of apoptosis in
RHDV-infected animals, the activity of cas-
pase-3 was studied using the specific substrate
Ac-DEVD-AMC. Infection resulted in a
marked increase of caspase-3 activity at 36 h

(12.5 fold of control) and 48 h pi (12.6 fold)
(p < 0.05) (Fig. 1). Caspase-3 is primarily
responsible for the cleavage of PARP, a nuclear
enzyme that is catalytically activated by DNA
strand interruptions. As expected, substantial
PARP proteolysis was documented by the
appearance of a characteristic 85-kDa fragment
at 36 h (2.9 fold) and 48 h pi (3.7 fold)
(p < 0.05) (Fig. 1).

3.3. RHDV-infected animals exhibited increased
cytokine and MAPK expression

An increase in TNF-a expression occurred
early within 12 h pi (14.3 fold) and the values
remained markedly elevated until 48 h pi
(20.0 fold) (p < 0.05). Expression of IL-6 was
not modified until 24 h pi (1.8 fold)
(p < 0.05) and showed a much smaller
increase, returning to normal values by 36 h
pi (Fig. 2).

To confirm that MAPK activation occurred
in the liver of RHDV-infected rabbits, we
examined phosphorylation of ERK1/2, p38
and JNK by Western blot analysis. Densitomet-
ric analysis revealed that the relative level of p-
ERK1/2, p-p38 and p-JNK1 normalized to that
of b-actin was significantly enhanced beginning
at 12 h after RHDV infection (3.1, 1.2 and 2.1
fold, respectively). At 48 h pi, p-JNK expres-
sion was maintained at a maximal level (3.5
fold) while that of p-p38 returned to normal lev-
els and no expression of p-ERK1/2 was
detected (Fig. 3).

3.4. NF-jB and AP-1 were activated in RHDV-
infected animals

To confirm if activation of MAPK following
RHDV infection was associated to the activation

Table I. Blood biochemical changes in infected rabbits.

Control 12 h pi 24 h pi 36 h pi 48 h pi

ALT (IU/L) 79 ± 8 73 ± 9 72 ± 14 687 ± 207* 1668 ± 149*

AST (IU/L) 25 ± 4 23 ± 3 50 ± 20* 1010 ± 372* 3585 ± 1923*

Bilirubin (mg/dL) 0.46 ± 0.12 0.45 ± 0.34 0.98 ± 0.37* 1.29 ± 0.34* 2.03 ± 0.43*

Data represent the mean ± S.D. from 6 rabbits in each group.
*p < 0.05 Significantly different from control animals.
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of NF-jB and AP-1 pathways, nuclear trans-
location of both transcription factors was evalu-
ated by EMSA performed with NF-jB or AP-1
consensus nucleotide sequences. As shown in
Figure 4, gel shift experiments indicated that
RHDV infection induced a significant activation
of NF-jBat36 h (1.9 fold) and48 hpi (2.5 fold)
(p < 0.05). Activation of AP-1 was observed as
early as 12 h pi and increased progressively,
reaching a maximum at 36 h pi (1.8 fold).
Westernblot analysis of p50 and p65NF-jBsub-
units (Fig. 5) confirmed the increased transloca-
tion of this transcription factor to the cell nucleus.

Expression of the downstream targets of var-
ious transcription factors VCAM-1 and COX-2
was also examined by Western blot. Densito-
metric analysis indicated that expression

increased significantly from 12 h pi (1.3 fold
and 2.7 fold for VCAM-1 and COX-2 respec-
tively) and remained significantly elevated until
48 h pi (p < 0.05) (Fig. 6).

3.5. STAT and SOCS3 expression in RHDV-
infected animals

STAT are transcription factors with antiviral
properties which are involved in the regenera-
tive process during FHF. The expressions of
total and phosphorylated STAT1 and STAT3
were tested by Western blot analysis in liver
nuclear extracts. RHDV infection did not result
in nuclear STAT3 expression, while a transitory
increase in STAT1 (with no significant mean
change) was occasionally observed at 24 h
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Figure 1. Effect of RHDV infection on liver caspase-3 activity and expression of PARP. (A) Caspase-3
activity. (B) Western blot analysis for PARP. Upper panel: representative Western blots. Lower panel:
densitometric analysis. Values are means ± S.D. from 6 animals. *p < 0.05 significantly different from
control animals.
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and 36 h pi in some animals. Expression of the
endogenous inhibitor of STAT signaling
SOCS3 increased from 24 h pi (1.3 fold) and
remained significantly elevated at 36–48 h pi
(1.7 fold) (p < 0.05) (Fig. 7).

4. DISCUSSION

Inflammatory processes are the main cause
for the initiation of the host defense mecha-
nisms against disturbances of its physiological
homeostasis. The mediators responsible for
the acute phase response are predominantly
cytokines, including TNF-a, a pro-inflamma-
tory cytokine and a mediator of the acute phase
response that has been reported to be increased
in the serum of FHF patients [26]. In the liver of
mice and patients with FHF, liver cells express

high amounts of TNF-a and TNF receptor
(TNF-R), and a direct correlation has been dem-
onstrated with the number of apoptotic hepato-
cytes and the risk of death [40]. Moreover,
TNF-a induces massive apoptosis of hepato-
cytes in mice with GalN/LPS-induced FHF
[27, 33]. Thus, for TNF-a, over-expression
could be an important contributor to the induc-
tion of apoptosis by the RHDV infection. On
the contrary, processes dependent on IL-6, a
downstream hepatotrophic effector cytokine
induced by TNF-a, are mainly conferred to be
protective, and it is known that liver regenera-
tion is enhanced by a designer IL-6/soluble
IL-6 receptor fusion protein with superagonistic
IL-6 properties [9]. In our study, although IL-6
expression increased at 24 h pi, it returned to
normal by 36 and 48 h pi, periods in which
there was a marked activation of apoptosis.
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Figure 2. Effect of RHDV infection on liver expression of TNF-a and IL-6. Upper panel: representative
Western blots. Lower panel: densitometric analysis. Values are means ± S.D. from 6 animals. *p < 0.05
significantly different from control animals.
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MAPK are a family of serine/threonine
kinases with three major types in mammalian
cells, ERK1/2, p38 and JNK, which represent
a group of proteins involved in the signal trans-
duction of a variety of cellular stimuli [41].

ERK1/2 differs from the two other major
MAPK members by the lack of strong linkage
with induction of pro-inflammatory responses
but, rather, is thought to play a role regulating
proliferation, transformation and differentiation
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[16]. Moreover, in many cell types, whereas
ERK1/2 generally inhibits apoptotic processes,
JNK and p38 MAPK contribute to the induc-
tion of apoptosis [49]. JNK activation is known
to trigger apoptosis in response to environmen-

tal stress as well as inflammatory cytokines
such as TNF-a [13].

In RHDV-infected animals, p38 expression
increased at early periods but had normalized
by 24 h pi, while there was a sustained
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Figure 4. Effect of RHDV infection on nuclear factor NF-jB and AP-1 activation. Upper panel:
representative EMSA for NF-jB and AP-1. Specific binding was verified by addition of unlabeled
oligonucleotide (competitor, �) or labeled oligonucleotide mutate (non-competitor, +). Lower panel:
densitometric analysis. Values are means ± S.D. from 6 animals. *p < 0.05 significantly different from
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up-regulation of JNK. In hepatocyte apoptosis
induced by concanavalin A, a methionine-
and choline-deficient diet, or D-galactosamine/
lipopolysaccharide, JNK has been shown to
play a critical role [37]. JNK activity is required
for the mitochondrial damage-mediated activa-
tion of cell death effectors, including caspase-
9 and caspase-3, and it modulates some Bcl-2
family proteins on multiple levels [43]. It is also
known that transient JNK activation leads
to cell proliferation and is required for liver
regeneration [38], whereas sustained JNK pro-
motes cell death [20]. In our animal model
apoptotic damage was associated to a main-
tained JNK activation, which thus appeared to
play a key role in the cell response to infection.

Although it should be emphasized that sig-
nal transduction mechanisms are generally
cross-regulated in an intricate network [2], both
p38 and JNK phosphorylation have been

related to NF-jB and AP-1 activation partly
by converging pathways [8]. The activation of
JNK is essential for the up-regulation of
AP-1-dependent genes induced by viruses in
various cell types. It is also known that viral
infection may induce NF-jB transcriptional
activity through activation of JNK and p38
[45]. Activation of MAPK could thus contrib-
ute to the increased nuclear translocation of
both transcription factors to the nucleus.
NF-jB is a hallmark of most infections by viral
pathogens, mediating expression of many pro-
inflammatory or antiviral genes, and has been
involved in adhesion molecule gene expression
at the transcriptional level [45]. AP-1 is also
activated during infection and regulates the
expression of a large variety of genes including
those involved in the inflammatory response
[4]. In our study, the expression of the adhesion
molecule VCAM-1 and the enzyme COX-2,
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both contributing to liver injury in FHF [12,
51], were up-regulated in RHDV-infected rab-
bits. The effects on these downstream targets
could be accounted for, at least partially, by
the activation of NF-jB and/or AP-1.

In FHF, the regenerative response is essential
for the full functional recovery of the liver and
for patient survival, and the expression of genes
does not lead to DNA replication unless the
cells can progress through the cell cycle. This
is dependent on the balance between stimula-
tory factors released as part of the regenerative
response and inhibitory substances [34]. Mem-
bers of the STAT family have been reported to
be involved in regeneration and to play a key
role in antiviral defense. Thus, STAT1, when
phosphorylated, forms heterodimers, which
then translocate into the nucleus to activate
the transcription of many target genes, includ-
ing several antiviral proteins [32]. The essential

role of STAT1 in the antiviral and antitumor
activity of INF-a/b has been clearly demon-
strated in STAT1-deficient mice [23]. It is
known that STAT1 is activated in several mod-
els of acute liver injury, including Concanavalin
A-induced hepatitis and LPS/D-galactosamine-
induced liver damage [15]. In the liver, STAT3,
mainly activated by IL-6, has been shown to
play key roles in acute phase response, protec-
tion against liver injury and promotion of liver
regeneration [10]. Lethality following partial
hepatectomy in TNF-R1 knock out mice is
reversed by administration of IL-6 and associ-
ated activation of STAT3 [52]. Several STAT3
downstream genes have been identified as
important factors contributing to the hepatopro-
tective and hepatomitogenic effect of IL-6/
STAT3 [44]. Activation of STAT3 has also been
implicated in INF-a-mediated antiviral activity
in hepatitis C virus replicon cell line [54]. Data
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from the present research indicate that a transi-
tory STAT1 activation was occasionally
observed, but STAT3 was not significantly acti-
vated in RHVD-infected rabbits, an effect
which could contribute to the lack of regenera-
tive response detected in those animals [35].

Blocking the function of STAT proteins has
evolved as a common mechanism for pathogen
immune evasion, and numerous viruses, includ-
ing hepatitis C virus, paramixoviruses or coro-
naviruses have developed mechanisms to
circumvent the host defense by inhibiting host
signalling and by disrupting the cross-talk
between the MAPK and STAT pathways [7].

One of these mechanisms involves a suppressor
of cytokine signaling (SOCS) proteins. It is
known that virus titres are reduced in SOCS3
deficient cells or in cells where SOCS3 expres-
sion is knocked-down by siRNA [30]. More-
over, it has been reported that the level of
induction of SOCS3 by HSV-1 seems to deter-
mine whether infection turns to acute or persis-
tent progression. In addition, it has been
suggested that SOCS3 up-regulation may con-
tribute to the non-responsiveness of HCV
patients to IFN therapy [31]. The effects medi-
ated by SOCS are related to the fact that these
molecules are potent endogenous inhibitors of
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STAT signaling. Thus, it has been reported that
targeted deletion of SCOS3 in macrophages
results in markedly enhanced IL-6-induced
STAT3 activation, and that over-expression of
SOCS3 in human hepatoma HepG2 cells sup-
presses IFN-a-induced STAT1/3 activation
and gene expression of the antiviral proteins
[50]. Although other mechanisms could be
involved, the fact that SOCS3 was over-
expressed in infected rabbits most probably
contributed to the inhibition of STAT1/3 expres-
sion and therapeutic strategies to block SOCS
could be of interest to prevent liver damage
and to increase survival in FHF of viral origin.

In conclusion, the results obtained indicate
that RHDV infection is a complicated biologi-
cal process that modulates diverse cellular path-
ways. The current findings suggest that
the activation of JNK is an essential component
in RHDV mediated liver injury, and that there
is an activation of NF-jB and AP-1 pathways,
with up-regulation of downstream targets
such as VCAM-1 or COX-2. Lack of STAT3
activation, probably mediated by SOCS3
over-expression, would have contributed to
the inhibition of the regenerative response. Data
obtained from this animal model confirm the
presence of molecular mechanisms contributing
to liver damage and lack of regeneration and
support its usefulness in the investigation of
potential novel therapeutical modalities in FHF.
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