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Abstract – Chlamydophila abortus is the aetiological agent of ovine enzootic abortion. Sequencing,
annotation and comparative analysis of the genome of C. abortus strain S26/3 has revealed variation in the
loci encoding the polymorphic membrane proteins (Pmps). These Pmps resemble autotransporter proteins of
the type V secretion system, suggesting an important role in chlamydial pathogenesis. The purpose of this
study was to characterise the transcriptional expression patterns of this family during the developmental
cycle of C. abortus. McCoy cells were infected with C. abortus and analysed for pmp mRNA expression
over a 72 h period. Few pmp transcripts were detected in the early stages of the developmental cycle. Peak
expression occurred at 48 h post-infection (p.i.) other than for pmp5E, where it was observed at 24 h p.i.
Overall, expression of pmps 5E, 18D and 10G were found to be 40 to 100-fold higher than the lowest
expressing pmps (6H, 13G and 15G) at 24 h p.i., while pmps 18D and 17G were 14 to 16-fold higher than
the lowest (11G, 14G and 15G) at 48 h. Levels of expression for all the other pmp genes were below one
copy per genome at any time point. The expression of all the pmps reduced to near base-line levels by 60 h
p.i. These results demonstrate that pmp expression in C. abortus is mid to late cycle, consistent with
conversion of the reticulate body to the elementary body. The low level of pmp transcription may be
indicative of heterogeneity in expression, suggesting a possible role for some of the Pmps in antigenic
variation and chlamydial pathogenesis.

Chlamydophila abortus / pmp / gene expression / antigenic variation

1. INTRODUCTION

Chlamydophila abortus is the aetiological
agent of ovine enzootic abortion (OEA), the
single most common infectious cause of ovine
abortion in the United Kindgom [1]. It is also
a major cause of lamb mortality throughout
Europe and is endemic in most sheep-rearing
areas of the world. In addition C. abortus is

zoonotic and poses a potential risk to the health
of pregnant women [16]. In common with other
members of the Chlamydiaecae, C. abortus is a
Gram-negative obligate intracellular pathogen
that undergoes a biphasic life-cycle. The infec-
tious form of the organism, the elementary
body (EB), enters the host cell where it resides
within a vacuole known as an inclusion. Within
this inclusion the EB undergoes conversion to
the metabolically active reticulate body (RB),
which replicates through binary fission.
Between 48 and 72 h following infection the
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RB re-condense to EB and at the end of the
cycle the inclusion and host cell are lysed
releasing infectious organisms that infect neigh-
bouring cells [16].

Sequencing, annotation and comparative
analysis of the genome of C. abortus strain
S26/3 has revealed variation in the loci encoding
a family of outer membrane proteins known as
polymorphic membrane proteins or Pmps [31],
which were originally identified through their
immuno-reactivity with convalescent sheep sera
obtained fromaborted ewes [14, 15]. The expres-
sion of Pmps is not restricted to C. abortus and
pmp genes have been identified in all pathogenic
chlamydial species sequenced to date [2, 23, 24,
27, 31]. Whilst all sequenced Chlamydiaceae
species possess pmp genes, there is widespread
heterogeneity in the array of the genes carried
by each species. While C. trachomatis and the
closely related C. muridarum genomes encode
9 pmp genes (termed A-I), C. pneumoniae,
C. abortus, C. caviae and C. felis genomes
encode 21, 18, 17 and 20 pmps, respectively.
These Pmps resemble autotransporter proteins
(AT) of the type V secretion system in which
the gene encodes a single precursor containing
three functional domains, an N-terminal signal
sequence, a passenger (effector) and a carboxy-
terminal b-barrel translocator domain [11]. In
silico analyses of the Pmps have identified
homology with several proteobacterial virulence
factors secreted via the TypeV secretion appara-
tus, including the Escherichia coli adhesin
AIDA-I [10]. Indeed a role in bacterial adhesion
has been ascribed to PmpD [33] and yet whilst
little else is understood about the functions of
the Pmps it has also been suggested through
genetic comparisons of C. trachomatis strains
that they may play important roles in chlamydial
pathogenesis [28] and niche specificity [7, 21].
Immunologically phase-variation in the expres-
sion of the Pmps through slip-strand slippage
may play a role in the evasion of host immune
responses [22, 31]. In terms of their importance
to the host immune response to chlamydial infec-
tion, Pmps induce both antigen-specific T cell
responses [8, 26], essential in the clearance of
primary infection [5] and specific humoral
responses [12, 15] making them potential vac-
cine [17] and diagnostic candidates [25].

Little is known about the regulation or func-
tion of the Pmps in C. abortus and in Chlamydia
generally. Given the potential importance of the
Pmps in the virulence and pathogenesis of
C. abortus and their potential in the develop-
ment of vaccine and diagnostic reagents, the
purpose of this study was to further characterise
this important protein family by studying their
expression during the developmental cycle
through transcriptomic analysis.

2. MATERIALS AND METHODS

2.1. Cell culture and C. abortus propagation

McCoy cells were grown in RPMI1640 medium
supplemented with 5% heat inactivated fetal calf
serum. HEp2 cells used for the propagation and titra-
tion of C. abortus stocks were routinely grown in
Iscove’s Modified Dulbecco’s Medium (Invitrogen,
Paisley, UK) supplemented with 10% heat inacti-
vated fetal calf serum (PAA Laboratories Ltd, Yeovil,
Somerset, UK).

2.2. Infection of cells and nucleic acid extraction

The C. abortus strain S26/3 was grown in HEp2
cells and titrated according to a previously published
protocol [9]. To investigate the in vitro expression of
pmps in C. abortus, McCoy cells were grown to sub-
confluence in T25 tissue culture flasks (Corning
Costar, High Wycombe, UK). Duplicate flasks were
infected with C. abortus at an estimated multiplicity
of infection (MOI) of two in infection medium
consisting of RPMI 1640 containing 2% FCS and
1 lg/mL cycloheximide (Sigma Aldrich, Dorset,
UK). After 2 h, the medium was removed and
replaced with fresh infection medium. At 6, 12, 24,
36, 48, 60 and 72 h post-infection (p.i.) total DNA
and RNA were isolated from paired flasks using
DNeasy� and RNeasy+� mini kits (Qiagen, Crawley,
West Sussex, UK). Experiments were conducted on
three separate occasions.

2.3. Nucleic acid quantitation and reverse-
transcription (RT)

DNA and RNA concentrations were quantified at
260 nm using a nanodrop ND-1-1000 spectropho-
tometer (ThermoFisher Scientific, Loughborough,
Leicestershire, UK) and the quality of total RNA
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was assessed on an Agilent 2100 Bioanalyzer
(Agilent, West Lothian, UK) prior to reverse tran-
scription using an Omniscript� RT Kit (Qiagen)
and random primers (Invitrogen).

2.4. Generation of plasmids for standard curves

Unique regions of each of the pmp genes were
amplified by PCR using specific primers (Tab. I) and
an Expand Long-Template PCR kit (Roche Diagnos-
tics, Burgess Hill, UK). PCR products were purified
using the QIAquick� gel extraction kit (Qiagen) prior
to cloning into the appropriate vector. Purified 16S, 5E
and omp1 PCR products were cloned into pGEM�-T
Easy (Promega, Southampton, Hampshire, UK) the
remaining pmp products had been previously cloned
into the pET30-Ek/Lic vector (Merck chemicals Ltd.
Nottingham, UK). Plasmids were either transformed
into NovaBlue (Merck chemicals Ltd; pET30-Ek/Lic
constructs) or JM109 (Promega; pGEM�-T Easy
constructs) competent E. coli cells according to
standard procedures, and transformants were selected
on the basis of appropriate antibiotic resistance.
Colonies were selected for overnight culture and
plasmids were purified using the QIAprep� spin mini-
prep kit (Qiagen). The presence of correct sequences
was verified by sequencing on a MegaBACETM-500
capillary DNA sequencer using DYEnamicTM ET
Dye Terminator technology (GE Healthcare, Little
Chalfont, Bucks, UK).

2.5. Real-time polymerase chain reaction
(qPCR)

Unique primers and probes were designed for each
of 15 pmps and 16S rRNA genes (Tab. II) using Pri-
mer Express v2.0 (Applied Biosystems, Warrington,
Lancashire, UK). Real-time PCR protocols for
quantitation of both omp1 [13] and C. abortus gen-
omes [4] have been previously described. Assays
were set up using TaqMan� Universal PCR Master
Mix and run on an ABI PRISM 7000 Sequence
Detection System (Applied Biosystems) according
to standard procedures. In all RNA determinations,
both forward and reverse primers were used at
900 nM and probe at 250 nM final concentration.
Samples were analyzed in triplicate either with
1 lL eluted DNA (for genome determination) or
5 ng RNA from each time point. For quantitation,
relevant standard curves were also included on each
plate. The number of mean copies per well were cal-
culated against standard curves (108–102) derived
either from purified genomic DNA (to determine
number of C. abortus genome copies) as previously

described [13] or from plasmid (to determine tran-
script levels) for each relevant assay. Total numbers
of recoverable genomes and transcripts were calcu-
lated per flask and transcripts were normalised
against genomes for each time point from the dupli-
cate flasks.

2.6. Statistics

Data were analysed by ANOVA (Genstat version
7 statistical package) using Fisher’s least significant
difference test to separate the means at both the 5%
and 1% probability levels.

3. RESULTS

3.1. RNA profiles

Total RNA was prepared from C. abortus
infected McCoy cells at 6, 12, 24, 36, 48, 60
and 72 h p.i. Figure 1 shows typical RNA pro-
files for two of the time points, 24 and 48 h p.i.
Between 0 and 36 h there was little observed
prokaryotic ribosomal RNA visible, however
the eukaryotic RNA was intact. At 48 h there
was a substantial increase in the levels of pro-
karyotic RNA observed and this coincided with
a reduction in the levels of host RNA which
was visible as a decrease in the overall intensity
of the signals produced on the electrophero-
gram. Post 48 h (60 and 72 h) during which
time there was significant levels of cell lysis
there was an abrupt decrease in the levels of
both eukaryotic and prokaryotic RNA.

3.2. Expression of 16S rRNA and omp1
transcripts

As an initial step in the analysis of the pmps,
the expression of 16S rRNA and omp1, both of
which are considered to be constitutively
expressed throughout the chlamydial develop-
mental cycle, was determined and normalized
relative to that of chlamydial genome number
(Fig. 2). At the earliest time-points of 6 and
12 h p.i. there was negligible expression of
the16S rRNA gene (Fig. 2A). There was a sig-
nificant rise above the base-line levels of 16S
between 12 and 24 h p.i. (p < 0.05), which
continued to increase at 36 h (p < 0.01 above
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Table I. Primers used to clone pmp plasmid standards used in RT-PCR.

Gene Forward primer (50-30)* Reverse primer (50-30)* Amplicon
size (bp)

pmp1B GACGACGACAAGATCTCGATTACAGTATTTGGAGAAC GAGGAGAAGCCCGGTTTAGAATATCATACGTGCGCCGCAGTTAG 5351
pmp2A GACGACGACAAGATTTCACTCGCACCACTGACTC GAGGAGAAGCCCGGTTTAGAAACTTAGAGATATACCACC 2792
pmp3E GACGACGACAAGATTTTTACCTCTATTCTCGGAAGCC GAGGAGAAGCCCGGTCTAAAAAATTAACGAGCTCCCTGC 2937
pmp4E GACGACGACAAGATCGAACTCATTTGCCTTGCTAAG GAGGAGAAGCCCGGTCTAAAATTGTAATTCACTTG 2807
pmp5E ATAAGACCTGAGAAAACGATATGAAATCCAC AGTTGCTAGAGAGTTTAGAAGGAAAGTTTGCCCCCAG 1114
pmp6H GACGACGACAAGATTTGCTTATGCAGCTCGGGGTGG GAGGAGAAGCCCGGTTTAGAATGTGCCTTGCAAGCCTGTGATG 2930
pmp7G GACGACGACAAGATTAACGGCGACCTTAGAGAGATGTTTC GAGGAGAAGCCCGGTTTAGAATCGAAATTTACTTCCTAC 3002
pmp10G GACGACGACAAGATTGACGGCTCTACAGGGACC GAGGAGAAGCCCGGTTTAACGAAGTTCGCCATTGCCTGA 2408
pmp11G GACGACGACAAGATTCTGGCAACTGGATTCAACGGC GAGGAGAAGCCCCGGTTTAAAAATGCACCCTGCTG 2495
pmp13G GACGACGACAAGATCACGAACAGTGAGCCATTCAATC GAGGAGAAGCCCGGTTTAGAAGCCAAATTGACTGAAGAGC 2399
pmp14G GACGACGACAAGATCGACGCAAACGGAGCATTCAG GAGGAGAAGCCCGGTTTAGAATGCGACCTTAGCG 2699
pmp15G GACGACGACAAGATAAGCTCTAGCGATAATTACGATGG GAGGAGAAGCCCGGTTTAGAATTTGTATCTACCC 4110
pmp16G GACGACGACAAGATCTCCTATGCAGGCAAAGATTCTCC GAGGAGAAGCCCGGTTTACAAGCCAAATTGACTGAAGAGC 2321
pmp17G GACGACGACAAGATCTCCTTTGCAGGGAAAGATTCAGG GAGGAGAAGCCCGGTTTAGGTTCGTGAAGATCCCCTGAGC 2324
pmp18D GACGACGACAAGATGTCTACATTTTCTCACTCCG GAGGAGAAGCCCGGTTTAGAAGATCAAGCGCATACCACAATTC 4598
omp1 CATATGCCTGTAGGGAACCCAGCTGAACC GGGCGAATTCTTATGCGAATGGAT 1245
16S GGCGGCGTGGATGAGGC GAGTGTACTCCTCAGGCGGCA 868

* For constructs cloned into pET30-Ek/Lic vector: forward primers contain 50-GACGACGACAAGAT-30; and reverse primers contain 50-GAG
GAGAAGCCCGGT-30.
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Table II. Real-time PCR primers and probes.

Gene Forward primer (50-30) Reverse primer (50-30) Taqman probe (50-30) Amplicon
size (bp)

Pmp1B GCTACAGAGGATCGGGATTAAGTG TCCGCTTGCATCTTGTGTTTG TTCAGATTCTGCATCAAAGAATTTCACGCA 77
pmp2A TTTAGCGAAAACTCCGCAGAA AATGGGCTGGGAAGCTATAAGG CGGTGGAGCTATAACCGCGAGCAG 74
pmp3E GGTGGCCAAGGCTTGGT CGGAATCCTGGCACACCTA ACGGCTATCCACCAAGCGAATCGC 61
pmp4E AGGATACATTCCCAACCCCATA TAGGCGGCTTGCCAAAGA ATCGTGGAGATCTTGTGGCTAATG 65
pmp5E TCCGTCACTTTGGGAATTAGAAG TCCGTCACTTTGGGAATTAGAAG TGCGTATAAACCTAACGCCGTCCGAA 74
pmp6H TGCCTCATGCAATATCGAAAAT GCCGCAAGCAGCAAAGTT ACTCTGCGGCTATCTCGTTTTCT 66
pmp7G TGCTGCTGAGGTAAGTAGCGTTA GCTATTCGCTTGATTGGTTACAGA CGTCGACTGCAGCTACTGCGGC 72
pmp10G GCCAACCACTCCTTAATATTTGAAGA TGGTTTTGCCATCCGTATTTG ATCGTCTCTACAGCTCAAGGAGCTGCTATCAG 81
pmp11G TGCCTTATCCACTGCTACCAAA GGAGCCGTTGAATCCAGTTG TTCTTGCAGATGCCGACTCTGTCAACC 72
pmp13G TCTTTAATCCTTAAAGATGGTGTCACTCT CGTAGTCCCTAGGTCCATGACAA AAATCCTTCACGCAAACAGAGGGCG 89
pmp14G GGAGCATTCAGTCCGCAATC TCTACAATAGAAATATCACTCTCGACGTT ACAAGCACTGCGGGAGGAACGATTT 76
pmp15G CCCTTATCTTTCACCGCATCA TCGGTGGTGTTTTGGTTTCA CGGATGTTGCCAATGAGCATGGC 75
pmp16G CTCAATGCTAAAGAAGGTTTTGGTATT GAGAAGACGATCTTTCCTGTATAAGTAGTG TCTTTTATGACCCTATCGCTAACACAGGAGGATC 124
pmp17G GGCACAGGGAAATTTACAAAGC CTCCCCCAGTAATAGGGTCATAGA ACGTGCTAAAGACGGCTTCGGAATTTTC 75
pmp18D TCCACTGGGATGATCACCAATA GCATAGAAAGCGTATCGAGAATCAC TGATAAATTATATGGTTATGTACCAGCTTC 81
omp1 GCGGCATTCAACCTCGTT CCTTGAGTGATGCCTACATTGG TGTTAAAGGATCCTCCATAGCAGCTGATCAG 85
16S AATCTTTCGCAATGGACGAAA ACAACCCTAGAGCCTTCATCACA TCTGACGAAGCAACGCCGCG 66
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baseline) and peaking at 48 h p.i. (p < 0.01).
After 48 h there was a dramatic fall in 16S
rRNA transcript levels, which were not signifi-
cantly different from baseline levels.

The pattern of omp1 mRNA expression was
similar to that of 16S (Fig. 2B). Levels of trasn-
scripts were negligible at both 6 and 12 h p.i.
Between 12 and 36 h p.i. there was a significant
increase in the transcript levels (p < 0.05). Lev-

els again increased to peak at 48 h (p < 0.01)
before decreasing to near base-line levels by
60 h.

3.3. Expression of pmp transcripts

Prior to determining relative pmp mRNA
expression levels, each of the designed pmp
primer/probe sets (Tab. I) was tested for

Figure 1. Electropherograms of total RNA isolated from C. abortus-infected McCoy cells at two time
points in the chlamydial developmental cycle. The presence of both eukaryotic (28S, 18S, 5S) and
prokaryotic (chlamydial) (23S, 16S, 5S) RNA is indicated at 24 h p.i. (A) and 48 h p.i. (B).
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cross-reactivity against all 15 cloned plasmid
DNA. No cross reactivity was observed with
any of the primer/probe sets, each being specific
for the relevant plasmid DNA. The results of
the real-time PCR assays on the RT reaction
mixes for each of the 15 pmp genes, relative
to total genome copies at each of the time points
in the chlamydial developmental cycle, are
shown in Figure 3. No significant pmp gene
expression was observed at either the 6 or
12 h time points. Several pmp genes had a sta-
tistically significant increase in expression at
24 h, specifically 2A (p < 0.05), 10G

(p < 0.05), 11G (p < 0.05) and 5E (p < 0.01).
However, only pmp5E exhibited peak expres-
sion at this time point, with its expression
decreasing throughout the remaining period of
the cycle. In contrast, expression of 2A, 10G
and 11G continued to stay elevated albeit at a
relatively low level until 48 h, after which
expression decreased. For pmp18D expression
at 24 h was much greater than for all other
pmps, other than pmp5E, and continued to
increase until 48 h p.i. Maximum expression
was observed for all pmps, other than pmp5E,
at 48 h p.i. (p < 0.05). As observed for both

Figure 2. Transcriptional expression of C. abortus 16S rRNA (A) and omp1 (B) RNA. Cells were infected
with C. abortus (MOI 2). RNA and DNA were harvested between 6 and 72 h p.i. RNA transcript levels
were analyzed by reverse transcription quantitative PCR and normalized against numbers of chlamydial
genomes (see Materials and Methods). ± SEM of three independent experiments (see Materials and
Methods). * p < 0.05 above baseline levels.
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16S and omp1, the expression of all the pmps
reduced to near base-line levels at the 60 h
time-point and remained low at 72 h. Interest-
ingly, throughout the developmental cycle, tran-
script levels for all pmps other than pmp5E,

pmp16G, pmp17G and pmp18D, were deter-
mined to be below one transcript per genome.
Overall, expression of pmps 5E, 18D and 10G
were found to be 40 to 100-fold higher than
the lowest expressing pmps (6H, 13G and

Figure 3. Transcriptional expression ofC. abortus pmpmRNA. Cells were infected withC. abortus (MOI 2).
RNA and DNAwere harvested between 6 and 72 h p.i. RNA levels were analyzed by reverse transcription
quantitative PCR and normalized against numbers of chlamydial genomes (see Materials and Methods). For
clarity pmp results have been divided into panels A and B. Panel A depicts non-pmpG family members, while
panel B depicts pmpG family members. Results are presented as the mean transcript levels normalized against
genome copy number ± SEM of three independent experiments (see Materials and Methods). * p < 0.05
above baseline levels.
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15G) at 24 h p.i., while pmps 18D and 17G
were 14 to 16-fold higher than the lowest
(11G, 14G and 15G) at 48 h.

4. DISCUSSION

This study has demonstrated the transcrip-
tional expression of 15 pmp genes. Although
18 genes were identified from the sequencing
of the C. abortus genome [31], one was a dupli-
cate (pmp12G) of pmp17G, while another two
(pmp8G and pmp9G) had unrecoverable frame-
shifts, and so were not included in this study.
Transcripts for all 15 pmp genes were analysed
at different stages in the chlamydial developmen-
tal cycle: defined as early (0–12 h p.i.); mid to
late cycle (during the end phase of the growth
and multiplication of RB) (12–24 h p.i.); late
(terminal differentiation of RB to EB) (24–48 h
p.i.); and end of cycle (48–72 h p.i.).

Few pmp transcripts were detected in the
early stages of the developmental cycle. Indeed
the level of transcripts for the majority of the
pmp genes was very low (less than 1 copy
per genome). This could be due to the asyn-
chronicity of the developmental cycle, although
this was kept to a minimum by ensuring a low
passage level. It is also highly probable that
across the population of C. abortus there will
be considerable variation in the levels of Pmp
expression in individual cells and across the
population of cells, which could play an impor-
tant role in contributing towards antigenic vari-
ation. In addition, although McCoy cells are
widely used for the growth of C. abortus, this
organism can infect a wide variety of other cell
types in which a different expression profile
may have been observed. This will require fur-
ther investigations, as well as to determine com-
parative protein expression patterns.

Based upon the premise that 16S rRNA tran-
scripts are constitutively expressed throughout
the cycle, other studies have used this against
which to normalise their gene of interest [18,
20]. In those studies fixed concentrations of
chlamydial RNAwere used in the final analyses
and it is highly probable that ribosomal RNA
does make up a stable component of the chla-
mydial RNA pool. Whilst this approach illus-

trates comparative differences in transcript
levels of particular genes of interest within a
fixed pool of RNA at a particular time point,
it is more difficult to compare transcript levels
across time points due to fluctuations in the lev-
els of total RNA and 16S rRNA. The method-
ology adopted in this study, where both DNA
and RNAwere isolated from duplicate cultures,
allowed the direct determination of transcript
numbers relative to the number of organisms
present (as determined by genome copy num-
ber). The results clearly demonstrate that 16S
rRNA transcript levels vary throughout the
cycle, increasing to around 48 h and thereafter
falling back to low levels reflecting conversion
of the RB to EB and consequential reduction in
metabolic activity.

All pmps demonstrated a peak in transcript
levels during the mid to late cycle (24–48 h
p.i.). These results are in agreement with previ-
ous studies carried out at both the proteomic
[29, 30, 32] and transcriptomic levels [19]
for other chlamydial species (C. trachomatis,
C. psittaci and C. pneumoniae). The function(s)
of the Pmps remains to be elucidated however it
is attractive to speculate that the relatively late
timing of their mRNA expression is consistent
with their presence in either the infectious EB
or their requirement in part of the differentiation
process, and so potential roles in adhesion, anti-
genic variation and immune evasion.

Whilst transcript levels of several pmps were
significantly up-regulated by 24 h the level of
expression of pmp5E at this point was most dra-
matic. The structure of this particular Pmp is
divergent from the other family members in that
the protein consists of only a beta-barrel and
autochaperone domain and no apparent passen-
ger domain (effector protein). Given the lack of
a passenger domain it has been hypothesised
that pmp5E represents an orphan gene [31].
However, in the closely related C. caviae
sequence there is also a pmpE/F gene encoding
a truncated Pmp [24]. It is plausible that the
truncated Pmp5E may fulfil an as yet undefined
role in chlamydial development and could
hypothetically function as part of a two-partner
secretion system with a yet to be identified part-
ner or could also act as a porin rather than as a
classical autotransporter.
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The original characterised Pmp proteins
identified in C. abortus were those now termed
Pmp12/17G (Pomp90A/B), Pmp13G (Pomp91A)
and Pmp16G (Pomp91B) [15]. Pmps 12/17G
and 16G were identified as being highly
expressed through their immunogenicity with
convalescent sheep serum [14] and shown to
be highly immunodominant components of a
protective chlamydial outer membrane protein
preparation [15]. This is consistent with the ele-
vated levels of transcriptional expression
observed for pmps 12/17G and 16G, relative to
the other pmps (with the exception of pmp18D).
Interestingly, Pmp16G was identified in the
recently publishedC. abortus genome as a pseu-
dogene by virtue of a frame-shift in a centrally
located polyguanine tract [31], while no such
frame-shift was observed when originally identi-
fied through expression analysis and sequencing
[15]. Indeed, Pmp16G has also been reported to
be expressed as a full length protein following
2-dimensional gel electrophoresis of whole
C. abortus EB preparations [6]. In this current
study, while we have demonstrated the expres-
sion of pmp16G transcripts we have not exam-
ined whether any of them contain a frame-shift
mutation that would result in a truncated protein.
Phase-variation of protein expression has been
observed in the pmp genes of other chlamydial
species containing homopolymeric tracts [22]
and so could also be a mechanism bywhich they
contribute to antigenic variation.

In comparison with omp1, the expression of
each of the pmps was very low (up to 450-fold
at 48 h). However in comparison to the other
pmps the expression of pmp18D was relatively
high from mid to late in the cycle. PmpD is the
most highly conserved of all the Pmps at both
the DNA and amino acid level across the
Chlamydiaceae and perhaps this level of con-
servation combined with the relatively high
abundance of transcripts may point to an essen-
tial role in the chlamydial developmental cycle.
A putative role for PmpD in the adhesion of
Chlamydia to host cells has been hypothesised,
as antibodies directed against the N-terminal
domain have been at least partially successful
in inhibiting the in vitro infection of both
C. pneumoniae [33] and C. trachomatis [3].
However, the expression of this gene earlier

in the cycle would perhaps suggest an addi-
tional role for this protein during the late
replicative/early differentiation phase.

The results presented in this study represent
the most extensive transcriptional characterisa-
tion of the C. abortus pmps during the develop-
mental cycle. The data indicates that most of
the Pmps are expressed during the later stages
of the cycle and thus are likely to play important
roles in either the RB or the conversion of RB to
EB and that the low level of expression may be
indicative of a mechanism of antigenic variation.
Whilst this is an important step forward in our
understanding of the regulation of pmp gene
expression in C. abortus it will be important to
follow up these analyses with further studies
aimed at investigating protein expression.
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