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Abstract – The majority of intramammary infections with Escherichia coli in dairy cows result in transient
infections with duration of about 10 days or less, although more persistent infections (2 months or longer)
have been identified. We apply a mathematical model to explore the role of an intracellular mammary
epithelial cell reservoir in the dynamics of infection. We included biological knowledge of the bovine
immune response and known characteristics of the bacterial population in both transient and persistent
infections. The results indicate that varying the survival duration of the intracellular reservoir reproduces the
data for both transient and persistent infections. Survival in an intracellular reservoir is the most likely
mechanism that ensures persistence of E. coli infections in mammary glands. Knowledge of the
pathogenesis of persistent infections is essential to develop preventive and treatment programmes for these
important infections in dairy cows.

mathematical model / mastitis / Escherichia coli / persistent infection

1. INTRODUCTION

Mastitis is one of the most important produc-
tion and welfare diseases affecting dairy cows.
In recent decades, coliform infections have been
identified in an ever increasing proportion of
mastitis cases [22]. Among the coliform bacteria
Escherichia coli is the dominant pathogenic spe-
cies in dairy cow mastitis [5, 26]. The typical
infection pattern for E. coli intramammary

infection includes a clinically severe inflamma-
tory response by the host with outcomes of either
elimination of coliformswithin 96 h of the initial
infection [20, 23] or a deleterious outcome for
the host including shock, sepsis and often death
[8, 9]. In addition to severe disease several
authors have reported persistent and clinically
less severe E. coli infection [11, 12, 15].

Persistent E. coli infections are not uncom-
mon in other organs or species. In particular,
persistent infections of the human female uri-
nary tract are often observed, and have inspired* Corresponding author: lisa@tropmedres.ac

Vet. Res. (2010) 41:13
DOI: 10.1051/vetres/2009061

� INRA, EDP Sciences, 2009

www.vetres.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted use, distribution, and reproduction in any
noncommercial medium, provided the original work is properly cited.

Article published by EDP Sciences

http://dx.doi.org/10.1051/vetres/2009061
http://www.vetres.org
http://www.edpsciences.org/


research into the pathogenesis of persistent
E. coli infections [1, 6, 7, 14, 16, 21]. There
is still debate about the precise mechanisms
involved with persistent urinary tract infections,
but it is clear that fimbriae that enable adhesion
to bladder epithelial cells [6] and subsequent
invasion of bladder epithelial cells, together
with prolonged intracellular survival of the bac-
teria play an important role in persistence of
infection [1]. A number of similarities between
persistent urinary tract and persistent intramam-
mary E. coli infections have been noted [11].

Recent studies on bovine infection patterns
and immune response mechanisms have identi-
fied complex patterns of innate and adaptive
immune mechanisms [2, 3] after intramammary
challenge with E. coli and other mastitis – caus-
ing pathogens. Lipopolysacharides (LPS) in the
bacterial cell wall are recognized by host cell
receptors (such as Toll-like receptor-4) on mac-
rophages that circulate in milk. The recognition
of LPS by the host cell receptors leads to a
cascade of events and eventually to an
increased production of pro-inflammatory cyto-
kines [2, 3]. These cytokines have, amongst
other characteristics, a chemotactic effect on
polymorphonuclear cells (PMN) in the blood-
stream, which are, consequently, attracted into
the mammary gland towards the site of infec-
tion where they attempt to phagocytise and kill
the bacterial invaders [9, 23]. The outcome of
the bacterial invasion into the mammary gland
is eventually determined by the host response
and the ability of the bacterial pathogen to cir-
cumvent or evade this host response [9, 20].
One of the mechanisms that bacterial pathogens
employ to persist in the host is the creation of
an intracellular niche [6], the importance of this
in E. coli mastitis has not yet been established.

Mathematical modelling may be valuable in
providing insight into the mechanisms of persis-
tent infections, both at the population level [28]
and the individual animal level [10, 17]. The
model described by Detilleux et al. [10] models
transient infections and includes the compart-
ments: milk, blood leukocytes and bacteria in
milk. This simple model was fitted to transient
infection data, but it does not adequately
describe the complex pathogenesis of bacterial

infections that is essential to reproduce the
dynamics of both transient and persistent intra-
mammary infections.

In this study, we aim to improve understand-
ing of the pathogenesis of transient and persis-
tent intramammary E. coli infections. In
particular, we are interested in understanding
the processes that underlie the divergence in
E. coli infection outcome (elimination or persis-
tence): why do a majority of intramammary
E. coli infections results in transient infections
and how do other E. coli intramammary infec-
tions result in persistent infections?

2. MATERIALS AND METHODS

2.1. The model

We model the interaction between the bovine
immune system and numbers of E. coli in milk and
in intracellular reservoirs in a quarter (1 of the 4 com-
partments of the bovine mammary gland). We assume
that the total number of colony forming units (cfu) of
E. coli inmilk (E) grows exponentially, but the bacteria
are phagocytised and killed bymacrophages and PMN
[18]. Bacteria can move between milk and an intracel-
lular mammary epithelial cell reservoir (I) [11]. From
numerous challenge infections it is known that produc-
tion of pro-inflammatory cytokines (C+) is stimulated
by contact between bacteria and immune cells, either
macrophages (M) or PMN (P) [4]. The production of
pro-inflammatory cytokines is inhibited by the pres-
ence of anti-inflammatory or inhibitory cytokines
(C�), which increase at a rate dependent on the con-
centration of pro-inflammatory cytokines, thus there
is a negative feedback loop [2–4]. The macrophages
present in the milk are assumed to remain at a constant
concentration, whereas the concentration of PMN
increases at a rate dependent on the concentration of
pro-inflammatory cytokines present in the milk [23].

An additional process that determines the bacte-
rial dynamics is the twice daily process of milking
which rapidly depletes the volume of milk in the
mammary gland, and so changes the population size
of the bacterial cells. We assume a time dependent
function, V, that defines the linearly changing volume
of milk in the quarter (Fig. 1).

This simplified description of inflammatory
dynamics leads to the following series of differential
equations for the concentrations of cytokines (C+

and C�), and the numbers of PMN (P) and E. coli
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cfu (E) in milk (which decreases due to milking,
see Appendix for derivation) and intracellular
E. coli (I):

dCþ
dt
¼

gcp

ð1þ icpC�Þ
E
V 2 M þ Pð Þ � dcCþ

dC�
dt
¼ gcaCþ � dcC�

dE
dt
¼ geE � kE

M þ Pð Þ
V

� aE þ bI þ E
V

dV
dt

dP
dt
¼ gpCþV � dpP þ

P
V

dV
dt

dI
dt
¼ aE � bI � d iI

v ¼
1�pmilk

0:5�Dmilk

modð2t; 1Þ
2

h i
þ pmilk

for mod 2t; 1ð Þ � 1� 2Dmilk

pmilk�1
Dmilk

modð2t; 1Þ
2
� 0:5

h i
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for mod 2t; 1ð Þ > 1� 2Dmilk

9>>>>>>>=
>>>>>>>;

V ¼ V max v

dV
dt
¼

0
pmilk � 1

Dmilk

for mod 2t; 1ð Þ � 1� 2Dmilk

for mod 2t; 1ð Þ � 1� 2Dmilk

9=
;
ð1Þ

In all equations, t represents time in days. The ini-
tial values of these variables were set to 0, except
for E, which had a low initial infection level of
1 cfu/mL (or 250 cfu in total immediately after
milking) representing initial invasion. The baseline
level for M was set at 5 000 and P was set at 25%
of 50 000 (see below). The parameters are defined
in Table I and discussed in more detail below.

To explore fadeout of the bacterial population,
the model equations for the bacterial populations
(E and I) were discretised using the Euler approxima-
tion with an interval, dt, of 1 s. The equations for the
concentrations of immune cells and cytokines
remained deterministic and continuous. Thus

producing a stochastic version of the bacterial popu-
lation section of the model as follows:

Etþdt ¼ max

�
H

�
Et þ

�
geEt � kEt M þ Pð Þ

� aEt þ bI t þ
dV
dt

Et

V

�
�dt
�
; 0

�
; ð2Þ

I tþdt ¼ max H I t þ aEt � bI t � d iI tð Þ�dt½ �; 0f g
where H[x] is sampled from a Poisson distribution
of mean x. The Poisson distribution is a discrete
distribution and expresses the probability of a num-
ber of events (of the type that occur with a known
average rate and independently of the time since the
previous event) occurring in a fixed period of time.
An event in this case is defined as a change in the
population size due to growth, killing or milking.
This distribution therefore appears to be the most
appropriate for this system.

2.2. Biological data

2.2.1. Differential cell counts in milk

Basic milk somatic cell counts (SCC) at the time of
initial infectionwere estimated using data fromhealthy
non-infected quarters [13]. Differential milk leukocyte
counts for healthy cows (n = 21) with low SCC milk
(SCC < 200 000 cells/mL, [25]) in early lactation
(22 ± 4 d after calving), mid lactation (185 ± 6 d after
calving) and late lactation (245 ± 12 d after calving)
were used [12]. Approximately 10% of all somatic
cells in a healthy quarter are macrophages and 25%
PMN. If we assume 50 000 cells/mL in a healthy quar-
ter [24], then M

V = 5 000 cells/mL and approximately
25% would be PMN.

Washout of cells and bacteria due tomilking is esti-
mated at about 90% (see also [10]). With a milk yield
of 2.5 kg per quarter (i.e. Vmax = 2 500 mL) and
acceptablemilkwithhold of 0.25 kg at the end ofmilk-
ing, it is reasonable to assume that 90% of cells and
bacteria are removed at each milking (i.e. pmilk = 0.1).

2.2.2. Killing capacity of PMN

No direct data on bacterial killing were available
for bovine intramammary PMN or macrophages.
To obtain a quantitative estimate of killing capacity
we utilized data from a mouse model of E. coli infec-
tion published by Iwahi and Imada [16], in which
the susceptibility of E. coli to killing by murine per-
itoneal exudate PMN was evaluated. A 0.05-mL
volume of bacterial suspension (2 · 107 to
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8 · 107 cfu/mL) was mixed with 0.25 mL of PMN
suspension (6 · 106 to 8 · 106 cells/mL). A killing
rate of approximately 1 log per hour was observed,
with a decreasing rate of killing over time. This
estimate was very similar to an estimate used by
Detilleux et al. [10]. This corresponds to an estimate
of k between 4.8 · 10�6 and 3.6 · 10�6 cell/day (See
Appendix for the derivation of these values).

2.2.3. Growth of E. coli in vitro and in vivo

Data on growth of E. coli both in vitro and in vivo
were taken from experiments by Kornalijnslijper
et al. [18, 19], in which 200 lL of bacterial suspen-
sion (aiming at an inoculum of 100 cfu) was added to
10 mL whole milk. Bacterial counts in whole milk
after 6 h of incubation varied up to a 100-fold
between individual cows (3.8–6.0 log10 cfu/mL)
[18]. This corresponds to a value of ge between
25.8 and 46.1 day�1 (See Appendix for the deriva-
tion of these values).

2.2.4. Cytokine dynamics

Data on cytokine dynamics during E. coli infec-
tion were taken from Bannerman et al. [2, 4]. In this

study, cows were challenged with approximately
72 cfu of E. coli. Sterile milk samples were collected
from all quarters at 0, 8, 16, 24, 32, 40 and 48 h after
challenge and evaluated for cytokine profiles, cfu and
SCC. An ELISA assay was used to measure the con-
centrations of IL-8 and TNF-a in milk obtained from
quarters infused with E. coli, and saline controls. As
expected, pro-inflammatory cytokines increased rap-
idly after intramammary challenge [2–4]. An increase
was observed at 8 h after challenge and the concen-
tration peaked at 16 h after challenge. Pro-inflamma-
tory cytokine concentrations then dropped and
reached baseline values between 32 and 48 h after
challenge. Inhibitory cytokines (IL-10) showed a
rapid increase at 16 h post-challenge (at the peak of
pro-inflammatory cytokines) and peaked at 24 h
post-challenge. Thereafter the concentration dropped
and fell back to baseline at 72 h after challenge [2].
No data were available in peer-reviewed publications
for cytokine profiles in persistent E. coli infections.
However, a similar study using a Klebsiella challenge
provides some insight in cytokine dynamics in more
persistent gram-negative infections [3]. The model
output was considered with reference to this general
behavior and timescale. Cytokines have a half-life
(T) of between 1 and 24 h [4]. Thus the rate of loss,
dc is given by dc ¼ Ln ð2Þ

T : Then dc is between 0.69
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during and after milking.
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Table I. Model parameter definitions, initial values and model estimates.

Symbol Definition Initial value Estimated value Units

Parameters with the same value for all cows
gcp Baseline growth rate of pro-inflammatory cytokines in

absence of anti-inflammatory cytokines. Stimulated by
contact between E. coli and macrophages

Unknown 0.0024 day�1

icp Inhibitory effect of anti-inflammatory cytokines on growth
of pro-inflammatory cytokines

Unknown 0.035 none

gca Rate of growth of anti-inflammatory cytokines (dependent
on concentration of pro-inflammatory cytokines)

Unknown 9.8e-5

ge Growth rate of E. coli in milk 25.8–46.1 34 day�1

dp Rate of loss of PMN from milk 0.1–1.8 0.10 day�1

dc Rate of loss of cytokines 0.7–17 10 day�1

M Baseline number of macrophages in milk 5000 (fixed) Cells/mL
Vmax Maximum volume of milk in a quarter 2.5 (fixed) Litre
Dmilk Duration of milking 5/(60 · 24) (fixed) Day
pmilk Proportion of milk remaining after milking 0.1 (fixed) None
k Killing rate by macrophages (M and P) 3.6e-6–4.8e-6 1.0e-5 Cell/day
rE Mean standard deviation of the model fit from the data

for log E. coli concentration
Unknown 0.54 log cells/mL

rS Mean standard deviation of the model fit from the data
for log somatic cell concentration

Unknown 0.75 log cells/mL

Parameters that have a different value for each type of infection (transient, persistent)
a Rate of movement of E. coli from milk to intra-cellular reservoirs Unknown 0.51 (transient)

5.1 (persistent)
day�1

b Rate of movement of E. coli from intra-cellular reservoirs to milk Unknown 0.55 (transient)
7.5e-3 (persistent)

day�1

Parameters that have a different value for each individual cow
di Death rate of E. coli in intra-cellular reservoirs � 1 (transient)

� 0.1 (persistent)
2.1, 0.9, 1.4,

1.2, 1.4, 1.8, 1.9 (transient)
0.1 (persistent)

day�1

gp Rate of influx of PMN into the milk in presence
of pro-inflammatory cytokines

Unknown 0.02, 0.04, 0.02, 0.03,
0.03, 0.50, 2.0, 0.8, 6.0, 2.0, 0.3

day�1
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and 17, which are the upper and lower limits used for
estimation of this parameter.

2.2.5. Intracellular E. coli

Data on intracellular survival of E. coli were taken
from an in vitro study [11] in which E. coli strains
from transient and persistent field infections were
compared in adhesion and invasion assays. MAC-T
cells were infected at a multiplicity of infection of
10 (10 bacteria per epithelial cell) for 1 h. The
E. coli strains associated with persistent infections
were 10 times more invasive than strains associated
with transient infections. This translates to the con-
straint of the value for the parameter, a, for chronic
infections being 10 times its value for acute
infections.

Intracellular survival of E. coli strains in MAC-T
cells was studied by gentamycin protection assays.
MAC-T cells were infected with E. coli strains for
1 h, after which extracellular bacteria were killed
by exposure to gentamycin (100 lg/mL), an extracel-
lular antibiotic, for 2 h. MAC-T cells were incubated
for a further 2, 24 and 48 h. The number of intracel-
lular bacteria surviving was determined by disrupting
the cell wall and plating and counting cfu. Strains of
E. coli from transient infections showed a decrease of
the number of viable bacteria to approximately 80%
of the initial concentration after 48 h. In contrast, the
number of cfu for persistent strains had almost dou-
bled during the same time period (180% of baseline).
These findings are in concordance with similar obser-
vations in mouse urinary tract epithelial cells [1, 21].

We use an initial value of di = 0.1 day�1 for chronic
infections. This is equivalent to intracellular survival
for an average of 10 days [21]. To be conservative
with regard to the importance of the intracellular res-
ervoir we initially assumed no growth in the intracel-
lular reservoir.

2.2.6. E. coli infection data

E. coli intramammary challenge longitudinal
infection data used in this modelling study were gath-
ered from several published [11, 12, 19, 27] and
unpublished studies1. We identified a total of 7
transient infections (cow numbers: 218, 4 003,
4 310, 7 036, 9 658, 2 058 and 2 109, all from
Kornalijnslijper et al. [18] and VanWerven et al.
[27]) and 4 persistent infections (cow numbers:
171 103 (from Dogan et al. [11]), 3a, 3b and 3c
(from Döpfer et al. [12]). All data used for simu-
lations are summarized in Tables II and III.

2.3. Parameter estimation

The model predictions for the logarithms of the
E. coli and somatic cell concentrations generated
using (1) were fitted to the data. The parameters were
estimated within Berkeley-Madonna [28], by maxi-
mising likelihood assuming a normal distribution of
error. The initial values for the parameter estimation

Table II. Data for seven transient infections. Cows 218, 4 003, 4 310, 7 036, 9 658, 2 058, and 2 109 are
from Van Werven et al. [27]. Time is in days, lg(E) is log10 E. coli cfu/mL, lg(S) is log10 SCC/mL.

Time
(days)

Cow number

218 4 003 4 310 7 036 9 658 2 058 2 109

Lg(E) Lg(S) Lg(E) Lg(S) Lg(E) Lg(S) Lg(E) Lg(S) Lg(E) Lg(S) Lg(E) Lg(S) Lg(E) Lg(S)

0 0 5.0 0 4.4 0 4.0 0 4.0 0 4.4 0 4.0 0 5.4
1 9.0 7.0 5.9 7.0 7.7 6.9 8.7 5.6 8.6 6.7 5.3 7.0 3.7 6.3
2 5.2 7.0 6.5 7.0 6.2 7.0 6.4 7.0 4.9 7.0 2.4 7.0 0 7.0
3 4.1 7.0 6.0 7.0 5.0 7.0 5.4 7.0 4.9 7.0 2.4 7.0 0 6.9
4 3.6 7.0 5.7 5.5 5.1 6.9 5.5 6.8 4.5 6.5 2.2 6.8 0 6.4
5 2.9 7.0 5.0 6.8 4.5 7.0 4.5 7.0 4.2 6.8 0 7.0 0 6.3
6 3.2 7.0 4.9 6.4 3.3 7.0 3.9 7.0 3.7 6.8 0 7.1 0 7.0
7 0 7.0 4.0 6.2 3.0 7.0 2.3 7.0 3.1 7.0 0 6.6 0 6.3
8 0 7.0 3.4 7.0 2.4 7.0 2.3 7.0 3.4 7.0 0 6.4 0 5.8
9 0 7.0 3.1 7.0 2.3 7.0 1.7 7.0 2.9 7.0 0 6.2 0 6.0
10 0 0 0 0 0 0 0

1 Döpfer D., Ph.D. Thesis, Utrecht University,
2000.

Vet. Res. (2010) 41:13 L.J. White et al.

Page 6 of 15 (page number not for citation purpose)



Table III. Data for four persistent infections. Cow 171 103 is from Dogan et al. [11] and cows 3a, 3b and 3c are from Dopfer et al. [12]. Time is in days,
lg(E) is 10 log E. coli cfu/mL, lg(S) is 10 log SCC/mL.

Cow number

Time
(days)

171 103 Time
(days)

3a Time
(days)

3b Time
(days)

3c

lg(E) lg(S) days lg(E) lg(S) lg(E) lg(S) days lg(E) lg(S) lg(E) lg(S) days lg(E) lg(S) lg(E) lg(S) days lg(E) lg(S)

0 4.3 41 3.9 7.1 0 3.5 6.7 41 3.6 6.4 0 2.0 6.7 41 3.6 6.9 0 3.0 6.8 41 2.0 5.7
1 5.5 42 2.0 7.1 1 3.8 6.6 42 3.4 6.2 1 2.8 6.6 42 2.6 6.8 1 2.0 6.6 42 2.0 6.5
2 3.5 43 1.9 6.7 2 4.2 6.5 43 3.8 6.1 2 2.3 6.8 43 3.2 6.6 2 0 6.4 43 0 6.1
3 3.0 44 2.8 7.2 3 3.5 6.2 44 3.1 6.9 3 2.5 6.8 44 3.4 6.8 3 0 6.1 44 2.3 5.8
4 3.1 45 3.2 7.0 4 4.1 6.8 45 3.3 7.0 4 2.5 6.6 45 3.3 6.7 4 0 5.6 45 2.0 5.4
5 5.8 46 3.3 7.3 5 2.9 6.8 46 3.6 6.6 5 3.5 6.9 46 2.4 6.8 5 2.0 5.5 46 2.3 5.5
6 4.3 47 3.7 7.1 6 2.9 6.7 47 3.6 6.5 6 3.3 7.0 47 2.5 6.8 6 2.5 5.5 47 3.1 7.0
7 4.7 48 4.8 7.3 7 2.0 6.5 48 4.5 6.5 7 3.5 6.8 48 2.6 6.6 7 0 6.3 48 2.3 6.7
8 3.9 49 4.3 5.2 8 2.0 6.7 49 3.3 6.5 8 3.2 6.8 49 2.7 6.4 8 2.0 6.2 49 2.3 6.6
9 3.9 50 4.4 5.5 9 2.0 6.3 50 3.3 6.3 9 2.4 6.7 50 6.3 9 2.0 6.4 50 2.3 6.5
10 4.4 51 4.3 7.4 10 3.1 6.7 51 3.4 6.4 10 2.3 6.7 51 3.4 6.4 10 0 6.1 51 3.3 6.2
11 4.5 52 4.7 7.4 11 2.3 6.7 52 3.3 6.4 11 2.2 6.7 52 3.3 6.4 11 2.0 5.8 52 0 6.4
12 4.2 53 5.2 7.4 12 2.0 6.7 53 4.0 6.1 12 2.2 6.5 53 4.0 6.1 12 2.3 6.2 53 2.0 5.9
13 4.7 54 5.4 7.0 13 3.3 6.5 54 3.8 6.1 13 2.1 6.5 54 3.8 6.1 13 0 5.9 54 0 5.7
14 4.0 55 5.4 7.0 14 3.2 6.7 55 3.3 6.9 14 2.1 6.3 55 3.3 6.9 14 2.3 5.7 55 2.6 6.9
15 3.9 5.2 56 5.5 7.0 15 2.8 6.7 56 4.0 6.8 15 2.0 6.0 56 4.0 6.8 15 0 6.2 56 0.0 6.6
16 4.1 7.3 57 3.2 7.2 16 2.5 6.6 57 3.4 6.6 16 2.0 6.1 57 3.4 6.6 16 2.0 5.3 57 2.3 6.3
17 3.0 7.0 58 2.3 6.6 17 4.3 6.4 58 3.7 6.1 17 2.5 6.7 58 3.7 6.1 17 0 5.4 58 2.0 6.4
18 3.0 5.9 59 2.6 6.7 18 2.8 6.7 59 4.0 6.2 18 4.2 6.9 59 4.0 6.2 18 2.3 5.8 59 0 6.0
19 3.6 7.4 60 2.9 6.9 19 2.0 6.7 60 4.1 6.3 19 4.4 6.8 60 4.1 6.3 19 0 6.4 60 0 5.9
20 3.7 7.4 61 1.8 7.2 20 2.8 6.5 61 3.5 6.5 20 4.7 6.8 61 3.5 6.5 20 2.0 6.1 61 0 5.5
21 4.1 7.5 62 3.1 7.4 21 3.2 6.7 62 4.1 6.6 21 3.9 7.0 62 4.1 6.6 21 2.0 5.9 62 2.7 5.5
22 2.4 7.2 63 3.5 7.2 22 3.6 6.5 63 4.0 6.4 22 3.6 7.0 63 4.0 6.4 22 2.3 6.5 63 2.0 6.7
23 1.9 6.9 64 2.1 7.0 23 3.5 6.3 64 4.4 6.1 23 4.1 6.7 64 4.4 6.1 23 2.0 6.3 64 2.0 6.3
24 2.3 7.1 65 2.0 6.4 24 3.4 6.8 65 4.5 6.5 24 4.4 7.0 65 4.5 6.5 24 2.5 6.4 65 2.0 6.0
25 1.3 7.1 66 3.5 7.3 25 2.6 7.0 66 3.9 6.5 25 3.5 6.7 66 3.9 6.5 25 0 6.3 66 2.5 6.5
26 2.4 6.6 67 2.6 7.2 26 3.7 6.9 67 3.8 6.4 26 3.7 6.9 67 3.8 6.4 26 0 6.0 67 0 5.7
27 0.0 7.3 68 2.3 6.6 27 3.4 6.4 68 3.5 6.5 27 4.2 7.0 68 3.5 6.5 27 2.3 5.8 68 6.8
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Table III. Continued.

Cow number

Time
(days)

171 103 Time
(days)

3a Time
(days)

3b Time
(days)

3c

lg(E) lg(S) days lg(E) lg(S) lg(E) lg(S) days lg(E) lg(S) lg(E) lg(S) days lg(E) lg(S) lg(E) lg(S) days lg(E) lg(S)

28 0.0 6.9 69 3.1 7.2 28 3.7 7.0 69 3.4 6.4 28 4.2 6.8 69 3.4 6.4 28 2.3 5.9 69 3.4 6.6
29 2.5 7.0 70 2.4 6.7 29 3.1 7.0 70 3.3 6.2 29 3.1 6.8 70 3.3 6.2 29 2.0 5.7 70 3.7 6.1
30 2.7 6.2 71 2.4 7.1 30 2.3 6.6 71 3.9 6.1 30 2.0 6.7 71 3.9 6.1 30 2.9 5.8 71 4.0 6.2
31 2.0 4.1 72 2.5 6.9 31 2.9 6.5 72 4.1 5.9 31 2.5 6.7 72 4.1 5.9 31 2.0 6.5 72 4.1 6.3
32 2.5 7.1 73 1.3 6.6 32 3.6 6.1 32 2.9 6.4 32 2.0 6.1 73 3.5 6.5
33 3.3 7.4 74 3.2 7.4 33 3.5 6.1 33 3.3 6.7 33 2.0 6.2 74 4.1 6.6
34 3.1 7.2 75 2.5 7.2 34 3.4 6.7 34 2.0 6.6 34 2.7 6.0 75 4.0 6.4
35 2.7 4.9 35 3.9 6.5 35 2.0 6.4 35 2.0 6.6 76 4.4 6.1
36 3.6 6.4 36 3.8 6.4 36 3.2 6.6 36 2.0 6.1 77 4.5 6.5
37 3.4 7.0 37 4.0 6.3 37 3.5 6.9 37 2.3 6.6 78 3.9 6.5
38 3.9 7.0 38 4.0 6.6 38 3.5 6.9 38 2.5 6.4 79 3.8 6.4
39 3.3 7.0 39 3.0 6.2 39 3.3 6.8 39 2.0 6.4 80 3.5 6.5
40 3.5 7.1 40 3.4 6.5 40 3.6 6.8 40 2.0 6.1 81 3.4 6.4
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process are given in Table I. We assume that if the
dataset includes a zero value and the model predicts
a value less than or equal to zero (that is less than or
equal to 1 cell/mL), then this is the best fit for this
point due to limits of detection. We also assume that
the persistent infections had reached equilibrium
when they were sampled.

3. RESULTS

The model reproduced the data with the esti-
mated parameter values as given in Table I. The
optimised negative log-likelihood was 650.35.
The model also reproduced both transient and
persistent infection behaviour (see Figs. 2 and 3).

10
 L

og
 E

. c
ol

i/m
L 

or
 1

0 
Lo

g 
S

C
C

/m
L

0

2

4

6

8

10

12

E. coli: 10 log cfu/mL
SCC: 10 log SCC/mL

Cow 218

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

Days
0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

Cow 4003

Cow 4310 Cow 7036

Cow 9658

Cow 2109

Cow 2058

Days

Figure 2. Observed (points) and model predicted (lines) bacteria count and SCC data for seven cows with
transient infections. Cow numbers are shown on the top-right of each graph. The model prediction is a
single realisation of the stochastic version of the model including variation in measurement based on the
standard deviations of the model fit to the data (rE and rS).
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For all cows, themodel consistently predicted
a 3 h differencebetween the timing of thepeakof
pro- and anti-inflammatory cytokine concentra-
tions. The model also predicted that the pro-
inflammatory cytokines peak within the range
of 13 to 22 h after infection for all cows and that
the anti-inflammatory cytokines show a rapid
increase that started just before the peak in pro-
inflammatory cytokines. Figure 4 shows an
example of this predicted behaviour for cow
number 218. The sampling frequency of the
experiment by Bannerman et al. [4] was every
8 h. Therefore from the data we can conclude
that the delay between peaks should be between
4 and 12 h. The model predicts an approximate
3 h difference which is somewhat lower than
the range predicted by experimental data. Thus,
the model is qualitatively but not quantitatively
capturing the cytokine dynamics and a more
complex model of the mechanism would be
required for a more precise quantitative predic-
tion of this phenomenon.

The key result from our model is the transi-
tion from transient to steady state dynamics for
the two distinct types of infection. The output
from the stochastic and deterministic versions
of the model in Figure 5 is the model predictions
for the total bacterial population in the milk and
the intracellular reservoir combined. We use this
output to demonstrate the potential for the ani-
mal to clear the infection due to very low num-
bers after the first 5 to 12 days. This would
correspond with an observed clearance in 2 to
10 days since only the concentration in the milk
was being observed in the experiment and so
this value would drop below the detection limit
(of about 1 cfu/mL) 2 or 3 days before true
clearance by the animal. For transient infections,
the number of bacteria drop below 10 cfu (not
per mL but in the whole cow), whereas for the
persistent infections the number of bacteria
never drop below 106.5 cfu in the whole
cow: with approximately 2 500 mL of milk in
the gland (quarter) this would equate to
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Figure 3. Observed (points) and model predicted (lines) bacteria count and SCC data for four cows with a
persistent infection. The model prediction is a single realisation of the stochastic version of the model
including variation in measurement based on the standard deviations of the model fit to the data (rE and rS).
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approximately 4 · 103 cfu/mL for a persistently
infected quarter (see Fig. 3).

This value of the nadir in E. coli bacterial
numbers was highly sensitive to the assumed
duration of survival of bacteria in the intracellu-
lar reservoir. This duration of survival has a
threshold value for simulations of the stochastic
model of about 1 day where below the thresh-
old fadeout was most likely and above the
threshold persistence was more likely. For these
sets of models we assumed this duration to be
approximately 10 days (an alternative estimate
of 2 days was also considered with similar
results) for persistent infections and estimated
(by fitting) the duration to be about 0.8 days
for transient infections.

The discretized stochastic model was run
1 000 times and fadeout in the transiently
infected cows and no fadeout in the persistently
infected cows was predicted for 996 out of
1 000 runs. In four runs one or more of the
modelled transient infections did not fadeout.
In 1 000 runs the modelled persistent infections
did not fadeout. This result confirms the conclu-
sion from the deterministic model that the nadir
in E. coli bacterial numbers for transient infec-
tions after the initial acute phase will generally
result in fadeout of the bacterial population and
thus clearance of infection.

4. DISCUSSION

The mathematical model presented repro-
duces the observed dynamic behaviour of both
transient and persistent infections. The pre-
dicted time-dependent behaviour of the pro-
and anti-inflammatory cytokine concentrations
is also consistent with our current biological
knowledge.

We show that for parameter values suitable
for transient infections, the model predicts that
the total number of bacteria in the mammary
gland drops to values at which spontaneous
clearance of the infection is highly likely due
to stochastic effects. The predicted minimum
level of bacteria present is sensitive to changes
in the duration of survival in the intracellular
reservoir. Long durations of survival in the
intracellular reservoir correspond with high bac-
teria counts in the nadir of cfu following the
acute phase, indicating a failure to spontane-
ously clear the infection and thereby leading
to a persistent infection. Hence, the key param-
eters distinguishing transient from persistent
infections were the parameters a, b and di
(respectively the rates of movement of bacteria
between the milk and the intra-cellular reservoir
and the intracellular bacterial death rate). These
three parameters were indeed different between

Time (hours)
010 12 16 20 24 28 32 36 40 44 48

P
ro

-in
fla

m
m

at
or

y 
cy

to
ki

ne
 (u

ni
ts

/m
L)

0.0

2.0e+7

4.0e+7

6.0e+7

8.0e+7

1.0e+8

1.2e+8

1.4e+8

A
nt

i-i
nf

la
m

m
at

or
y 

cy
to

ki
ne

 (u
ni

ts
/m

L)

0

2e+3

4e+3

6e+3

8e+3

1e+4
Pro-inflammatory
Anti-inflammatory

Figure 4. Dynamics of the concentrations of pro- and anti-inflammatory cytokines predicted by the model
for cow number 218.
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transient and persistent infections when esti-
mated from observed data (Tab. I).

Our parameter estimates were very similar to
the estimates used by Detilleux et al. [10],
although the current model is obviously more
complex and needed additional input data.
However, estimates of key parameters such as
bacterial growth rate (1.40 per hour) and con-
centration reduction rate due to killing
(240 · 10�6 lL/cell per hour) were very simi-
lar to previous simulation models [10] where
the growth rate estimates ranged from 0.54 to
0.8 per hour and those for the killing rate ran-
ged from 184 · 10�6 to 431 · 10�6 lL/cell
per hour. Since both our model and previous

models validated their estimates on actual
observed data, this is not really surprising.

The purpose of this analysis was to propose
the most likely explanation for why some
E. coli infections persist in the mammary gland,
whilst others do not. We propose that bacterial
strains that result in persistent infections are
more effective (by an order of magnitude) at sur-
viving in an intra-cellular reservoir in mammary
epithelial cells. This is consistent with a related
E. coli survival mechanism where intracellular
biofilm-like structures, called intracellular bacte-
rial communities, were associated with persis-
tent E. coli infections [7]. Other candidate
explanations from the analysis are due to
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Figure 5. Predicted total numbers of E. coli cfu in the mammary gland and the intracellular reservoir
combined for seven transient and four persistent infections from the deterministic (A) and stochastic (B)
versions of the model.
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differences at the host response rather than the
bacterial strain level [8, 23]. Namely that
(a) persistent infections occur when there is a
lower or delayed influx of PMN in the presence
of pro-inflammatory cytokines [20, 27], or (b)
persistent infections result from a short half-life
and decreased functionality of PMN such as
impaired phagocytosis and/or killing capacity
[9, 23]. However, these alternative explanations
are unlikely to be a general mechanism respon-
sible for creating the observed patterns. In the
case of low or delayed PMN influx, the model
predicts unrealistically high numbers of E. coli
during the transient infection dynamics. In the
case of a short life expectancy of PMN, our
model would require an unrealistically short
half-life to be able to fit data for cows with a per-
sistent intramammary infection. Also, there is
good in vitro experimental evidence to suggest
that E. coli strains present in persistent infections
have different attributes from those present in
transient infections [11], thereby suggesting that
the difference in pathogenesis between transient
and persistent infections is due to the type of
bacteria rather than the type of response
mounted by individual cows.

Although macrophages, PMN and lympho-
cytes will probably undergo some homing
towards the supramammary lymphnodes [24],
we did not include this behaviour in the model.
We also ignored the potential impact of mem-
ory dependent immunity, since it is generally
assumed that antibody mediated immune
response mostly reduces clinical severity and
has relatively little impact on the incidence of
infection or the distinction between transient
and persistent infection [29]. In future genera-
tions of our infection model, more components
of the immune response may be added and eval-
uated for their importance. The hypothesis of a
longer survival time in an intracellular epithelial
reservoir, resulting in persistent rather than tran-
sient infections, appeared to be supported by the
data and our current knowledge of the biology
of these infections.
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APPENDIX

Derivation of equation for E. coli

The variables are expressed as concentrations
apart from bacterial load and PMN which is
expressed in absolute numbers. We assume that
milking does not alter the concentrations of any
of these quantities and thus there is no loss term
in the concentration formulae. However, milk-
ing will affect numbers of cells in the milk thus
the following analysis was performed in order to
predict total bacterial load. Let concentration of
E. coli be X. Then the differential equation for
concentration of E. coli is given by:

dX
dt
¼ geX � kX M þ Pð Þ � aX þ b

1

V

Then the total number, E, is given by:

E ¼ VX

Since the volume, V, also varies in time, the
differential of E is derived using the product
rule:

dE
dt
¼ V

dX
dt
þ X

dV
dt

Thus combining the two previous equations
gives the following formula for the rate of
change of E. coli cfu in the milk:

dE
dt
¼ V geX � kX M þ Pð Þ � aX Þð

þbI þ X
dV
dt

Vet. Res. (2010) 41:13 L.J. White et al.

Page 14 of 15 (page number not for citation purpose)



then

dE
dt
¼ geE � kE M þ Pð Þ � aE

þ bI þ E
V

dV
dt

where dV
dt
is the rate of change of the volume of

milk.
The differential equation for the numbers of

PMN in the milk is derived similarly.

Killing rate, k:

Given 0.25 mL of p (6 to 8) · 106 cells/mL
PMN added to 0.05 mL of E. coli. solution.
Then the number of PMN cells would be
0.25 p · 106 and the volume would be
0.25 + 0.05 = 0.3 mL. Thus the concentration,
P, of the resulting solution is 0:25�P : 106

0:3
¼ P�107

12
.

Then, given a killing rate of k cell day�1, the
concentration of E. coli over time, y, is given
by the following:

dy
dt
¼ �kPy

y ¼ y0 expð�kPtÞ

ln y ¼ ln y0 � kPt

k ¼ � ln y � ln y0
Pt

Since a reduction of one log per hour is

observed: t = 1/24, P¼ p�107
12

, In y0 � ln y = 1
then k¼ 12�24

p�107, so for p = 6, k = 4.8 · 10�6

and for p = 8, k = 3.6 · 10�6.

Growth rate of bacteria in milk, ge:

Let x(t) = x0 exp(get) where x is the concen-
tration of E. coli over time, x0 is the initial con-
centration and t is time, then

In x ¼ In x0 þ get

Iog10 x
Iog10 e

¼ Iog10 x0
Iog10 e

þ get

ge ¼
Iog10 x� Iog10 x0

t Iog10 e

Then, the upper limit of ge is (6�1)/
(0.25 log10 e) or equal to 46.1, and the lower
limit of ge is (3.8�1)/(0.25 log10 e) or equal to
25.8.
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