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Abstract – The protozoan parasite Trypanosoma congolense is the main causative agent of livestock
trypanosomosis. Congopain, the major lysosomal cysteine proteinase of T. congolense, contributes to
disease pathogenesis, and antibody-mediated inhibition of this enzyme may contribute to mechanisms of
trypanotolerance. The potential of different adjuvants to facilitate the production of antibodies that would
inhibit congopain activity was evaluated in the present study. Rabbits were immunised with the recombinant
catalytic domain of congopain (C2), either without adjuvant, with Freund’s adjuvant or complexed with
bovine or rabbit a2-macroglobulin (a2M). The antibodies were assessed for inhibition of congopain activity.
Rabbits immunised with C2 alone produced barely detectable anti-C2 antibody levels and these antibodies
had no effect on recombinant C2 or native congopain activity. Rabbits immunised with C2 and Freund’s
adjuvant produced the highest levels of anti-C2 antibodies. These antibodies either inhibited C2 and native
congopain activity to a small degree, or enhanced their activity, depending on time of production after initial
immunisation. Rabbits receiving C2-a2M complexes produced moderate levels of anti-C2 antibodies and
these antibodies consistently showed the best inhibition of C2 and native congopain activity of all the
antibodies, with maximum inhibition of 65%. Results of this study suggest that antibodies inhibiting
congopain activity could be raised in livestock with a congopain catalytic domain-a2M complex. This
approach improves the effectiveness of the antigen as an anti-disease vaccine candidate for African
trypanosomosis.

trypanosomosis / congopain / a2-macroglobulin / anti-disease vaccine

1. INTRODUCTION

Bovine trypanosomosis (nagana) is a dis-
ease caused by tsetse-transmitted Trypanosoma
congolense, T. vivax and/or T. brucei brucei.
These extracellular haemoprotozoa are able to

survive in the bloodstream of infected cattle in
the presence of continuous exposure to the
host’s immune system. Chronic wasting and
anaemia are the most prominent features of ani-
mal trypanosomosis, but other pathologic
effects are circulatory disturbances, leukopae-
nia, low serum complement levels, lymphoid
tissue hyperplasia followed by hypoplasia and
immunosuppression [38]. Trypanosomosis is
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consequently a severe constraint to animal agri-
culture in many parts of sub-Saharan Africa
[25].

There are three control strategies for trypan-
osomosis in cattle that are often used concomi-
tantly: trypanocidal drugs, vector control and
the use of trypanotolerant cattle, none of which
is fully effective in the long term [25]. The con-
trol strategy with the greatest impact would be
vaccination. However, due to the antigenic var-
iation of the parasite surface antigens, attributed
to variable expression of antigenic forms of the
variable surface glycoprotein (VSG), develop-
ment of a vaccine is proving to be a difficult
task. A vaccine based on VSG would have to
cover the entire repertoire of antigenic types,
which is not feasible [37]. Invariant antigens
that have thus far been identified as potential
vaccine candidates include microtubule-
associate protein p15 from T. b. brucei [5, 32]
and b-tubulin from T. brucei and T. evansi
[21, 23, 24]. Vaccination studies in mice have
shown that these proteins may provide protec-
tion against challenge from T. b. brucei (and
T. evansi and T. equiperdum for b-tubulin)
[21, 23, 24, 32], but thus far, these studies have
excluded homologues from T. congolense or
T. vivax.

An alternative approach for a vaccine is to
direct the immune response to parasite antigens
that play a role in the pathology of the disease.
This type of vaccine may not affect the survival
of the parasite, but would neutralise pathogenic
factors, thereby lessening the pathological
effects and possibly inducing a state of
trypanotolerance [3, 32], as naturally exhibited
by some African breeds of cattle [29]. It has
been suggested that congopain, a cysteine pro-
tease of T. congolense, has a pathogenic role
in trypanosomosis by degrading host proteins
and interfering with other host processes [36].
Levels of anti-congopain antibodies have been
shown to correlate with resistance to the disease
in trypanotolerant cattle [3]. As IgG antibody
(and Fab fragments from this IgG) produced
by trypanotolerant cattle during T. congolense
infection inhibit congopain activity, it has been
suggested that this antibody may mitigate the
pathology, thus contributing to mechanisms of
trypanotolerance [4, 20].

Congopain is a cathepsin L-like enzyme that
shares 68% sequence identity in its central cata-
lytic domain and similar enzymatic specificity
with the T. cruzi cysteine protease, cruzipain
[11]. Congopain has a 130-amino acid long
C-terminal extension linked to the catalytic
domain by a proline-rich hinge region, which
similarly occurs in other trypanosomal cysteine
proteases like cruzipain [10], but notmammalian
cysteine proteases. The C-terminal extension is
highly immunogenic, but considered unlikely
to elicit antibodies that inhibit the activity of the
enzyme [9]. C2, a recombinantly expressed
truncated form of congopain which excludes
theC-terminal extension,hasbeenused in a cattle
immunisation trial [4]. Immunised cattle devel-
oped anti-C2 antibodies that partially inhibited
the enzymatic activity of congopain. Following
challenge with the parasite there was no effect
on the development of infection or acute anae-
mia. However, immunised cattle maintained or
gainedweight during infection and exhibited less
severe anaemia and leukopaenia during the
chronic phase of the disease. Immunised cattle
also developed prominent IgG responses to
trypanosomal antigens such as VSG, which is
reminiscent of trypanotolerance [3]. From that
study it appeared thatcongopainmaybe involved
in the mechanism of trypanosome-induced
immunosuppression. Based on these results C2
was used in the present study for immunisations
with the hope to raise antibodies capable of
inhibiting the enzyme activity.

It has previously been shown that complexing
antigen with a2-macroglobulin (a2M) results in
enhanced antibody production, presumably by
improved delivery of antigen to antigen present-
ing cells via the a2M receptor [1, 13]. a2M is a
high molecular weight (mol. wt.) plasma glyco-
protein that is capable of inhibiting the activity
of proteases from all classes [6]. When the bait
region of a2M is cleaved by a protease, the prote-
ase becomes trapped within the a2M molecule
[6]. Once this transformation has taken place,
receptor recognition sites become exposed on
the a2M molecule and it is rapidly taken up by
antigen presenting cells expressing the a2M
receptor, such asmacrophages anddendritic cells
[18]. Here we report on complexing C2 with
rabbit or bovine a2M and producing antibodies
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in rabbits against these complexes. In control
experiments C2 was injected either alone, or
mixed with Freund’s adjuvant. The resulting
antibodies were assayed for inhibition of C2
and native congopain activity.

2. MATERIALS AND METHODS

2.1. Materials

Sephacryl S-300 HR, hide powder azure,
benzoyl (Bz)-Pro-Phe-Arg-pNA, Freund’s com-
plete and incomplete adjuvant, tosyl phenylalanyl
chroromethylketone-treated trypsin, L-trans-epox-
ysuccinyl-leucylamido(4-guanidino)butane (E-64)
and benzoyloxycarbonyl (Z)-Phe-Arg-7-amino-4-
methylcoumarin (AMC) were purchased from
Sigma-Aldrich (St. Louis, USA). Horseradish peroxi-
dase-conjugated goat anti-rabbit IgG was purchased
from Jackson Immunochemicals (Westgrove, USA). 2,
2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)
(ABTS) and BSA were purchased from Roche
Diagnostics (Mannheim, Germany). PEG 6 000 was
purchased from Saarchem (Johannesburg, South
Africa), Triton X-100 from BDH (Poole, England)
and Tween 20 from Merck (Darmstadt, Germany).
Bovine a2Mwas isolated from citrated bovine plasma,
and rabbita2Mwas isolated fromEDTA-treated rabbit
plasma, by the same three-step procedure. Briefly,
plasma was precipitated by PEG 6 000 [7], and a2M
was purified by zinc chelate chromatography followed
by gel filtration on Sephacryl S-300 HR [35]. Bovine
a2M was stored at �20 �C until use, and rabbit a2M
was stored on ice since it is not stable to freeze-thaw
cycles [13]. Native congopain was purified as
described [2] and recombinant C2 was expressed in
Pichia pastoris (manuscript in preparation). All other
reagents were of the highest purity obtainable and
purchased from Sigma-Aldrich or Merck.

2.2. Protein determination

The concentration of proteins in solution were
determined in an Ultrospec 2100 pro spectrophotom-
eter (Amersham Pharmacia Biotech, Piscataway,
USA) according to the modified Bradford method
[33], or by using A1%; 1cm

280 nm ¼ 10 for bovine a2M
[30a], and A1%; 1cm

280 nm ¼ 14:3 for rabbit IgG [17].

2.3. Titration of a2M

Bovine and rabbit a2M were titrated against tryp-
sin to determine their respective active concentration

following purification [35]. a2M (50 pmol) was
incubated with increasing amounts of trypsin
(10–90 pmol) in 100 mM Tris-HCl buffer, pH 8,
10 mM CaCl2, 0.05% (v/v) Triton X-100 for 20 min
at room temperature. Residual trypsin activity was
measured by incubation with hide powder azure
(12.5 mg/mL). Undigested substrate was removed
by centrifugation (13 700 g, 5 min, room tempera-
ture). The absorbance of the supernatant at 595 nm
was plotted against trypsin concentration. The
concentration of trypsin required to saturate the inhib-
itory capacity of 50 pmol a2M was multiplied by two
to reflect the percentage inhibitory activity.

2.4. Determination of active enzyme
concentration with E-64

Congopain and C2 (0.1–1 lM) diluted with 0.1%
(v/v) Brij-35 were titrated against 0.1 lM increments
of E-64 from 0–1 lM and incubated for 30 min at
37 �C in activation buffer (100 mM Bis-Tris buffer,
pH 6.0, 4 mM Na2EDTA, 0.02% (w/v) NaN3,
8 mM DTT) [8]. Residual enzyme activity was
measured with Z-Phe-Arg-AMC (20 lM final
concentration), reading excitation at 360 nm and
emission at 460 nm in a 7620 microplate fluorometer
from Cambridge Technology (UK).

2.5. Native and SDS-PAGE

SDS-PAGE was performed according to Laemmli
[19] on 7.5% gels. Native PAGE was performed in
the same manner on 5% gels but with the exclusion
of SDS from the gel and running buffer.

2.6. Inhibition of C2 activity by a2M

Assays were performed to test the effect of bovine
a2M on the hydrolysis of peptide and protein sub-
strates by C2. To assay against a protein substrate,
C2 (100 pmol), activated in activation buffer, was
incubated with increasing amounts of a2M
(0–200 pmol) and incubated for 20 min at 37 �C.
C2 activity was assayed with hide powder azure as
described above.

To assay against a peptide substrate, C2
(20 pmol), activated in activation buffer, was incu-
bated with increasing amounts of a2M (0–40 pmol)
for 20 min at 37 �C. Activity of C2 was assayed
with Bz-Pro-Phe-Arg-pNA (3 mM), and hydro-
lysis was followed at 405 nm using an Ultrospec
2100 pro spectrophotometer (Amersham Pharmacia
Biotech).
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2.7. Immunisation of rabbits with C2

C2 (80 lg) was activated in activation buffer for
5 min, combined with a 1.5 times molar excess of
either rabbit or bovine a2M (3.2 mg), and incubated
for 1 h at 37 �C. Subsequently, the samples were
divided into 4 equal aliquots, for 4 immunizations,
each containing the equivalent of 20 lg C2.

C2-rabbit- and bovine-a2M complexes were each
made up to 2 mL with sterile PBS for immunisation.
C2 (20 lg) was made up to 1 mL with sterile PBS,
and emulsified in a 1:1 ratio with Freund’s adjuvant
for immunisation (complete adjuvant for the initial
immunisation and incomplete adjuvant for the boos-
ter immunisations). For immunisation without adju-
vant, C2 (20 lg) was diluted to 2 mL with sterile
PBS.

Eight rabbits of mixed breed were immunised by
subcutaneous injection at multiple, well-separated
sites on the back with either C2 alone (rabbits A1
and A2), C2 in Freund’s adjuvant (F1 and F2), C2-
rabbit a2M complexes (R1 and R2), or C2-bovine
a2M complexes (B1 and B2). Each rabbit received
a total of 1 mL, i.e. an equivalent of 10 lg C2 per
immunisation. Booster injections were given at
weeks 2, 4 and 6 and rabbits were bled from the
mid-ear artery prior to immunisation and at weeks
3, 6, 9 and 11. Rabbit B1 was not bled at week 3.
Ethical approval for these procedures was obtained
from the University of KwaZulu-Natal animal ethics
committee (reference AE/Coetzer/01/02).

2.8. Determination of anti-C2 antibody
production by ELISA

C2 or native congopain was coated onto the wells
of 96 well Nunc-ImmunoTM ELISA plates at a
concentration of 1 lg/mL in 50 mM carbonate buffer,
pH 6 for 16 h at 4 �C. Non-specific binding of anti-
body was prevented by blocking with 0.5% (w/v)
BSA-PBS (blocking buffer) for 1 h at 37 �C. Wells
were washed 3 times with 0.1% (v/v) PBS-Tween
20 in between each step. Rabbit IgG, isolated by
PEG 6 000 precipitation [30b], was diluted in block-
ing buffer and incubated in the wells for 2 h at 37 �C
(100 lL per well). Rabbit IgG was titrated from 500
to 31.25 lg/mL (weeks 6, 9 and 11) and from 200 to
6.25 lg/mL (3 weeks) as a result of the small
amounts of serum collected at 3 weeks. The
HRPO-labelled detection antibody, goat anti-
rabbit IgG, was diluted 1:30 000 in blocking buffer
and incubated (120 lL per well) for 1 h at 37 �C.
Substrate solution, 0.05% (w/v) ABTS, 0.0015%
(v/v) H2O2, in 150 mM citrate-phosphate, pH 5,

was added (150 lL per well) and colour was allowed
to develop in the dark. The A405 of each well was
measured with an automated Versamax microplate
reader using SOFTmax� software from Molecular
Devices (Menlo Park, CA, USA).

2.9. Assays for inhibition of C2 and congopain
activity by antibodies

The inhibition of C2 and congopain activity by
anti-C2 IgG was assayed in duplicate in a stopped-
time assay format with serial dilutions of IgG from
1 mg/mL to 125 lg/mL. Assays were performed in
duplicate. C2 (80 ng) or native congopain (100 ng),
diluted to 75 lL in 0.1% Brij, was combined with
75 lL of IgG, diluted serially with 200 mM sodium
phosphate buffer, pH 7.2, 4 mM Na2EDTA, 0.1%
(v/v) Tween-containing 40 lg/mL lima bean trypsin
inhibitor (has no effect on C2 [40]) to inhibit residual
plasma kallikrein activity against Z-Phe-Arg-AMC
that may remain in IgG samples – to yield final
IgG concentrations of 1 mg/mL to 125 lg/mL. The
samples were incubated for 15 min at 37 �C.
Aliquots (50 lL) were removed from the incubation
mixture and combined with 25 lL of a 200 mM
sodium phosphate buffer, pH 7.2, 4 mM Na2EDTA,
0.1% (v/v) Tween, 8 mM DTT, and activated for
1 min at 37 �C. Substrate was added (25 lL) and
the samples incubated for 5 min at 37 �C. The reac-
tion was stopped with 100 mM monochloroacetate,
30 mM Na-acetate, 70 mM acetic acid, pH 4.3,
before fluorescence was read (excitation at 360 nm
and emission at 460 nm) in a 7620 microplate fluo-
rometer from Cambridge Technology. Inhibition
was expressed as a percentage of the activity in the
presence of non-immune rabbit IgG at the same
concentration.

3. RESULTS

3.1. Interaction of C2 with bovine a2M

In order to study the interaction between
congopain and the protease inhibitor, a2M, the
extent of inhibition of C2 activity by a2M was
assayed against both high (hide powder
azure) and low (Bz-Pro-Phe-Arg-pNA) mol. wt.
substrates. When proteases are trapped within
the a2M tetramer, high mol. wt. substrates
are excluded from interaction with the protease,
resulting in complete inhibition, whereas low
mol. wt. substrates are able to access the
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Figure 1. The interaction of the recombinant catalytic domain of congopain (C2) with bovine a2M. (A) The
effect of increasing amounts of a2M on the activity of C2 against hide powder azure (m) and Bz-Pro-Phe-
Arg-pNA (h). Different concentrations of a2M were incubated with C2 (100 pmol for hide powder azure
assay; 20 pmol for Bz-Pro-Phe-Arg-pNA assay) at molar ratios of 0.25:1, 0.5:1, 0.75:1, 1:1, 1.25:1, 1.5:1
and 2:1 for 20 min at 37 �C. Proteolytic activity was determined by the extent of hydrolysis of substrate
compared to that of a C2 control with no a2M (100% activity), and expressed as a percentage inhibition.
Error bars represent the ± SEM (n = 3). (B) Non-denaturing PAGE (5% gel) analysis of the interaction
between bovine a2M and activated C2. Lanes 1 and 9 500 ng a2M; lanes 2–8, a2M (500 ng) was incubated
with increasing amounts of C2 (11–91 ng), corresponding to molar ratios of a2M:C2 of 0.25:1, 0.5:1,
0.75:1, 1:1, 1.25:1, 1.5:1 and 2:1 in the respective lanes. Proteins were silver stained. (C) Reducing
SDS-PAGE (7.5% gel) after reaction of bovine a2M with activated C2. Lane 1, Bio-Rad molecular weight
markers consisting of myosin (200 kDa), b-galactosidase (116.2 kDa), phosphorylase b (97.4 kDa),
bovine serum albumin (66.2 kDa), and ovalbumin (45 kDa); lane 2, a2M (10 lg); lane 3, C2-a2M
complex (10.372 lg). Proteins were stained with Coomassie blue R-250. Arrows represent bands at 95
and 85 kDa.
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protease’s active site, resulting in partial inhibi-
tion [6]. Consistent with this observation
bovine a2M inhibited 99% of the proteolytic
activity of C2 towards hide powder azure
and 45% of the peptidolytic activity against
Bz-Pro-Phe-Arg-pNA (Fig. 1A). In contrast
to cathepsin L and papain (result not shown),
the peptide substrate experienced restricted
access to the active site of congopain (15%
inhibition at equimolar concentrations with
a2M), and to a greater extent to that of C2,
when in the a2M complex. A similar observa-
tion was made for cruzipain when assayed for
inhibition with human a2M using the same
peptide substrate [31]. From the inhibition
assays it appeared that the enzyme and inhib-
itor interact in an equimolar ratio, since no
further inhibition of C2 activity was observed
above this ratio.

The transformation of a2M from the native
‘‘slow’’ to the ‘‘fast’’ form after interaction with
C2 (i.e. the change of a2M to a more compact
conformation after cleavage of the bait region)
was illustrated by non-denaturing PAGE
(Fig. 1B). There was a clearly observed increase
in the mobility of a2M in the gel upon reaction
with C2 at a2M:C2 molar ratios of 0.25:1 and
0.5:1 (lanes 2 and 3). For a2M:C2 molar ratios
between 0.75:1 and 2:1 (lanes 4–8), decreasing
proportions of a2M interacted with C2 as
shown by the decreasing amounts of the
‘‘slow’’ compared to ‘‘fast’’ forms of a2M.
Reducing SDS-PAGE of the a2M-C2 complex
revealed that the a2M bait region had been
cleaved by the enzyme C2 (Fig. 1C) as evi-
denced by the presence of protein bands at
approximately 95 and 85 kDa, representing
the sizes of the fragments produced under
reducing conditions when the bait region has
been cleaved [35].

3.2. Evaluation of rabbit anti-C2 antibody
production by ELISA

In order to compare the levels of antibodies
produced over time in rabbits immunised with
C2 in the absence and presence of adjuvants,
ELISA plates were coated with C2 or native
congopain and indirect ELISA conducted.
Rabbits A1 and A2, immunised with C2

without the use of adjuvant, showed no discern-
ible levels of anti-C2 IgG (Fig. 2), except at
week 6 for rabbit A1 (Fig. 2A), when a low
level of antibodies was produced. Rabbits B1
and B2, immunised with bovine a2M-C2
complexes, showed moderate levels of anti-C2
IgG throughout the test period (Fig. 2). Rabbits
F1 and F2, immunised with C2 in Freund’s
adjuvant, consistently showed the highest levels
of anti-C2 IgG, with the exception of F1 at
week 3 (result not shown). Rabbits R1 and
R2, immunised with rabbit a2M-C2 complexes,
showed differing anti-C2 IgG responses. At
week 3, rabbit R1 showed high levels of anti-
C2 IgG whereas R2 showed no anti-C2 IgG
(result not shown). At week 6, both rabbits
showed moderate levels of anti-C2 IgG, with
levels in R1 higher than those in R2
(Fig. 2A), a trend that was repeated at week 9
(result not shown). At week 11, the anti-C2
IgG levels in R1 had decreased to become level
with those in R2 (Fig. 2B).

Recognition of native congopain by anti-C2
antibodies collected over the immunisation per-
iod was assayed in an ELISA using a single
antibody concentration of 100 lg/mL (Fig. 3).
The anti-C2 antibodies showed good recogni-
tion of native congopain. The highest antibody
levels were observed for weeks 3 and 6, after
which antibody levels declined. Generally,
these results agree with those shown in
Figure 2 for the recognition of C2 in an ELISA,
except that there appears to be slightly better
recognition of native congopain by antibodies
from rabbits immunised with C2 without any
adjuvant.

3.3. Inhibition of C2 and congopain activity
by rabbit anti-C2 antibodies

In order to determine the effect of the anti-
bodies on C2 activity, the unactivated enzyme
was incubated with the respective purified rab-
bit IgG samples before assaying for residual
activity with the fluorescent substrate Z-Phe-
Arg-AMC. In control incubations, purified
non-immune rabbit IgG was incubated with
C2. Negative percentage change in activity val-
ues (Fig. 4) suggest that the addition of anti-C2
IgG resulted in reduced hydrolysis of the
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substrate compared to samples containing non-
immune IgG, i.e. decreased enzyme activity.
Assays of the effect of antibody concentration
on enzyme inhibition generally showed a
decrease in % inhibition with a decrease in anti-
body concentration (Fig. 4).

Week 3 IgG generally had little effect on the
activity of C2 with antibodies from rabbits im-
munised with bovine a2M-C2 complexes (B2)
showing the only significant inhibition of C2
activity (result not shown). In the assay of week
6 IgG (Fig. 4A), IgG from all rabbits resulted in
inhibition of the activity of C2 against the sub-
strate, although the inhibitory effect of IgG
from rabbits immunised with C2 and Freund’s
adjuvant (F2) was minimal. The best inhibition
was seen for IgG from rabbits immunised with
rabbit a2M-C2 complexes (R1 and R2), fol-
lowed by IgG from rabbits immunised with
bovine a2M-C2 complexes (B1 and B2). IgG

from rabbits immunised with C2 triturated with
Freund’s adjuvant (F1 and F2) and immunised
without adjuvant (A1 and A2) comparably
showed the least inhibition. In the assay of
week 9 IgG (result not shown), inhibition of
C2 activity against the substrate was only
observed for IgG from rabbits immunised with
rabbit a2M-C2 complexes (R1 and R2) and
bovine a2M-C2 complexes (B1), and to a
small degree, IgG from rabbits immunised
with C2 and Freund’s adjuvant (F1) and with-
out any adjuvant (A1). The IgG from the other
rabbits appeared to enhance the activity of C2
against the substrate. In the assay of week 11
IgG (Fig. 4B), the inhibition profile was very
similar to that seen for week 6 IgG. The only
exception was that week 11 IgG from rabbits
immunised with C2 without adjuvant (A1
and A2) enhanced the activity of C2 to a small
degree.
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Figure 2. ELISA of anti-C2 antibodies produced at week 6 (A) and 11 (B) by rabbits immunised with C2
alone, or in combination with different adjuvants. C2 was coated onto ELISA plates (1 lg/mL in 50 mM
carbonate buffer, pH 6, 16 h, 4 �C) and probed for recognition by IgG collected at weeks 6 and 11 from
rabbit A1 (s; solid line), A2 (s; broken line), B1 (m; solid line), B2 (m; broken line), F1 (·; solid line), F2
(·; broken line), R1 (j; solid line), and R2 (j; broken line), and non-immune IgG (�). Absorbance
readings at 405 nm represent the average of two experiments. Goat anti-rabbit IgG-HRPO labelled
antibodies were used for detection and ABTS/H2O2 as substrate as described in Materials and methods.
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It was deemed important to determine
whether IgG that inhibited Z-Phe-Arg-AMC
hydrolysis by C2 would also be inhibitory
towards the proteolytic activity of congopain,
the native form of the enzyme purified from try-
panosome lysates. The amount of congopain
available was limited, therefore only IgG from
week 6 was assayed. As was seen for the assay

of the effect of week 6 IgG on C2 (Fig. 4A),
IgG from rabbits immunised with rabbit a2M-
C2 complexes (R1 and R2) was the most inhib-
itory, followed by IgG from rabbits immunised
with bovine a2M-C2 complexes (B1 and B2)
(Fig. 5).

The highest percentage of inhibition of C2
hydrolysis of Z-Phe-Arg-AMC obtained in the
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present study were 61% and 65%, which were
observed for week 11 IgG isolated from rabbits
immunised with C2 complexed to rabbit and
bovine a2M respectively (Fig. 4B). Antibodies
produced by rabbits immunised with C2 in
Freund’s adjuvant were generally found to
weakly inhibit congopain and C2 with a maxi-
mum of 40%. Curiously the same antibodies
from the one rabbit enhanced the activity of con-
gopain against Z-Phe-Arg-AMC (Fig. 5, F2).
From the data obtained, it appeared that in
general IgG fractions isolated from rabbits
immunised with rabbit a2M-C2 complexes
were the most inhibitory towards the proteolytic
activity of C2 and congopain.

4. DISCUSSION

There is currently no vaccine available for
trypanosomosis in cattle, and although there

are control strategies in place such as trypanoci-
dal drugs and tsetse control, the disease is still a
constraint to livestock production in many parts
of Africa [25]. Due to the ability of the parasite
to evade the host’s immune system by antigenic
variation and immunosuppression [37], the
development of an anti-disease vaccine, that
would limit the pathogenic effects of infection
rather than suppress parasite growth, constitutes
an attractive alternative to conventional vacci-
nation [4, 20]. Congopain has been identified
as a pathogenic factor of trypanosomosis [3],
and the purpose of the present study was to
identify an adjuvant system that would elicit
an antibody response to congopain to inhibit
its enzyme activity and thus its pathogenic
effects.

Our investigation into the interaction of C2,
the truncated catalytic domain of congopain,
with bovine a2M showed that active C2 cleaves
the bait region of bovine a2M. This cleavage
resulted in inhibition of C2 by trapping of the
protease within the a2M tetramer. C2 and
bovine a2M appear to interact in an equimolar
ratio. This information was used for the prepa-
ration of complexes of C2 with bovine a2M and
rabbit a2M for the production of anti-C2 anti-
bodies in rabbits.

All eight rabbits were immunised with the
same amount of C2, i.e. 10 lg per immunisa-
tion. However, the titres of anti-C2 antibodies,
as determined by ELISA, varied according to
the type of adjuvant used in the immunisation
procedure. In the absence of adjuvant, the levels
of anti-C2 antibodies were barely detectable.
Freund’s adjuvant elicited a strong antibody
response against the small amount of C2 used
for immunisation, but the efficacy of these anti-
bodies in inhibiting the activity of C2 in vitro
was limited. The anti-C2 antibody titres
observed where a2M (both bovine and rabbit)
was used as an adjuvant were moderate, and
yet, these antibodies showed the best inhibition
of the C2 mediated hydrolysis of Z-Phe-Arg-
AMC.

These anti-rabbit and bovine a2M com-
plexed-C2 antibodies inhibited whole (native)
congopain activity in addition to that of the
(recombinant) catalytic domain of congopain,
C2. This was imperative since it would be the
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native cysteine proteinase that these antibodies
would encounter in vivo upon challenge with
the parasite. Although the optimal pH values
for C2 and native congopain activity are
reported to be 6 and 6.4 respectively [9, 11],
physiological pH was used in the present study
to obtain results that would have application to
a vaccine in vivo.

Rabbits immunised with rabbit a2M com-
plexed with C2 produced antibodies with max-
imal enzyme inhibition, followed closely by
antibodies from rabbits immunised with
bovine a2M complexed with C2. Rabbits
immunised with C2 mixed with Freund’s adju-
vant produced antibodies that were only
weakly inhibitory, and sometimes resulted in
enhancement of enzyme activity. Binding of
these ‘‘activating’’ antibodies to the enzyme
may have caused conformational changes that
favoured the reaction with the substrate. Acti-
vation of enzyme activity by Freund’s adjuvant
generated antibodies has been reported in
studies with b-lactamase and trypanopain-Tb
[34, 41]. We were unable to explore why
two rabbits immunised with the same immu-
nogen (C2 and Freund’s adjuvant) produced
antibodies that enhanced enzyme activity in
the one instance and inhibited activity in the
other. It would have been interesting to be able
to measure the effects of antibodies collected
at other time points in both rabbits. In sum-
mary, whilst immunisation using Freund’s
adjuvant resulted in a higher level of antibody
production, immunisation using rabbit or
bovine a2M resulted in a qualitatively superior
antibody production (i.e. antibodies that inhib-
ited C2 activity). In the context of a vaccine to
neutralise congopain activity, immunisation
with C2 complexed to a2M seems a viable
option since the antibodies produced were
inhibitory towards the protease in vitro.

It is well established that a2M-antigen com-
plexes are targeted to antigen presenting cells
that express the a2M receptor, which in turn
results in enhanced presentation of the antigen
by MHC class II molecules to CD4+ T cells
[13, 16, 26]. This antigen delivery has been
shown to occur with monocytes and macro-
phages [1, 12, 26], recognised as amateur anti-
gen presenting cells, and more recently

professional antigen presenting cells such as
CD11c+ lin� blood dendritic cells and Langer-
hans cells [16]. In the present study, this mech-
anism of antigen delivery appeared to result in
antibodies that were better able to inhibit the
activity of the enzyme than antibodies produced
with the use of Freund’s adjuvant. This may be
due to the preservation of the three-dimensional
conformation of the enzyme when it is trapped
inside the a2M molecule. With Freund’s adju-
vant, the free enzyme is exposed to denaturation
by the very low pH of the adjuvant and receives
no such protection as in the a2M complexes.
In separate (unpublished) experiments in mice,
active C2 was significantly more immunogenic
than the corresponding inactive enzyme (active
site Cys mutated to Ala). This is consistent with
current results since inactive C2 does not bind
to natural host inhibitors such as a2M (unpub-
lished observation). Where the inhibition of
congopain by anti-peptide antibodies has been
investigated, antibodies were generally found
to enhance the activity of the enzyme (unpub-
lished observations). Results for evaluating the
effect of anti-peptide antibodies on the activity
of trypanopain from T. b. brucei have been
shown to range from enhanced activity
(176%) to inhibition of up to 85% [41].

In a previous study where cattle were im-
munised with C2 and RWLTM, a proprietary
adjuvant from Smith Kline Beecham, the anti-
C2 antibodies produced resulted in 50–60%
inhibition of C2 activity in vitro [4]. Whilst im-
munisation had no effect on the establishment
of infection or the development of acute anae-
mia, immunised cattle managed to maintain or
even gain weight during infection. Studies are
currently underway in a mouse model system
to establish whether the humoral immune
response induced by a2M-congopain com-
plexes confers protection following experimen-
tal infection with T. congolense.

Another apparent benefit to using a2M as an
alternative to conventional adjuvants, is its abil-
ity to induce antibody responses to lower doses
of antigen, as observed for HIV envelope sub-
unit peptides [22]. This is a critical aspect for
a vaccine since the amount of antigen required
will greatly affect the practicality of the anti-
disease vaccine approach.
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There are other molecules besides congopain
that contribute towards the pathology of trypan-
osomosis and which may be worth associating
in a multicomponent ‘‘vaccine’’. Other potential
pathogenic factors identified thus far include
oligopeptidase B from T. brucei, T. congolense
and T. evansi [14, 27, 28], and a surface located
acid phosphatase [39]. Although these enzymes
do not cleave the bait region of a2M, they could
be incorporated into a2M using congopain or
via a non-proteolytic method [15].

The findings of the present study are a step
towards improving the efficacy of immunisa-
tion with cysteine proteases in a vaccine strat-
egy aimed at mitigating the pathological
consequences of trypanosome infections.
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