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Abstract – Characterizing spatio-temporal patterns among epidemics in which the mechanism of
spread is uncertain is important for generating disease spread hypotheses, which may in turn inform
disease control and prevention strategies. Using a dataset representing three phases of highly
pathogenic avian influenza H5N1 outbreaks in village poultry in Romania, 2005�2006, spatio-
temporal patterns were characterized. We first fit a set of hierarchical Bayesian models that
quantified changes in the spatio-temporal relative risk for each of the 23 affected counties. We then
modeled spatial synchrony in each of the three epidemic phases using non-parametric covariance
functions and Thin Plate Spline regression models. We found clear differences in the spatio-temporal
patterns among the epidemic phases (local versus regional correlated processes), which may indicate
differing spread mechanisms (for example wild bird versus human-mediated). Elucidating these
patterns allowed us to postulate that a shift in the primary mechanism of disease spread may have
taken place between the second and third phases of this epidemic. Information generated by such
analyses could assist affected countries in determining the most appropriate control programs to
implement, and to allocate appropriate resources to preventing contact between domestic poultry
and wild birds versus enforcing bans on poultry movements and quarantine. The methods used in
this study could be applied in many different situations to analyze transboundary disease data in
which only location and time of occurrence data are reported.

disease spread / spatio-temporal analysis / epidemic pattern / avian influenza / poultry

1. INTRODUCTION

Knowledge of spread mechanisms informs
disease control and prevention strategies. To
most effectively control an outbreak of highly
pathogenic avian influenza (HPAI) subtype
H5N1 in a country, the dominant mechanism
of spread needs to be known. Although the
potential causes of HPAI spread within national

poultry populations are broadly contact with
infected wild birds and human-mediated trans-
port of infected poultry and poultry products,
simply visualizing the pattern of spread is insuf-
ficient for concluding which mechanism might
be dominant within a given epidemic [34]. A
first step in formulating hypotheses about
mechanisms of spread based on outbreak data
involves quantifying variations in spread pat-
terns among epidemics. We hypothesize that
epidemics mediated by wild bird contact should
have a different spatial and temporal structure
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than an epidemic in which human spread is
dominant. If spatio-temporal patterns can be
broadly classified a priori, it might be possible
to match them with the spatio-temporal pattern
from an epidemic with an unknown mechanism
of spread, which will in turn provide informa-
tion for designing more effective surveillance
and response measures.

HPAI virus subtype H5N1 was first identi-
fied in Hong Kong in 1996. Prior to 2005,
infection was confined to east and south-east
Asia. More recently, it has spread across Asia
to the Middle East, Eastern and Western
Europe, and Africa, causing numerous disease
outbreaks in domestic poultry and wild bird
populations [1]. HPAI subtype H5N1 is consid-
ered a threat to world health because of its
potential to infect and cause morbidity and mor-
tality in humans. There is a fear that it could
become the next pandemic influenza strain [1].

Avian influenza virus infection is endemic in
a range of free-living bird species world-wide
[1], particularly species associated with water.
Migratory waterfowl might be responsible for
the spread of influenza A viruses between
regions [22, 27], and HPAI and low pathogenic
avian influenza (LPAI) viruses in poultry are
often assumed to occur from exposure to wild
avian species [17, 20, 24, 25, 31]. Infected
migratory waterfowl have been suspected of
spreading HPAI virus subtype H5N1 from cen-
tral Asia to Eastern Europe during the second
half of 2005, based on migratory flyways
[13]. However, the relationship between
infected migratory waterfowl and outbreaks of
HPAI and LPAI in poultry remains mostly spec-
ulative. The transport of infected poultry and
contaminated poultry products have been
blamed in some cases for spreading the disease,
for example within China [11]. In other cases,
the spread of HPAI virus subtype H5N1 has
been more consistent with trade routes than
with migration flyways [13, 21]. The spread
of avian influenza virus via smuggled poultry
carcasses and wildlife has been documented
[3, 30]. By its very nature, the role played by
smuggling and the illegal movement of poultry
and poultry products is very difficult to confirm.

In this study, we use three different model-
ing approaches to quantify spatio-temporal

outbreak dynamics among three phases of an
epidemic of HPAI subtype H5N1 within a
national poultry population. Our goal was to
illustrate how such models can be used to gen-
erate hypotheses regarding underlying mecha-
nisms of spread. First, we used a set of
Bayesian hierarchical models with spatial and
spatio-temporal random effects specified by an
intrinsic conditional autoregressive structure
[4, 5] to identify variations in the patterns of
spatio-temporal relative risk among three epi-
demic phases of HPAI subtype H5N1 outbreaks
in village poultry in Romania, 2005–2006.
Second, we modeled the space-time correlation,
or spatial synchrony [6, 7], of outbreaks within
each of the three epidemic phases to identify
variations in their spatio-temporal patterns.
The patterns of synchrony result from fitting
smoothing splines to a data set that reflects
the daily outbreak status of each village
throughout the course of each phase of the epi-
demic. This provides an estimate of the correla-
tion between outbreak status for every village
on each epidemic day as a function of the spa-
tial separation among all villages within a given
outbreak phase. The resulting spatio-temporal
patterns were then used to provide insight into
the intervening epidemic phase for which the
mechanism of spread was most uncertain.
Finally, we fit a surface, known as a Thin Plate
Spline, to the data to visualize and quantify
variations in spread patterns among epidemic
phases. These three modeling approaches make
clear the distinction in space-time dynamics
among outbreak phases and provide an entry
point to formulate hypotheses about underlying
mechanisms of spread.

2. MATERIALS AND METHODS

2.1. Data source

Between October 2005 and June 2006, 165 out-
breaks of HPAI subtype H5N1 were reported in
161 village poultry populations. Outbreaks were
reported (Fig. 1) from 23 of the 41 counties in
Romania, covering about half (128 000 km2) the
area of the country. Disease control measures used
in this epidemic included quarantine of affected
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villages, flock depopulation, disinfection, placement
of serologically-monitored sentinel flocks prior to
village restocking, and national movement controls.
Vaccination was not used to control this epidemic1.

Data available included the outbreak location
(X, Y values using the stereographic 60 coordinate
system with distances in meters) and the reported
date of occurrence. Outbreak locations represented
the village in which HPAI subtype H5N1 was
identified. Since this is a backyard production system,
the entire village flock was assumed to be infected
(separate backyards were not differentiated).
The coordinate information represents the official
geographic location of an affected village.

The epidemic curve of reported outbreaks has
been analyzed previously by Ward et al. [34]. Three
epidemic phases were apparent: 7 October–20
December 2005 (days 1–75; 23 outbreaks), 7
January–20 March 2006 (days 93–165; 28 out-
breaks), and 12 May–6 June 2006 (days 217–243;
110 outbreaks). Half of all outbreaks were reported
during an 85-day period, between 27 February and
23 May (epidemic days 144–229).

Previous analysis of this epidemic provided some
insight into the pattern of HPAI subtype H5N1 occur-
rence in space and time [34]. Outbreaks first appeared
in eastern and southern Romania, particularly within
an area that forms part of the Danube River Delta,
and then spread in an east to west direction to central
Romania. It was suggested that the evolution of the
epidemic consisted of disease introduction, local
spread and sporadic outbreaks caused by interaction
between wild birds and domestic poultry (phase 1),
and long-distance disease spread with rapid epidemic
propagation (phase 3) caused by human-related fac-
tors [34]. Outbreaks during the intervening period
(phase 2) might have been caused by either of these
two hypothesized mechanisms of spread, or a mixture
of them. Here we extend the above work to character-
ize the spatio-temporal patterns of the epidemic
phases and to develop hypotheses about potential
mechanisms of spread.

2.2. Data analysis

We used three approaches to characterize the
spatio-temporal patterns. The first analysis used
a hierarchical Bayesian model to quantify the spread
of disease throughout the entire epidemic, at the
county scale of analysis. We considered a generalized

linear mixed model for the number of outbreak vil-
lages in each county. For each county, we modelled
the probability of observing a given number of out-
break villages as a function of a linear trend in time
(fixed effect term in the models) and three random
effect terms, which account for any unobserved
covariates as well as the spatial, non-spatial, and spa-
tio-temporal patterns in the outbreak data.

This generalized linear mixed model can be
described in three stages: the data model, or likeli-
hood linking the data to the model parameters; the
process model relating the covariates and random
effects to the parameters, and the prior distributions
for all model parameters [35]. Our interest focused
on the posterior distribution, the distribution of the
process and parameters after being informed by the
data. For many ecological problems, the high dimen-
sionality of the model can prohibit the use of standard
methods. However, Markov Chain Monte Carlo
(MCMC) [12, 14] techniques allowed us to estimate
the posterior distribution of interest.

2.3. Data model

The data model relates the number of outbreak vil-
lages in each county and week to the probability of
occurrence, adjusted by the total number of villages
in each county. Let Yij be the number of infected vil-
lages in week i = 1,. . .,n in county j = 1,. . .,k. We
assume that the number of villages experiencing an
outbreak is Poisson distributed with parameter kij,
adjusted for the total number of villages per county, nj:

Yij kijnj

�� � Poisson kijnj

� �
ð1Þ

where kij is the probability of observing Yij out-
breaks in county j on week i. All observations are
assumed to be conditionally independent given this
parameter.

2.4. Process model

The process component of the model relates the
probability of observing a given number of out-
breaks, kij, to the linear trend in time and three ran-
dom effect terms that capture the non-spatial,
spatial, and spatio-temporal patterns in the outbreak
data. To model the Poisson distributed outbreak prob-
ability we use a standard log-linear transform. Thus
we model the probability of observing a given num-
ber of outbreaks in each county and week as:

log kijnj

� �
¼ lþ mij þ cij þ b � ti þ cij � ti ð2Þ

1 www.oie.int/eng/info_ev/en_AI_avianinfluenza.
htm [consulted 26 August 2008].
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where l is the background infection rate common
to all counties and times; mij is an independent ran-
dom effect term (HET) associated with the ith week
in county j; cij is the spatial random effect term
(SPACE) for ith week in county j; b is a fixed effect
modeling the linear trend of the outbreak in time
(TIME); and cij Æ ti is an interaction random effect
between space and time (SPACE_TIME). All
model terms are described below.

2.5. Prior and posterior distributions

Because our analysis is fully Bayesian, we specify
prior distributions for all model parameters in
the hierarchy. The independent random effect,
mij, corresponds to a latent process operating indepen-
dently in each county and week. We let mij �

i:i:d: Nð0; r2
mIÞ for i = 1,. . .,n and j = 1,. . ., k where

I is an ni · nj indicator matrix. This component mod-
els the overall unstructured heterogeneity in the data
by assuming no relationship among neighboring vil-
lages or weeks, but with a variance that is common to
all counties and weeks.

The spatial component, modelled by cij describes
the latent, or unobserved, transmission process
among counties in each week resulting in the spatial
structure of the outbreaks each week. We specify the
spatially structured variation in outbreak probabili-
ties, cij, via an Intrinsic Gaussian Conditional Autore-
gressive (ICAR) model [4]. For each week i and
county j in our problem, the ICAR model states that
cij is related to the c terms for the neighboring coun-
ties; and, given the c terms for the neighboring coun-
ties, each county is independent of all other counties
outside the local neighborhood. Specifically, let the

Figure 1. Romanian village poultry outbreaks of HPAI subtype H5N1 between 2005 and 2006.
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set of neighbors of county j be denoted by j+. Then,
for each week i in county j, we assume the condi-
tional relationship

cij cijþ
�� � Normal

1

njþ

X
i injþ

ci;
r2

c

njþ

� �
ð3Þ

where nj+ is the number of neighbors of county j and
r2

c is the variance common to all counties. Thus, the
conditional mean of cij is simply the average value

of its neighbors cij+, with conditional variance
r2c
njþ

inversely proportional to the number of neighbors.
In the conditional mean in Equation (3), the neigh-
boring counties are equally weighted so that all
neighbors of county j influence it equally. Spatial
variation in our model is limited to counties sharing
a border; however there are no a priori restrictions
on specifying the neighborhood structure or county
weights. We chose to use only the neighboring
counties instead of including a larger neighborhood
because we wish to maintain a sharp distinction
between local dependency and global unstructured
heterogeneity, which becomes increasingly blurred
as the local neighborhood is extended. The linear
trend in time, b Æ ti, is the rate ratio between two con-
secutive weeks and provides and estimate of the rate
at which the number of outbreaks changes between
weeks. We let b ~ N(0,10 000) be the prior distribu-
tion for the time trend parameter. Finally, the space-
time interaction random effect, cij Æ ti, models the
interaction between space and time during the
course of the epidemic.

All models were fit using WinBUGS [23] soft-
ware and an MCMC procedure for each model run
for 50 000 iterations after a burn-in period of
10 000 iterations to ensure convergence of all model
parameters. Convergence diagnostics and autocorre-
lation statistics were used to assess the mixing of
the chains and the MCMC sampling quality for each
parameter.

We used a Deviance Information Criteria (DIC), a
generalization of the Akaike Information Criteria
(AIC), to compare the set of candidate models [29].
These criteria are based on the deviance, D(h) =
�2 ln L, where L is the likelihood and h is the vector
of model parameters, and a penalty for model com-
plexity. For AIC, the penalty is two times the number
of parameters in the model. The complexity of a hier-
archical model is measured by the effective number
of parameters (pD), which can be smaller than the
total number of parameters. This complexity is
defined as pD ¼ DðhÞ � Dð�hÞ, where DðhÞ is the

expected deviance over the posterior distribution of
parameter vector h taken across all MCMC samples,
and Dð�hÞ is the deviance evaluated at the posterior
mean of the parameter vector. Finally, DIC ¼
DðhÞ þ pD ¼ 2DðhÞ � Dð�hÞ. Smaller values of
DIC indicate a better-fitting model. As with other
penalized likelihood criteria, DIC is a method for
comparing a collection of alternative models [9].

Burnham and Anderson [8] derived Akaike
weights that, when normalized, can be interpreted
as a set of weights that sum to one and estimate
the probability that model r is the best Kullback-
Leibler model for the data at hand, given the set of
models considered. This approach provides a method
for assessing model selection uncertainty. An analo-
gous approach based on DIC has been suggested to
assess model selection uncertainty within a Bayesian
modelling context [29]. We used DIC weights (wDIC)
to estimate model selection uncertainty for each
model r in the candidate set, calculated using the
formula for Akaike weights

wDIC ¼
expð� 1

2
�DICÞP

expð� 1
2
�DICÞ ð4Þ

where DDIC was the difference between the mini-
mum DIC value in the candidate set and model r,
and the denominator was the sum over all models
in the set under consideration. The DIC weights
are an informal measure and allow easier compari-
son between models than the DIC value itself.

For the second analysis we used smoothing splines
to examine the pattern of spatial synchrony, q

�ðdÞ,
among outbreak villages for each phase of the epi-
demic. Synchrony among outbreak villages in each
phase of the epidemic was quantified using non-
parametric spatial covariance functions (package ncf
v1.08 within R v2.6; [6, 7]) that allow examination
of the decay in spatial correlation for temporally fluc-
tuating spatially-referenced populations, from local to
large regional scales, by calculating correlations for all
pairs of time series at numerous distances and then fit-
ting a smoothing spline. The non-parametric spatial
covariance function is given by;

q
�ðdÞ ¼

Pn
i¼1

Pn
j¼1

Gðdij=hÞðq̂ ijÞ

Pn
i¼1

Pn
j¼1

Gðdij=hÞ
ð5Þ

where G is the kernel function with bandwidth h, dij
is the distance between villages i and j, and qij is the
correlation among outbreaks between locations i
and j. The kernel function used in this application
is the cubic B-spline [26] as it adapts better to
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irregularly spaced data than many regression
kernels [19] and is known to provide consistent
estimates of the covariance function. The asymp-
totic kernel function for the cubic B-spline [15] is:

KðuÞ ¼ 1

2
exp � uffiffiffi

2
p

� �
sin � uffiffiffi

2
p þ p

4

� �
ð6Þ

where u equals dij/h in the current case. This
asymptotic curve is nearly bell-shaped, except for
the tails which vanish rapidly in a sinusoidal man-
ner. The bandwidth, h (> 0), is the parameter that
adjusts the smoothness of the fitted curve. This
parameter is analogous to the distance-class width
used in defining spatial correlograms. The optimal
bandwidth is found by standard means of least
squares cross-validation.

Synchrony, which can be decomposed into local
and regional components, is the correlation between
when and where outbreaks occurred. Local
synchrony is defined as the average correlation
between time series as the distance approaches zero.
Regional synchrony is the average correlation across
the study area. We used daily outbreak status of each
village as the temporal resolution for fitting the
smoothing splines. The covariance functions, and
hence estimates of regional synchrony, were esti-
mated across the entire area of each epidemic phase.

Finally, we fit a set of models using a technique
known as Thin Plate Spline regression (package
Fields v5.01 within R v2.6) [2, 16, 18] for each out-
break phase to produce maps of spatio-temporal
spread. This approach differed from hierarchical
Bayes mapping by estimating the direction and mag-
nitude of spread for each outbreak village. Unlike
Kriging, this interpolation method does not require
fitting a variogram model to the data, but instead uses
a generalized cross-validation procedure (minimiza-
tion) to identify the optimal level of smoothing (see
[18] for a thorough review of Thin Plate Splines).
This approach also differs from Kriging by using
non-linear polynomial equations to fit an interpolated
surface to the data, resulting in directional derivatives
which model the direction of spread for each out-
break location and time.

Each Thin Plate Spline represents a spatial covari-
ance function produced by fitting the outbreak data to
a set of radial basis functions whose parameters are
found through application of a generalized cross-
validation procedure. The objective is to find a suit-
ably smooth function, f, which minimizes:

Xn

i¼1
yi � f xið Þ½ �2 þ kJmðf Þ ð7Þ

where yi is the observed outbreak day at location xi;
Jm(f) quantifies the roughness of f which itself is
defined in terms of the mth partial derivatives of f;
and k is a positive value known as the smoothing
parameter. This parameter controls the amount of
data smoothing and its value is determined by gener-
alized cross-validation, which measures the predic-
tive error of the fitted function, f. Generalized
cross-validation proceeds by removing each data
point in turn and summing the square of the differ-
ence of each omitted data value from the Thin Plate
Spline fitted to all remaining data points [10]. The
solution to Equation (7) can be written as:

f ðxÞ ¼
XM

j¼1
ajujðxÞ þ

Xn

i¼1
biwðriÞ ð8Þ

where uj are a set of M polynomials and w is a sca-
lar function of the Euclidean distance ri between x
and xi. The coefficients aj and bi are estimated as
part of the generalized cross-validation procedure.
Directional derivatives are calculated from this
model via finite differencing between an outbreak
location and its nearest neighbor in time and space,
where the steepness of the gradient based on the
differencing estimates the rate of spread.

We formulated multiple candidate models by
varying the number of polynomial terms (using first,
second, third, and so on, order polynomials) in each
Thin Plate Spline regression model and used AIC to
select the best approximating model in the candidate
set of polynomial equations. This best approximating
Thin Plate Spline model was used to visualize the
estimated direction and magnitude of spread among
epidemic phases with the goal of determining if sub-
stantial differences in the Thin Plate Spline patterns
existed between outbreak phases. Thus, we used this
model to produce a spatially explicit representation of
the different hypothesized mechanisms of spread
among outbreak phases.

3. RESULTS

The hierarchical Bayes model selection
results (Tab. I) highlight the importance of
including various spatial and temporal compo-
nents in models designed to estimate the spatio-
temporal patterns of disease spread when
multiple mechanisms might drive the dynamics.
In particular, the weight of evidence forModel 1,
the best model which contained the full suite of
spatial and temporal effects, was very high
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(0.985). Although the second best model
included a spatio-temporal interaction term it
received very little support from the data (based
on wDIC) because it did not account for overall
unstructured spatial heterogeneity (HET) in the
epidemic. Although the mean relative spatio-
temporal risk (Fig. 2), which quantifies the rela-
tive risk of an outbreak occurrence for each
county as the epidemic progressed through each
week, increased as the epidemic progressed,
there were clear differences in the risk among
epidemic phases. In particular, the relative spa-
tio-temporal risk for combined epidemic phases
1 and 2 ranged from 0.913 to 1.165 (0.252 units),
whereas the relative spatio-temporal risk for
phase 3 ranged from1.184 to 1.352 (0.168 units).
These estimates correlate with the visualization
of the epidemic (Figs. 1 and 2): epidemic phase
3 evolved much more rapidly than phases
1 and 2.

Within epidemic phase 1, the greatest syn-
chrony (Fig. 3) occurred at the local spatial
scale (within approximately 50 km). The func-
tion declined smoothly, as expected for a typical
spatially structured epidemic process. Clearly
the pattern from phase 3 (Fig. 3) of this epi-
demic (predominantly in central Romania)
was very different: local synchrony started close
to 0 and gradually increased with increasing
distance, reaching a peak at approximately
260 km. Local synchrony (the average correla-
tion between outbreaks as the distance

approaches zero) was 0.04 and 0.001 for phases
1 and 3, respectively, whereas regional syn-
chrony (the average correlation across the study
area) was approximately 0.01 and 0.06 for
phases 1 and 3, respectively. Thus, the spread
dynamics were more of a locally correlated pro-
cess in the first epidemic phase (80 versus 20%,
local versus regional), and a much more region-
alized process in the third epidemic phase
(2 versus 98%, local versus regional). The pat-
tern of synchrony for phase 2 of this epidemic
was more closely aligned with that of phase
1, with local and regional synchronies of 0.06
(75%) and 0.02 (25%), respectively. Because
the local synchrony for phase 2 was markedly
higher than its regional synchrony, we hypoth-
esize that the mechanism of spread was likely
more similar to the mechanism driving phase
1 of the epidemic.

A fourth order polynomial produced the best
fitting Thin Plate Spline interpolation surface.
Figures 4 and 5 show the clear contrast in out-
break dynamics between phases 1 and 2 com-
bined versus phase 3, respectively, based on
both the underlying surface and the arrows rep-
resenting the estimated direction and relative
rate of spread among outbreak village locations.
The color scale represents the interpolated out-
break day, with dark blue being the earliest out-
break day and dark red representing the final
days of each phase. The length of each arrow
is calculated using finite differencing as

Table I. Model selection results to identify candidate models best explaining observed spatial and temporal
patterns of HPAI subtype H5N1 outbreaks in Romanian villages, 2005�2006. The models incorporated
various combinations of temporal (Time), spatial (Space), and unstructured heterogeneous (Het) variation.
Time represents the week of an observed outbreak within villages for each of the 23 counties that
experienced outbreaks, Space is the spatial random effect, and Het is the unstructured variation in the model,
pD = effective number of parameters, DIC = Deviance Information Criteria, wDIC = DIC weight that
informally quantifies model selection uncertainty.

Model Model pD DIC wDIC

1 Space + Het + Time + Space · Time 33.0 789.71 0.985
2 Space + Time + Space · Time 36.0 798.13 0.015
3 Space + Het + Time 19.3 949.41 0
4 Het + Time 19.3 949.51 0
5 Space + Time 21.3 954.16 0
6 Time 2.0 1069.46 0
7 Space + Het 18.44 1076.27 0
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explained above and represents the estimated
direction and rate of spread, with longer arrows
corresponding to a slower rate of spread.

The combined phases 1 and 2 surface shows
an estimated spread pattern clearly following a
north to south gradient as the epidemic evolved:
the arrows are all of similar length, suggesting a
constant rate of spread, and all are oriented from
north to south, highlighting the unidirectional
spread pattern. In contrast, the phase 3 surface
shows no clear directional gradient of spatial

spread over time. Apparently this phase origi-
nated in the center of the distribution of outbreak
villages (shown in blue) and then radiated out
rapidly in multiple directions, visualized here
by the discontinuous pattern of patches sharing
the same color. In addition, the varying length
and orientation of the directional derivative
arrows suggests inhomogeneous spread dynam-
ics. For example, clusters of shorter arrows that
represent rapid disease spread imply a local
source of relatively explosive dynamics.

Figure 2. Map of the posterior mean spatio-temporal relative risk of HPAI subtype H5N1 outbreaks from
the best (Model 1) hierarchical Bayesian spatial Conditional Autoregressive Poisson model fit at the county
scale of analysis. This component models the relative risk of an outbreak as the epidemic unfolds, with
darker shades representing greater risk through time. Numbers in the figure indicate which epidemic phases
were associated with each county, with some having more than one phase involved. Note the relatively
limited and protracted spatio-temporal relative risk for counties associated with phases 1 and 2 of the
outbreak, while the spatio-temporal interaction trend is wide spread and rapid across most counties
associated with phase 3.
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Figure 3. Spatial synchrony, calculated using Equation (5), in each of three epidemic phases of HPAI
subtype H5N1 outbreaks in Romanian poultry, 2005�2006. Non-parametric smoothing spline covariance
functions were fit to outbreak data in each epidemic phase to compare patterns of synchrony. Synchrony is
calculated by Equation (5). Phases 1 and 3 exhibit clear differences in the pattern of spatial synchrony and
are hypothesized as having two different mechanisms of spread. The pattern of synchrony in phase 2 is very
similar to phase 1.
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Locations with relatively few, longer arrows rep-
resent slower expansion of the epidemic involv-
ing only a few villages. The spatio-temporal
patternof this epidemicphase is not characteristic
of an epidemic in which landscape factors drive
the evolution of the epidemic; rather, the pattern
could be explained by human-mediated spread.

4. DISCUSSION

Information on how infectious diseases
spread through susceptible populations is critical
for designing control and surveillance programs.
For example, the spread of HPAI subtype H5N1
via migratory waterfowl poses very different

challenges for disease control (including the pre-
vention of contact between wild birds and
domestic poultry) compared to the movement
of infecteddomestic poultry as the disease spread
mechanism. Control is muchmore effective, and
efficient, if programs are based on the mecha-
nism of disease spread. The design of surveil-
lance programs (for example, the species that
need tobe sampled, the spatial and temporal scale
of sampling, and sample size) also depends on
knowledge of the mechanism of disease spread.

Different modes of spread are expected to
produce characteristic spatio-temporal patterns
of disease occurrence. Here we have shown
how models that capture these patterns can
be used to formulate hypotheses regarding

Figure 4. Thin Plate Spline regression model for combined phases 1 and 2 of an epidemic of HPAI subtype
H5N1 in Romanian poultry, 2005–2006. The color scale represents the interpolated outbreak day, with dark
blue being the earliest outbreak day and dark red representing the final days of each phase. The arrows show
the estimated direction and rate of spread, with longer arrows corresponding to a slower rate of spread. Note
the unidirectional and relatively homogeneous rate in the pattern (north-south gradient) of spread shown by
the arrows and underlying surface as the epidemic evolved across these two protracted epidemic phases.
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mechanisms of spread. The areal based hierar-
chical Bayesian models used in this study were
able to differentiate between these patterns,
even though the data were represented at a
coarse level and only included information on
date of reported disease occurrence and loca-
tion. The ability to apply analytical methods
to field data that might lack resolution and
information on important risk factors is a key
attribute of any method selected. The methods
used in this study could be applied in many dif-
ferent situations to analyze reported transboun-
dary disease data in which only location and
time of occurrence data are reported.

The 2005�2006 epidemic of HPAI subtype
H5N1 in Romania consisted of three phases
[34]. Based on analysis of the data [32, 33], it
was suggested that the first phase of the epi-
demic was caused by contact between infected
migratory wild birds and domestic poultry
whereas the third (last) phase was probably
caused by the movement of infected domestic
poultry. In the present study, the small change
in spatio-temporal relative risk over the course
of phase 3 of this epidemic (when compared
to the combined phases 1 and 2 estimates) indi-
cates a rapidly spreading pattern occurring over
a wide geographic scale. These results are

Figure 5. Thin Plate Spline for phase 3 of an epidemic HPAI subtype H5N1 outbreaks in Romanian
poultry, 2005–2006. The color scale represents the interpolated outbreak day, with dark blue being the
earliest outbreak day and dark red representing the final days of each phase. The arrows show the estimated
direction and rate of spread, with longer arrows corresponding to a slower rate of spread. The lack of
uniformity in the surface suggests an epidemic originating in the center of the region, followed by rapid
expansion in multiple directions occurring over a relatively short period of time. Note that the arrows vary
markedly in both length and orientation. Clusters of small arrows represent local rapid spread and long
arrows indicate slower disease spread, frequently occurring in disparate locations on similar epidemic dates.
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supported by the map of spatio-temporal risk
(Fig. 2), in which the combined phases 1 and
2 outbreaks show a relatively limited geo-
graphic extent and protracted epidemic dura-
tion. Furthermore, a simple spatio-temporal
structure was insufficient for modeling the dis-
ease spread dynamics across all three phases
of this epidemic. For our candidate set of mod-
els the combination of multiple spatial, both
structured and unstructured random effects, lin-
ear trend in time, and spatio-temporal random
effects resulted in maximizing the information
content in the data. Thus, using only simple
models to account for complex epidemic pat-
terns, such as variations in spatial and temporal
rates of spread across several phases of an epi-
demic, can result in poor inference regarding
spatio-temporal epidemic processes and
hypothesized mechanisms of spread. Prior to
attempting to fit such complex models, a thor-
ough understanding of the epidemic (provided
by a combination of spatial statistics and geo-
statistical methods) is needed [34].

The non-parametric smoothing spline analy-
sis further illustrates how quantifying differing
spatio-temporal patterns of spread can lead to
hypotheses about underlying mechanisms in
epidemics in which the cause of disease spread
is unclear. Applying this approach, we were
able to use the spatio-temporal patterns from
all three phases of the epidemic to develop
hypotheses about the possible spread mecha-
nism. Because almost all phase 1 outbreaks
occurred in association with the Danube River
(Fig. 1), and the initial outbreaks in October
and November, 2005 occurred in the Danube
Delta, a location and season in which large con-
centrations of waterfowl are known to occur
[28], it was suggested that these outbreaks
might have been caused by contact between
domestic poultry and migratory waterfowl
[34]. Further analysis using a spatial regression
lag model found that the distance between the
nearest migratory waterfowl site was the best
predictor (r2 = 0.425) of outbreak timing, but
only during phase 1 of the epidemic, supporting
the hypothesis that infections of village poultry
in Romania during the autumn of 2005 might
have occurred via exposure to migratory popu-
lations of waterfowl. In contrast to phase 1,

phase 3 (68% of all outbreaks) was of very short
(26 days) duration. Although it is clear that these
epidemic phases differed temporally and spa-
tially, and it has been hypothesized that phase 1
was wild bird mediated and phase 3 was due to
the illegal movement of poultry, until now there
has not been a comparison of the spatio-temporal
patterns of these phases to relate them to the
putative mechanisms of spread.

Phase 1 of the epidemic exhibited the great-
est spatial synchrony at the local scale, which
remained a declining function of distance until
approximately 100 km (the increase in this
function at a distance of approximately
175 km can be attributed to an isolated out-
break that occurred during the middle of
phase 1). This decaying spatial synchrony indi-
cates wave like spread of HPAI subtype H5N1,
as might be expected from a disease transmitted
by contact with wildlife concentrated at specific
sites. In contrast, phase 3 of the epidemic
showed the greatest spatial synchrony at the
regional scale, suggesting simultaneous long-
distance translocation of HPAI subtype H5N1,
reaching its maximum at approximately
260 km. Phase 2 showed the same general pat-
tern as phase 1: a smoothly decaying function
of distance, to a distance of approximately
150 km. The similar pattern of spatial syn-
chrony between the first two phases suggests
the possibility of a common mechanism of
spread, in this case it may be contact between
infected wild birds and domestic poultry and
potential local spread among villages. In con-
trast, the increasing spatial synchrony with
increasing distance observed in phase 3 sug-
gests simultaneous outbreaks across a large
region, which may be indicative of rapid illegal
poultry movement from initial outbreaks to dis-
tant locations.

Visualization of the epidemic data using
Thin Plate Spline regression further reinforced
the non-parametric smoothing spline analysis
by illustrating the contrast between epidemic
dynamics in phases 1 and 2 versus phase 3. It
is evident that phases 1 and 2 of the epidemic
propagated in a methodical, and spatially uni-
form, manner, moving from north to south at
a relatively constant and slow rate. We suspect
that this pattern may be a result of several
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introductions of HPAI subtype H5N1 by wild
migratory waterfowl within the Danube River
delta region. In contrast, the chaotic pattern of
spread illustrated by the Thin Plate Spline sur-
face for phase 3 demonstrates rapid epidemic
propagation in multiple directions and at rates
that vary by location. We hypothesize that this
very different pattern is indicative of rapid
movement of infected poultry over relatively
large distances, consistent with human-medi-
ated spread. Further study is necessary to make
definitive statements regarding the potential
pathways of disease spread.

The control of epidemic phases with different
mechanisms of spread requires the application of
very different programs (for example, an empha-
sis on preventing contact between domestic
poultry and wild birds versus quarantine and
enforcement of movement controls). Also, dif-
ferent surveillance programs might be appropri-
ate for different regions of Romania (for
example, the sampling and testing of wild birds
in eastern and southern Romania, versus regular
inspection and testingof domestic village poultry
in central Romania). In the absence of informa-
tion from the analysis of epidemic data, such dis-
ease control and surveillance decisions are
difficult to make. Linking spatio-temporal pat-
terns to epidemic dynamics is a first step in deter-
mining the most appropriate course of action in
the face of an outbreak. Future work should
examine the utility of these, and other, spatio-
temporal modeling approaches for hypothesiz-
ing about potential mechanisms of spread to
determine if these analyticalmethods canbe gen-
eralized to locations where even less is known
about the mechanism of epidemic spread.
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