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Abstract – The immunogenic properties of cysteine proteases obtained from excretory/secretory products
(ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus
cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with
substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES,
despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease
inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction
displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a
cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before.
The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times
(week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to
unvaccinated challenge controls and another group given total ES (n = 10 per group). The group
vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of
faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect.
After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific
IgA and IgG responses.

Haemonchus contortus / excretory-secretory products / cysteine protease / vaccination / AC-5

1. INTRODUCTION

Cysteine proteases have been identified in
most helminth parasites as members of the
papain-like clan, the largest subfamily among

the cysteine protease class [13, 26]. Their
presumed functions such as nutrition uptake,
tissue penetration and evasion of host immune
responses emphasize their importance as targets
for helminth control [13, 23, 26, 33, 39].

Cysteine proteases of Haemonchus
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nematode parasite of small ruminants, have
been the subject of extensive studies. H. con-
tortus infects the abomasum of sheep, goats
and other small ruminants and gains nourish-
ment from the fact that it feeds on blood, often
resulting in severe anaemia. Cysteine protease
activity was detected in the microvillar intesti-
nal tissue of the parasite gut and in its
excreted/secreted products (ES) [10, 19, 22,
23]. The most predominant cysteine proteases
are the cathepsin B-like proteases (CBL),
which are encoded by a family of at least 22
genes [8]. Their abundant expression is appar-
ent from the analysis of all 21 975 expressed
sequenced tag (EST) of H. contortus present
in GenBank. Approximately 4% of these
appear to be derived from CBL genes. How-
ever, only a few of these proteases have so
far been characterized in more detail. The cys-
teine proteases detected in ES products of
H. contortus ranged in size from 32 up to
51 kDa [10, 23] whereas the predicted molec-
ular weights of cysteine proteases encoded by
clustered EST range from 30 to 45 kDa.
Despite the high abundance in EST and the
presence of a signal peptide, the cysteine pro-
teases were not identified during the proteomic
mapping of the most abundant secreted pro-
teins of H. contortus [37]. The use of biotinyl-
ated inhibitors combined with a proteomic
approach enabled the identification of nine
different cysteine proteases present in ES
(AC4, GCP7, HMCP1, HMCP1-like, HMCP2,
HMCP-2-like, HMCP7, HMCP8, HMCP9)
[38].

Specific cysteine protease inhibitors such as
cystatin can provide an alternative method for
enrichment of excreted cysteine proteases by
affinity chromatography. Cystatins, members
of the family 2 cysteine protease inhibitors,
are natural, reversible, tight-binding cysteine
protease inhibitors and represent important reg-
ulators of proteolytic processes [7, 30, 35].

In this report we enriched ES for cysteine
proteases using recombinant H. contortus cyst-
atin affinity chromatography, identified the pro-
teins thus enriched and evaluated their
protective effect against a challenge infection
of H. contortus in a vaccination trial.

2. MATERIALS AND METHODS

2.1. Expression and purification of the
recombinant H. contortus cystatin

H. contortus cystatin (GenBankTM Accession No.
AF035945) was expressed and purified as described
by [18] with slight modifications. The soluble frac-
tion was dialysed against 20 mM Tris-HCl, pH 7.4
and purified through sequential chromatography with
ion exchange columns (Mono Q and Mono S, GE).
The fractions were analysed by SDS-polyacrylamide
gel electrophoresis (1D-SDS-PAGE).

2.2. Chromatography on sepharose-cystatin
column and fractionation

Adult H. contortus (Moredun isolate) were har-
vested from the abomasum of donor sheep at 25 to
35 days post-infection. Total ES was obtained as
described previously [2]. Two affinity columns were
prepared: one with recombinant H. contortus cystatin
and one with an unrelated Escherichia coli recombi-
nant protein (Cooperia punctata Cp-ASP-1a, Acces-
sion No. gi 13625909). Freeze-dried CNBr-activated
Sepharose 4B Fast Flow (2 mg, GE) was swollen in
50 mL 1 mM HCl and washed with 200 mL 1 mM
HCl using a sintered glass filter. After washing,
50 mL coupling buffer (0.1 M NaHCO3, 0.5 M
NaCl pH 8.3) was added and removed under vac-
uum. The column material was gently mixed with
4 mL of either purified recombinant cystatin or Cp-
ASP-1a recombinant protein (1 mg/mL) in coupling
buffer for 4 h at room temperature (RT) and washed
with 50 mL coupling buffer, using sintered glass fil-
ter and under vacuum. Remaining active groups were
blocked with 0.1 M Tris-HCl pH 8.0 for 2 h at RT.
The column material was rinsed (0.1 M Tris, 0.5 M
NaCl pH 8.0 (50 mL) followed by 0.1 M acetate buf-
fer, 0.5 M NaCl pH 4.0 (50 mL; this cycle was
repeated three times), resuspended in PBS and
packed into a column (BioRad, Hercules, CA,
USA). The columns were washed in equilibration
buffer (50 mL 50 mM acetate buffer, 0.15 M NaCl
pH 5.0) at a flow rate of 1 mL/min using the Econo
System (Controller-model ES-1, Pump-model EP-1,
UV monitor-model EM-1, Biorad). Before loading
on the Cp-ASP-1a Sepharose 4B column (flow rate
0.2 mL/min), 5 mg total ES was dialysed against
equilibration buffer for 18 h at 4 �C (Slide-a-Lyzer,
Pierce, Rockford, IL, USA). The unbound fraction
(20 mL), obtained after washing the column with
equilibration solution, was loaded on the cystatin
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Sepharose 4B column (flow rate 0.2 mL/min) and
washed with 20 mL equilibration buffer. For elution
10 mM Tris-NaCl pH 7.4, 0.1% CHAPS, 6 M Urea
(50 mL, flow rate 1 mL/min) was used. The fractions
were dialysed against 10 mM Tris pH 7.4, 0.05%
CHAPS for 18 h at 4 �C (Slide-a-Lyzer, Pierce), con-
centrated in 3 kDa filters (Centripep YM3, Millipore,
Billerica, MA, USA) and the protein concentrations
were measured.

2.3. SDS-PAGE analysis and cysteine protease
activity of the cystatin binding fraction

The protein profiles of the cystatin-binding frac-
tions were visualised by silver staining after SDS-
PAGE. Protease activity was further characterized
by electrophoresis under non-reducing conditions
on gelatin substrate containing gels as described ear-
lier [11]. Protease activity was defined using class-
indicative inhibitors (from Roche, Indianapolis, IN,
USA) namely the cysteinyl (L-transepoxysuccinyl-
L-leucylamido- (4-guanidino)-butane; E64; 40 lM),
metallo (ethylenediaminotetraacetic acid; EDTA,
400 lM), aspartyl (Pepstatin, 1.4 lM) and serine
(4-(2-Aminoethyl)-benzenesulfonyl-flouride hydro-
chloride; AEBSF, 2 mM) protease inhibitors as well
as 0.12 lg/mL recombinant cystatin or 0.43 lg/mL
B. bovis recombinant protein (as control for E. coli
proteins) in 20 mM Tris/ 50 mM NaCl pH 5.0, sup-
plemented with 2 mM DTT).

2.4. Immunisation trial and parasitological
procedures

Thirty Zwart-Bles lambs, 6–6.5 months of age
and kept indoors since birth to exclude helminth
infections, were randomly divided into three groups
with 10 animals each. The doses for the immuniza-
tion were chosen proportionally to the purification
(3% bound to the cystatin column). Animals from
group 1 received 2 lg of the cystatin-binding fraction
whereas group 2 was immunised with 75 lg of total
ES and group 3 was the adjuvant control group (PBS
only). The animals were vaccinated subcutaneously,
at weeks 0, 2.5 and 5 from the start of the experiment.
The antigens or PBS were dissolved in aluminium
hydroxide gel (Al(OH)3; Allhydrogel, Superfos Bio-
sector, Denmark) and each animal received 1.5 mg
adjuvant/injection (1 mL/animal). At week 6 all ani-
mals were orally infected with 10 000 L3 H. contor-
tus and killed at week 10. Faecal samples were
collected weekly and after challenge three times a
week and egg counting was performed according to
the modified McMaster method. Worms were

harvested and counted as described [5]. All animal
procedures were in accordance with the Ethical Com-
mittee from the Faculty of Veterinary Medicine from
Utrecht University.

2.5. Immunological parameters

2.5.1. Lymphocyte proliferation assay (LPA)

Animals were bled from the jugular vein in weeks
0, 6, 7 and 10 for isolation of lymphocytes [2] and
LPAwas done according to Schallig et al. [28] using
10 lg/mL ES and 5 lg/mL concanavalin A (conA)
for lymphocyte stimulation. The results are presented
as stimulation indices (SI) where SI = c.p.m. (exper-
imental)/c.p.m. (medium control).

2.5.2. Mucus harvesting

Individual abomasal tissues (~50 cm2) were col-
lected at the time of slaughter for mucus isolation
according to Kanobana et al. [9]. All mucus samples
were diluted to a concentration of 1 mg/mL for the
performance of the enzyme linked immunosorbent
assay (ELISA).

2.5.3. ELISA

The ELISA were performed as described previ-
ously [2] with slight modifications. Briefly, ELISA
plates coated with ES (2 lg/mL) were incubated with
either serum or mucus, diluted at 1:20 for IgE and
1:100 for IgG in serum and 1:10 for all isotypes in
mucus. The positive control serum consisted of a
pool from 5 hyperimmune sheep which had been
repeatedly infected with H. contortus. Each individ-
ual sample was tested in duplicate and the results
are shown either as a percentage of the positive con-
trol serum that was present in duplicate on every plate
or as OD values for the mucus samples.

2.6. Identification of cystatin-binding fraction
by mass spectrometry

The material that bound to the cystatin column
(see section 2.2.) was trypsinised and analysed using
liquid chromatography MS/MS as described previ-
ously [37]. In summary, the bound fraction was deliv-
ered at 3 lL/min to a nano-LC system coupled to a
Q-TOF (Micromass Ltd., Manchester, UK) and using
a Famos autosampler (LCPackings, Amsterdam, The
Netherlands) and trapped on an AquaTM C18RP
column (Phenomenex, Torrance, CA; column
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dimensions 1 cm · 100 lm inner diameter). After
flow splitting down to 150–200 gL/min, peptides
were transferred to the analytical column (PepMap;
LC Packings, Amsterdam, The Netherlands; column
dimensions 25 cm · 50 lm inner diameter) in a gra-
dient of acetonitrile (1% per min). Fragmentation of
eluting peptides was performed in a data-dependent
mode, and mass spectra were acquired in a full-scan
mode. The MS/MS derived data were searched
against GenBank Protein and EST databases using
MASCOT software with the following parameters:
oxidation of methionine as a variable modification,
peptide and fragment mass tolerances of 0.3 and
0.2 Da respectively with a maximum of one missed
cleavage.

2.7. Statistical analysis

Statistical analyses were carried out using the
SPSS statistical package software (Chicago, IL,
USA) and data were analysed with the non-paramet-
ric Kruskal-Wallis test. Subsequent group pairwise
comparisons were analysed through the Post Hoc test
as advised for Kruskal-Wallis and the confidence
level was set at p < 0.05 (two-tailed). The Bonferroni
correction was employed to avoid possible false posi-
tive associations generated by multiple comparisons.
Correlations between the immunoglobulin levels and
parasitological parameters were tested using the
Spearman rank correlation coefficient and considered
significant at p < 0.05.

3. RESULTS

3.1. Purification of ES by cystatin affinity
chromatography

Three percent of total ES protein bound to
the recombinant cystatin column and the pro-
teins were analysed by 1D-SDS-PAGE
(Fig. 1) and gelatin-substrate gels (Fig. 2).
Despite the bound protein fraction resolving
as a single band around 43 kDa (Fig. 1,
lane 3), this fraction displayed strong protease
activity, over a wide molecular size range with
a lower limit of 30 kDa (Fig. 2, lane 1). Further
analyses were performed using different prote-
ase inhibitors. Recombinant cystatin and the
specific cysteine protease inhibitor E64
(Fig. 2, lane 2 and 4, respectively) inhibited
the activity of the cystatin binding fraction in

contrast with AEBSF, a C. punctata recombi-
nant protein or a mixture of EDTA, AEBSF
and Pepstatin (Fig. 2, lane 3, 5 and 6).

Although a quantitative analysis of the spe-
cific activity of the partially purified H. contor-
tus proteases was not feasible, a titration of ES
and the cystatin-bound fraction by substrate-
SDS-PAGE analysis indicated that protease
activity was enriched at least four fold after
purification (not shown).

3.2. Cystatin binding fraction analysis by mass
spectrometry

The MS/MS spectra generated an identifica-
tion of a sequence stretch composed of the 16
aminoacids, FFEYDGVVSGGPYLGK (See
figure in Appendix), which was specifically
identified to the cathepsin B-like protease
AC-5 (AAA29176) and homologous EST

1                2                   3

kDa

15 -

30 -

43 -

67 -

Figure 1. Silver-stained 1D SDS-PAGE gel (15%)
analysis of ES products (5 lg, lane 1), 1st unbound
fraction (1.25 lg, lane 2) and cystatin-binding
fraction (0.5 lg, lane 3). Molecular markers are
indicated on the left (in kDa).
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(like BG734242) This sequence corresponds
to aminoacids 170 to 185 and is located after
the active site, in a region of high divergence
between cathepsin B-like proteases allowing
unambiguous identification of AC-5 (Fig. 3).
The predicted molecular weight of AC-5 with
the pro-region and without signal peptide is
36.7 kDa and without the pro-region is
29 kDa while the identified band was 43 kDa.

3.3. Immunological parameters

3.3.1. LPA

Lymphocytes from all groups proliferated
after stimulation with concanavalin Awere used
as the positive control (Fig. 4a) although no

significant differences were evident between
groups. With ES as mitogen, the response in
both vaccinated groups, 1 (cystatin) and 2
(ES), was greatly enhanced after the third
immunisation (Fig. 4b, open bar) compared to
the adjuvant group 3 (p < 0.05). Group 2, stim-
ulated with total ES, displayed the highest ES-
specific proliferation response for all time
points compared to the other groups (p < 0.05
at week 4 after challenge). The local lympho-
cytes (Fig. 4b, striped bar) were more reactive
to ES antigens than peripheral lymphocytes
(Fig. 4b, white, grey and checkered bars). A
negative correlation was found between cumu-
lative eggs per gram of faeces (EPG) and
LPA at the lymphocytes isolated from local
lymph nodes at 4 weeks after challenge
(p < 0.05, r = �0.046).

3.3.2. ELISA

IgG anti-ES antibody concentrations increased
markedly following immunisation with the

1     2      3        4       5      6

kDa

85-

39-

32-

17-

Figure 2. 1D-substrate analysis of 2 lg cystatin-
binding fraction. The fractionswere incubated before
and after electrophoresis with only DTT (lane 1),
DTT and recombinant cystatin (lane 2), DTT and
AEBSF (lane 3), DTTand E64 (lane 4), DTT, EDTA,
AEBSF and Pepstatin (lane 5) and unrelated
recombinant (Cp-ASP-1a) (lane 6). Molecular mark-
ers are indicated in the middle (in kDa).

Figure 3. Sequence identification of the cathepsin
B-like AC-5 from H. contortus. The aminoacid
stretch identified from AC-5 by mass spectrometry
aligned to CBL sequences from H. contortus.
Positions having four or more identical residues
are shaded. GenBank accession numbers AC-5-
AAA29176, AC1-AAA29175, AC2-AAA29171,
AC3-AAA29178, AC4-AAA29177, HMCP1-CA
A93275, HMCP2-CAA93276, HMCP3-CAA 93277,
HMCP4-CAA93278, HMCP5-CAA93279, HMCP6-
CAB03627, GCP7-AAC05262.
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cystatin-binding fraction (group 1) and total ES
(group 2) with levels continuing to increase post
challenge until the end of the experiment
(Fig. 5a). Similarly, IgE levels (Fig. 5b) were ele-
vated two to three-fold in these groups up to the
time of infectionwhere control group 3 showed a
marked IgE response 2 weeks post challenge.
IgA levels showed little response to immunisa-
tion but rose rapidly following infection with
the response in the cystatin-binding group 1
being two-fold and significantly higher than that
in the total ES group 2 and the adjuvant control
group 3 (Fig. 5c).

Local immunoglobulins measured in the
mucus showed that all immunised animals
had higher local IgA and IgG responses com-
pared to the controls (Fig. 5d). IgE was unde-
tectable in all the groups. Group 1, vaccinated
with the cystatin-binding fraction, exhibited
the highest IgA- and IgG-levels (p < 0.05).
Among all the correlations tested for systemic
and local immunoglobulins with the parasito-
logical parameters, only three correlations were
found. Negative correlations between local IgA
and local IgE with worm burden (r = �0.40
and r = �0.42, respectively, p < 0.05) and
local IgG with cumulative EPG (r = �0.37,
p < 0.05).

3.4. Parasitological parameters

Mean EPG levels (Fig. 6) in all three groups
increased until 25 days after challenge. From

day 28 onwards a decrease in EPG was
observed for group 1 (cystatin-bound fraction)
in comparison to groups 2 (ES) and 3 (control)
(Fig. 6). In general, animals of group 1 had
lower mean EPG levels than the other groups
(p < 0.05 at day 31).

Animals vaccinated with the cystatin-bind-
ing fraction (group 1) had means of 32%
EPG and 36% worm burden reductions com-
pared to the adjuvant control group (not signif-
icant). No effects were seen in Group 2,
vaccinated with total ES (Tab. I) and changes
in between groups in the sex ratio of the worms
were not observed. There were positive correla-
tions between EPG and worm burden (r = 0.64,
p < 0.01), EPG and fecundity (r = 0.42,
p < 0.05), worm burden and fecundity
(r = 0.40, p < 0.05) and negative correlations
between fecundity and protection (r = �0.59
for EPG and r = �0.53 for worm burden,
p < 0.01).

4. DISCUSSION

Previous work showed that vaccination with
adult ES antigens enriched for cysteine prote-
ases using Thiol-Sepharose affinity purification,
can induce a protective immune response in
sheep against H. contortus [2]. Protection was
indicated by reductions in egg output and worm
burden by 52 and 50%, respectively, compared
to the adjuvant control group. However, these
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Figure 4. Lymphocyte proliferation responses (mean SI index + S.E.). Lymphocytes isolated from blood in
week 0 (black bar), after the third immunization (white bar), 1 week after challenge (grey bar) and 4 weeks
after challenge (chequered bar) and lymphocytes isolated from the lymph nodes 4 weeks after challenge
(striped bar) with H. contortus were stimulated with con A (a) and total ES (b). Group 1 was vaccinated
with cystatin-binding fraction, group 2 with total ES and group 3 was the adjuvant control group.
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protective fractions contained a number of pro-
teins including several metalloproteases, amino-
peptidases and an apical gut protein [12]. Here,
we have purified the 43 kDa AC-5 cysteine
protease from ES using a recombinant H. con-
tortus cystatin affinity column. Lambs vacci-
nated with this AC-5 had mean reductions of
32% and 36% in cumulative egg output and
worm burden, respectively, compared to the
adjuvant control group (Tab. I). This level of
protection is comparable to that of one of our
previous studies [2] and with that observed in
lambs vaccinated with H. contortus intestinal
cysteine proteases purified from worm extracts
using cystatin [20].

The AC-5 cysteine protease described here
(Fig. 6) had not been identified in ES products
of H. contortus before. Other secreted cysteine
proteases such as AC-4 and GCP7 in ES [31]
and HMCP-1, HMCP-1-like, HMCP-2 and
HMCP-2-like, HMCP-7, HMCP-8 and HMCP-
9 [35] that had been identified before by Mass
Spectrometry were not detected in the present
cystatin bound fraction. 2D gel analysis of this
fraction resolved only a single row of spots (data
not shown). Since only a single protease was
identified by MS, this suggests that the 43 kDa
peptide is a single protein with different pIs and
not amixture of other cysteine proteaseswith dif-
ferent pIs but of similar molecular weight.

A characteristic of type-2 cystatins is the
conservation of the pentapeptide sequence,
recognised as a target enzyme-binding site [1,
4]. Two rice cysteine protease inhibitors (OCI-
OCII), with small differences in their target

enzyme-binding site showed different degrees
of affinity for Meloidogyne hapla cysteine pro-
teases [1, 15]. Thus, variation in the pentapep-
tide sequence may determine differences in
affinity for different proteases and may indicate
that the previously identified [38] seven
secreted cysteine proteases are absent from the
H. contortus cystatin-1-bound fraction because
of a low affinity for this inhibitor. Alternatively
it cannot be excluded that many secreted
CBL have a cystatin bound to their active site
thus prohibiting their binding to the cystatin
column.

The enrichment of H. contortus ES for cys-
teine protease activity was confirmed using sub-
strate SDS-PAGE gels (Fig. 2) with activity in
the cystatin-binding fraction being judged to
be at least 4-fold higher than in whole ES
(not shown). This analysis also showed that
the protease resolved as several zones of appar-
ently differing molecular size, an observation
which, at first sight, conflicts with the above
discussion. This is likely to reflect post-transla-
tional modifications such as glycosylation, with
two potential asparagines in the AC-5 sequence
predicted to be potentially N-glycosylated by
NetNGlyc1. Moreover, substrate gels are run
under non-reducing conditions.

AC-5 is described to be, among five CBL
tested in two H. contortus isolates, the only
homozygote and monoallelic CBL gene
whereas the others were extremely polymorphic

1 http://www.cbs.dtu.dk/services/NetNGlyc/

Table I. Parasitological results per group. Groups (1, 2 or 3) with 10 animals per group, mean of cumulative
EPG (S.E.), percentage reduction in EPG (mean), mean of worm burden (S.E.), percentage worm burden
reduction (mean) and percentage of females. Animals were vaccinated in week 0, 2.5 and 5 with the cystatin
bound fraction (group 1), total ES (group 2) or used as the adjuvant control group (group 3), challenged in
week 6 with 10 000 L3 H. contortus and slaughtered in week 10. The reductions are calculated based on the
mean of group 3 (adjuvant control).

Group
(n = 10)

Cumulative
EPG

EPG reduction
(%)

Worm
burden

Worm burden
reduction (%)

Females
(%)

1 43300 (11728) 32 2935 (2353) 36 55
2 59435 (12438) 6 4750 (2358) �3.6 57
3 63375 (20195) 4585 (2121) 58
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[24]. Therefore, AC-5 may be a particularly
good vaccine target.

Animals vaccinated with the cystatin-bind-
ing fraction and subsequently challenged with
H. contortus showed significantly higher muco-
sal ES-specific IgA levels (Fig. 5) and abomasal
lymphocyte proliferative responses (Fig. 4)
compared to the control animals. This may indi-
cate the importance of the local antibody
response against a challenge infection with
H. contortus and was in agreement with higher
mucosal Ostertagia specific IgA levels in pro-
tected calves after vaccination with thiol-bind-
ing proteins derived from ES [6]. The
cystatin-binding fraction also induced strong
ES-specific systemic and local IgG responses.
Previously, vaccination with thiol binding ES
proteins of H. contortus resulted in significant
higher systemic IgG1 responses [2].

The total ES fraction did not confer any
reduction in EPG or worms, in agreement with
a recent report [2]. Variable results have been
obtained with vaccination with ES in the past
within our group [2, 27, 29, 34], due we suspect
to variability between different ES batches (as
observed by variable protein patterns observed
on 1 and 2-dimensional protein gels) combined
with the fact that some individual sheep animals
fail to respond to vaccination.

There is now a consistent body of evidence
suggesting that ES cysteine proteases may be
appropriate targets for vaccine development
against helminths of livestock. Calves vacci-
nated with a Thiol-Sepharose-enriched fraction
of Ostertagia ostertagi ES had a 60% reduction
in egg output [6]. In a further experiment, this
immunogen was subfractionated through
Q-Sepharose anion exchange chromatography
and a group injected with a resultant cysteine
protease enriched fraction had a reduction of
80% in cumulative faecal egg output compared
to controls [16]. A similar thiol-enriched frac-
tion was tested in goats, with 89% and 68%
in egg and worm reduction, respectively [25].
These experiments above used Freunds or
QuilA as adjuvants, in contrast to the alumin-
ium hydroxide employed in ours. In addition,
cysteine proteases from the regurgitant of
mature worms induced 80% protection in sheep
against Fasciola hepatica, as judged by egg

output, [36] and secreted cathepsin Ls are lead
vaccine candidates for Fasciola and schistoso-
miasis (reviewed in [14]) and hookworms in
man (e.g. [3]). The identification of AC-5, here,
as an ES immunogen from H. contortus, adds
to this body of evidence and expands the previ-
ously identified set of immunogens from
H. contortus such as H11, Hc40, H-gal-GP
[17, 21, 32].
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APPENDIX

Peptide sequence identified by MS/MS. Ions y and b detected are shown in the peptide sequence
of the AC-5 cysteine protease identified.
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