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Abstract – Methods for spatial cluster detection dealing with diseases quantified by continuous
variables are few, whereas several diseases are better approached by continuous indicators. For
example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder in-
flammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized
risk and cluster components of herd SCS through a new method based on a spatial hazard model.
The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important
SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model
allowed the simultaneous estimation of the effects of known risk factors and of potential spatial
clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter
and spring calvings were significantly associated with subclinical mastitis risk. The model with the
presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to
cluster center increased the occurrence of high SCS. The three localizations were the following:
close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west;
and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial haz-
ard modeling applies to continuous variables, and takes account of both risk factors and potential
heterogeneity of the background population. This tool allows a quantitative detection but assumes a
spatially specified form for clusters.

spatial epidemiology / cluster detection / hazard function /mastitis / dairy herd

1. INTRODUCTION

Spatial aspects of health events are
of growing concern in epidemiology.
Whether for emerging or endemic disease,
regional differences such as heterogeneity

* Corresponding author:
emilie.gay@u707.jussieu.fr

of the background population, climatic and
landscape conditions, agricultural activi-
ties, local health policy and the occurrence
of peculiar events such as cattle fairs can
have a great influence on disease spread
and control. The tools available to explore
spatial patterns range from geostatistics to
point process approaches. Among these,
the issue of cluster detection [7, 30] is
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of major interest, since targeting possible
causes for high disease concentration can
assist in control and prevention.

The main techniques used in cluster de-
tection rely on scan statistics [1, 21, 22].
The principle is to compare the ob-
served number of cases inside a mov-
ing window to the expected number of
cases under some distribution assump-
tions (e.g. Poisson, Bernoulli) [17]. Most
of these methods can deal with spe-
cific additional information at the indi-
vidual level and integrate some covari-
ables. Spatial modeling is another way
to explore spatial patterns, and allows
for quantification of the effects of known
disease risk factors, and then attempts
to focus on unexplained spatial cluster-
ing [20]. Among the several approaches,
one approach handles the concept of in-
fectious potential, through Susceptible-
Infected-Recovered (SIR) models [10],
which can be linked to point-pattern
methodology [12]. Other approaches use
the classical framework of linear mixed
models with risk factors as fixed effects,
while spatial variations are included as a
random effect [28, 31]. Some last methods
make the intensity of case events depend
on location of cluster centers [19].

Until recently, the methods available
dealt only with binary variables, and clus-
ter detection for diseases measured by con-
tinuous variables remained an unexplored
field. Nevertheless, several diseases can be
better approached through continuous bio-
logical indicators, when no internationally
recognized threshold value is available, or
when the predictive value of the indica-
tor is linear, a frequent case for biological
markers [4, 25].

Lately, several researchers tackled clus-
ter detection for new types of vari-
ables, and especially continuous ones [15].
Huang et al. proposed a spatial scan statis-
tic with an exponential survival distribu-
tion function, and extendable to other dis-
tributions like the gamma and log normal.

Besides its potential adaptation to censored
survival data, this spatial scan statistic al-
lows adjustment for the covariate effects.
They used a linear regression model for
the logarithm of the survival data for this
purpose and assumed the error term to
follow an extreme value distribution. Actu-
ally, their model reduced to a full paramet-
ric proportional hazard model. A former
approach by Patil and Taillie [24] used
the notion of upper-level-sets. The ratio of
the number of cases per expected num-
ber of cases was replaced by the ratio of
continuous responses per the expected val-
ues, possibly adjusted to factors. The new
version1 of the software SaTScanTM al-
lows performing cluster detection with this
exponential model, designed for survival
time data, and with a normal model, de-
signed for continuous data2.

In this paper, we chose a different ap-
proach to detect clusters of high risk of
bovine subclinical mastitis. The diagno-
sis of this disease mainly relies on the
determination of milk somatic cell score
(SCS), a continuous variable internation-
ally recognized as a good indicator for
mastitis control [13]. Risk factors associ-
ated with SCS have been widely investi-
gated [5, 6, 26], but in these studies the
SCS spatial aspects were not taken into ac-
count, while SCS typically presents strong
spatial variations [11, 23]. Differences in
natural resources, farm structure and mar-
ket conditions cause different regions of
the same country to implement different
dairy management systems, and call for the
introduction of a spatial component in SCS
data analysis.

The purpose of this paper was to pro-
pose a new method for spatial cluster

1 Kulldorff M., Information Management Ser-
vices, Inc. SaTScanTM v7.0: Software for the
spatial and space-time scan statistics [on line]
(2006) http://www.satscan.org/.
2 Kulldorff M., SaTScanTM User Guide for ver-
sion 7.0 [on line] (2006) http://www.satscan.org/.
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detection on continuous variables, with an
application to bovine subclinical mastitis.
We quantitatively analyzed the spatialized
risk of SCS, using a spatial hazard model to
simultaneously estimate the effects on SCS
of known risk factors and of potential spa-
tial clusters.

2. MATERIALS AND METHODS

2.1. Data

The study population consisted of a
cohort of French Holstein dairy herds en-
rolled in Dairy Herd Improvement Asso-
ciation (DHIA) in 2000. The dataset in-
cluded 34 142 farms with at least 20 cows.

Data concerning mastitis were extracted
from the national DHIA database, which
contained monthly data for every healthy
lactating cow. The outcome variable was
the annual herd SCS (ASCS), which was
computed as the arithmetic mean of all
monthly cow SCS values during 2000.
ASCS indicated the farm status for sub-
clinical mastitis risk. The other variables of
the dataset were mean parity, percentage of
calvings during the winter and spring pe-
riod, and herd size, which had been recog-
nized as herd factors influencing SCS [3].
The geographic coordinates of the farmers’
addresses were obtained via the French
National Institute of Statistics and Eco-
nomic Studies. The statistical unit was the
herd-year.

2.2. Statistical analysis

Statistical procedures were conducted
using the software R 2.0.13 (descriptive
analysis, models and map-making) and
SaTScanTM (spatial scan statistic)1.

3 R Development Core Team, R: A language
and environment for statistical computing. R
Foundation for Statistical Computing, Vienna,
Austria, ISBN 3-900051-07-0, [on line] (2007)
http://www.R-project.org.

2.2.1. Descriptive analysis of variables
and spatial patterns

After a descriptive analysis of the stud-
ied variables, we used mapping represen-
tations to explore the spatial patterns of the
data. The interpolation technique of kernel
smoothing [27] was performed to represent
ASCS intensity. The presence of spatial
correlation was assessed and quantified us-
ing a correlogram, which is the graph of
empirical autocorrelations of SCS values
with respect to distance between farms [9].

2.2.2. Spatial hazard model

We explored spatial patterns of ASCS
from the point of view of survival analy-
sis [14], considering ASCS values instead
of usual lifetime. We followed the se-
quence of the spatial distribution of farms
as ASCS increased. The hazard func-
tion r(z) of a non negative random variable,
like the probability density function, com-
pletely characterized its probability dis-
tribution, i.e. r(z) = f (z)

1−F(z) where f is
the probability density function, and F the
cumulative distribution function f (t) =

r(t) exp

⎛⎜⎜⎜⎜⎝−
t∫

0

r(s)ds

⎞⎟⎟⎟⎟⎠. In our example, r(z)

is defined as the probability that a farm
ASCS belonged to a small interval [z, z +
Δz], given that the ASCS is known to be
greater or equal to the value z. The map
of the farms, whose ASCS were greater or
equal to a given level z, hereafter called
the z-level map, described the spatial struc-
ture of farms still “at risk” at level z. To
compare to classical survival analysis, r(z)
represented the hazard of occurrence of the
ASCS value of a farm, i.e. the probability
of removing from the (z + Δz)-level map a
farm present on the z-level map.

The hazard function depended on ob-
servable local explanatory variables and on
the presence of potential clusters, accord-
ing to the proportional hazard model type.
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Conditionally to explanatory variables and
clusters, the ASCS were independently
distributed with a spatial hazard function r:

r (z,x,W x) = r0(z) exp

⎛⎜⎜⎜⎜⎜⎜⎝
J∑

j=1

β jW
x
j − φ(γ, x)

⎞⎟⎟⎟⎟⎟⎟⎠
(1)

where r0(z) is the underlying hazard func-
tion at an ASCS value z, x the spatial coor-
dinates of the farms, W x = (W x

1 , ...,W
x
J ) the

vector of risk factors specific of the farm at
location x, β j the coefficient for the jth risk
factor, and φ(γ, x) a potential spatial clus-
ter effect specified hereafter. In this spatial
hazard function, a unit variation of an ex-
planatory variable W j with a positive β j

coefficient would increase the hazard of oc-
currence of the ASCS value of a farm at
any level z by a factor exp(β j) > 1, and thus
would decrease the occurrence of higher
ASCS levels. Three explanatory variables
were included in the model, with a regres-
sion parameter β, as follows:

– 1 continuous variable for mean parity;
– 1 continuous variable for the percentage

of winter and spring calvings;
– 1 binary variable for herd size: 0 codes

for the herds with less than 50 cows,
and 1 for the herds with 50 or more
cows.

The cluster effect φ(γ, x) aimed to take
into account the spatial aggregation of
the farms sharing approximately the same
ASCS values. Instead of including def-
inite spatial zones for clusters, we in-
troduced a soft version of such zones
under the form of a smooth parameter-
ized function. Mathematically speaking,
one can always approach any point set
as a limit of a smooth function by ker-
nel techniques. Consequently, we specified
the cluster function as a sum of spatial
Gaussian kernels as follows:

φ(γ, x) =
K∑

k=1

αk

2πρ2
k

exp

⎛⎜⎜⎜⎜⎝−||x − ck||2
2ρ2

k

⎞⎟⎟⎟⎟⎠ (2)

where K is a fixed number of clusters de-
fined by a set of parameters γ = (α, ρ, c)
written as a (K × 4) matrix. The αk pa-
rameter is the strength of the cluster k,
ρk its positive range, and ck its two geo-
graphic center coordinates. If a point went
close to a cluster, the distance ||x − ck || was
low, the exponential increased to the maxi-
mum value 1, so the cluster effect tended
to αk/2πρ2

k. Conversely, if a point went
far from the cluster, the exponential tended
to 0 and the cluster effect fainted with
Gaussian rate. If α was positive, the hazard
of occurrence of any ASCS value of a farm
decreased by a factor

(
exp

(
−αk/2πρ2

k

))
,

the cluster was “attractive” and increased
the occurrence of higher ASCS levels. By
contrast, a negative α meant a “repulsive
focus” and decreased the occurrence of
high ASCS levels. The cluster effect is
actually a generalized regression model
where the response value depends only
on a vector parameter γ associated to ob-
servable covariates, which are the spatial
coordinates of farms. Thus, even if clusters
defined here could be interpreted as hidden
fields or a type of frailty model, they were
not.

Having ordered the farm indices i ac-
cording to increasing ASCS values zi, an
adapted Cox conditional likelihood for the
model was defined as follows:

L∗ =
n∏

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

(
J∑

j=1
β jW

xi
j − φ(γ, xi)

)

∑
l�i

exp

(
J∑

j=1
β jW

xl
j − φ(γ, xl)

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3)
In regards to statistical estimation and
test issues, the conditional likelihood L∗
asymptotically behaves as a true likeli-
hood function under regularity assump-
tions. The β coefficients and the vector
γ were then estimated by maximization
of L∗. For sake of simplicity, we had not
further developed the formula (3) ana-
lytically to achieve maximization of the
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conditional likelihood. We used the func-
tion “mle” of “stats4” package (part of the
R base source) which relies on robust and
well known approximation algorithms, and
we chose the Nelder-Mead method. We
used the Likelihood Ratio Statistic (LRS)
to test whether the effects of the covari-
ables were significant [14]. The LRS is
the difference between deviances D =
−2 log (L∗) of two nested modelsMi and
M j. If M j contained ν more parameters
thanMi:

LRS = D(Mi)−D(M j) = −2
(
log (L∗(Mi))

− log
(
L∗(M j)

))
∼ χ2(ν df). (4)

Starting with K = 0, we increased K
progressively until the addition of a new
cluster was not significant anymore.

To visualize the results obtained by the
model, we mapped the estimated clusters.

The proportional hazards assumption
was checked using the Schoenfeld resid-
uals with function “cox.zph” of pack-
age “survival”, as recommended in Hill
et al. [14]. To confirm the findings of the
survival model concerning the risk fac-
tors, we performed a more classical model,
the multiple linear regression (R-function
“lm”), and paid attention to the agreement
of the results with the findings of the spa-
tial hazard model.

2.2.3. Analysis of the model properties

Properties of this spatial hazard model
were tested on simulated datasets. We an-
alyzed the number of clusters detected and
their position, and compared to the number
and position of clusters simulated. We used
a spatial domain of 1 by 1 with a homoge-
neous point process, and distributed marks
according to the presence of 0 up to 3 at-
tractive clusters in 200 simulated datasets.

2.2.4. Spatial scan statistic with normal
model

The new version1 of the software
SaTScanTM allows performing cluster de-
tection with a normal model, designed for
continuous data. SaTScanTM can integrate
some covariables but it is recommended
to use external regression software to ad-
just for quantitative variables. We first
performed a linear regression (R-function
“lm”) in order to take into account the risk
factors of the disease (mean parity, per-
centage of calvings during the winter and
spring period, and herd size). We then per-
formed the scan statistic on the residuals
of the linear model to focus on unexplained
clustering and be able to compare to the re-
sults of the spatial hazard model. We then
mapped the detected clusters.

3. RESULTS

3.1. Descriptive analysis

Mean (sd) ASCS was 3.12 (0.55), while
mean (sd) herd size was 39 cows (16),
mean (sd) parity was 2.4 (0.3), and mean
(sd) percentage of winter and spring calv-
ings was 38% (16%).

The farm geographic distribution is il-
lustrated in Figure 1, which represents the
location of the farms studied in a gray
background. The farm density was geo-
graphically non-homogeneous, and two ar-
eas had higher densities: (1) the northwest,
which is the main dairy production area in
France, with 61% of the total number of
farms, and (2) the north tip, with 6% of
the total number of farms. By contrast, the
southeast (i.e. the Mediterranean area) had
a very low farm density. The map of ASCS
spatial intensity (Fig. 2) showed that the
north-central area and the southwest had
relatively high ASCS values of around 3.5.
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Figure 1. Farm location (gray background)
and clusters of high annual somatic cell score
detected by spatial hazard modeling in the
study sample of dairy herds in France (n =
34 142, year 2000). �: cluster centre; α: clus-
ter strength; • main cities close to the clusters;
©: cluster range (ρ).

The correlogram of ASCS (Fig. 3)
showed a positive and non negligible spa-
tial correlation under a distance of 150 km
with an approximated exponential form.
Over this distance, it could be considered
as constant around 0. The behavior of the
correlogram near distance 0 pointed out a
strong nugget effect (autocorrelation of 1
at a null distance if absence of a nugget
effect), i.e. the presence of a relatively
high white noise (non spatial correlation)
of about 70% of the total variability.

3.2. Spatial modeling of mastitis risk

The model with K = 3 (Mβ,3) was
selected since the presence of 3 clusters
was highly significant, while the 4th clus-
ter was not (Tab. I). The detailed results
of estimations for this model are presented
in Table II. Hazard of occurrence of the
ASCS value of a farm was significantly de-
creased by increased mean parity (1 parity

Figure 2. Intensity of the annual somatic cell
score in the study sample of dairy herds in
France (n = 34 142, year 2000).

Figure 3. Correlogram of the annual somatic
cell score in the study sample.

decreased the risk by e0.5749 = 1.78), and
thus this factor was positively associated
with the occurrence of high ASCS. The
percentage of winter and spring calvings
was significant and, even if the association
was low, it was positively associated with
ASCS. The last risk factor, the herd size,
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Table I. Tests of the different hazard models of the annual milk somatic cell score.

Model Variables Deviance LRS P

number Test Value (df) value

M0,0: no covariable 0 644496.3

Mβ,0: risk factors alone 3 642493.2 M0,0 vs.Mβ,0 2003.1 (3) P < 0.001

Mβ,1: risk factors+1 cluster 7 641136.1 Mβ,0 vs.Mβ,1 1357.1 (4) P < 0.001

Mβ,2: risk factors+2 clusters 11 640719.8 Mβ,0 vs.Mβ,2 1773.4 (8) P < 0.001

Mβ,1 vs.Mβ,2 416.30 (4) P < 0.001

Mβ,3: risk factors+3 clusters 15 640681.4 Mβ,0 vs.Mβ,3 1811.8 (12) P < 0.001

Mβ,1 vs.Mβ,3 454.7 (8) P < 0.001

Mβ,2 vs.Mβ,3 38.4 (4) P < 0.001

Mβ,4: risk factors+4 clusters 19 640675.3 Mβ,0 vs.Mβ,4 1817.9 (16) P < 0.001

Mβ,1 vs.Mβ,4 460.8 (12) P < 0.001

Mβ,2 vs.Mβ,4 44.5 (8) P < 0.001

Mβ,3 vs.Mβ,4 6.1 (4) NS

LRS: Likelihood Ratio Statistic; df: degrees of freedom; Mβ,k: model with risk factors (β part)
and k clusters.

was not significant. The multiple linear
regression demonstrated a similar relation-
ship for the 3 covariables (Tab. III).

The three spatial clusters were attrac-
tive. The first one was detected in the
northeast (Fig. 1), close to the city of
Troyes. The second one spread in the
center-west, around the city of Limoges.
The third cluster was located in the south-
west, close to the city of Tarbes.

3.3. Model properties under
simulations

The detailed results of the simulation
study are presented in Table IV. In 97%
of the cases the right number of clusters
was detected. Among those 97%, 5% de-
tected an extra repulsive focus: when high
values are concentrated on some areas, it
can happen mechanically that low values
are concentrated as well elsewhere, form-
ing a repulsive focus. The mean distance
between centers of detected and simulated
clusters, i.e. the precision of localization,

was 0.047 in the spatial domain of 1 by
1 unit.

3.4. Spatial scan statistic with a normal
model

Specifying the upper limit for cluster
size as a circular geographic region of ra-
dius 250 km, 6 significant clusters were
detected with this method (Fig. 4).

4. DISCUSSION

4.1. Biological results

The results of the spatial hazard model
concerning the introduced risk factors for
ASCS were consistent with previously
published results, indicating a significant
association of parity and calving season
with ASCS used as an indicator of sub-
clinical mastitis. Increased mean parity in-
creases the risk of high ASCS levels [18];
that can be due to the rise of persistence
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Table II. Spatial hazard model of the annual milk somatic cell score (K = 3 clusters).

Coefficient Standard exp(coef) LRS (df) P value

estimation deviation

Mean parity –0.5749 0.0176 0.56 723.30 (1) P < 0.001

Winter-spring calving –0.0091 0.0004 0.99 651.70 (1) P < 0.001

Number of cows 0.0321 0.0140 1.03 2.10 (1) NS

Cluster 1 α 0.0783 0.0149

ρ 0.1105 0.0127

xc 0.2462 0.0081

yc 0.0942 0.0107

Cluster 2 α 0.2775 0.0373

ρ 0.2328 0.0126

xc 0.0444 0.0200

yc –0.1766 0.0248

Cluster 3 α 0.1213 0.0217

ρ 0.1336 0.0104

xc –0.0597 0.0243

yc –0.5721 0.0257

LRS: likelihood ratio statistic; df: degrees of freedom; α: cluster strength; ρ: cluster range; xc: cluster x
coordinate; yc: cluster y coordinate.

Table III. Multiple linear regression model of the annual milk somatic cell score.

Coefficient estimation Standard deviation P value

Intercept 2.136 0.023 P < 0.001

Mean parity 0.3408 0.0094 P < 0.001

Winter-summer calving 0.0042 0.0002 P < 0.001

Number of cows 0.0119 0.0074 NS

and intensity of mammary infections with
parity. A high percentage of winter and
spring calvings is a risk factor for high
ASCS values, since weaker cow body con-
dition and housing hygiene during this
period increase the risk of subclinical mas-
titis [5]. Several studies highlighted that
herd size was negatively associated with
SCS [2, 23]. In this study, no significant
effect was detected, but French herds are

of little size (less than 0.7% of farms have
more than 100 cows), and this can be a
reason why the effect of heard size did
not appear. Some other known risk fac-
tors for ASCS were not available in the
present work. Particularly, information on
hygienic and milking conditions was lack-
ing [3, 8]. Nevertheless, the method allows
complementary variation factors to be eas-
ily integrated in the model if available later.
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Table IV. Results of the simulation process (spatial domain of 1 by 1 with a homogeneous point
process, marks distributed according to the presence of 0 up to 3 “attractive” clusters).

Number of Number of Number of Number of

clusters simulated simulations clusters detected simulations (%)

0 50 0 50 (100)

1 50 1 attractive 43 (86)

1 attractive + 1 repulsive 4 (8)

2 attractive 3 (6)

2 50 2 attractive 47 (94)

3 attractive 3 (6)

3 50 2 attractive 1 (2)

3 attractive 44 (88)

3 attractive + 1 repulsive 6 (12)

Figure 4. Farm location (gray background) and
clusters of high annual somatic cell score de-
tected by the spatial scan statistic in the study
sample of dairy herds in France (n = 34 142,
year 2000).

Concerning the second and original part
of the model, the presence of 3 clusters
was highly significant. The detected clus-
ters, located in areas with low farm density
(close to Troyes, Limoges and Tarbes),
corresponded to regions mainly focused

on bovine and ovine meat and on cereal
production. It is consistent with the spe-
cialization in dairy production being linked
in France with lower ASCS [5]. Introduc-
ing the farm density as a covariable in the
model could be a way to approximate this
specialization factor. Nevertheless, a local
analysis would be necessary to precisely
explain the factors associated with the clus-
ters identified, since only local staff could
have accurate and relevant information on
local events or singularities having influ-
enced ASCS.

4.2. Comparison with the spatial scan
statistic with normal model

The spatial scan statistic method identi-
fied six clusters. The two larger ones, in the
southwest and the northeast, included ap-
proximately the same regions as the three
clusters detected with our spatial hazard
model, but the four last ones were different.

The number of clusters detected by the
spatial scan is not determined in an ob-
jective way, and depends on the chosen
upper limit for cluster size. In our dataset
the clusters were located in regions with
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low farm density, consequently the clas-
sical use of 50% of the population as the
upper limit was not adapted. We had to try
several upper limits and chose the one that
seemed to give the better results. Indeed,
by its very construction of the alternative
hypothesis, the scan tests can not theoret-
ically handle the issue of multiple cluster
detection. Moreover, with the spatial scan
statistic, the integration of covariables had
to be done in a first step before cluster
detection.

4.3. Spatial hazard model for cluster
detection

The properties of this new model tested
via simulations demonstrated good detec-
tion ability and precision of localization.
The spatial hazard model we developed
has several advantages. First, the method
applies to continuous variables; such a pos-
sibility is of recent growing concern in
the issue of cluster detection. Secondly,
the model is adjusted for risk factors as
in Klassen et al. [16], and takes into ac-
count the potential heterogeneity of the
background population. It focuses on unex-
plained spatial singularities, which can be
detected even in low density areas. More-
over, the model being parametric, allows
for the tests of comparative hypotheses
on the two components, risk factors and
cluster presence. As the classical hazard
model, this one can easily accommodate
censored data. Moreover, if the baseline
hazard function is available (e.g. exponen-
tial, log Gaussian, Gamma type) a true
parametric likelihood can be derived.

On the contrary, the present drawback of
this method is the need to fix the number
of clusters a priori and then to test sub-
models to retain only significant cluster
components. As for true likelihood meth-
ods, one could bypass this issue by intro-
ducing an a priori parameterized probabil-
ity distribution for the number K of cluster

components. For example, if K is Poisson
distributed with parameter λ, the corre-
sponding log-likelihood in λ, β and γ is
written: L =

∑∞
k=0 I{k=k}(log(L(λ, β, γ(k)) −

λ + k log(λ) − log(k!)).
Clearly, the maximum of L was

achieved for one value k of K, and this
amounted simply to penalize the pseudo
likelihood by the term −λ + k log(λ)−
log(k!) as the Bayesian Information
Criterion (BIC) or Akaike Information
Criterion (AIC) usually did.

Another consequence of using a para-
metric model is the need for a definition
of the form of the cluster. In this study we
chose a standard Gaussian form, charac-
terized by intensity and range parameters
and a circular form, a choice which was
convenient for the further interpretation of
the parameters. However, other parametric
forms of the cluster function could better fit
the problem [29] if they were supported by
particular epidemiological arguments. But
without prior assumptions about the possi-
ble spread of the disease, a circular form
seems to be a good default choice.

This method of cluster detection based
on a spatialized hazard model allows com-
bining two important fields of epidemi-
ological studies: the classical analysis of
risk factor effects, and the spatial analy-
sis of the disease. Moreover, this method
applies to continuous as well as discrete
variables, and gives quantitative results.

The approach of the spatialized risk
with a cluster component is generic; it is
also intended to apply to other diseases
and to classical survival models consider-
ing death or occurrence times of infection
as the variable of interest.
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