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Abstract – The mammalian genome encodes at least a dozen of genes directly involved in the
regulation of the feedback loops constituting the circadian clock. The circadian system is built
up on a multitude of oscillators organized according to a hierarchical model in which neurons of
the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the
other somatic cells may possess the molecular components allowing tissues and organs to constitute
peripheral clocks. Suprachiasmatic neurons are driving the central circadian clock which is reset by
lighting cues captured and integrated by the melanopsin cells of the retina and define the daily
rhythms of locomotor activity and associated physiological regulatory pathways like feeding and
metabolism. This central clock entrains peripheral clocks which can be synchronized by non-photic
environmental cues and uncoupled from the central one depending on the nature and the strength of
the circadian signal. The human circadian clock and its functioning in central or peripheral tissues
are currently being explored to increase the therapeutic efficacy of timed administration of drugs
or radiation, and to offer better advice on lighting and meal timing useful for frequent travelers
suffering from jet lag and for night workers’ comfort. However, the molecular mechanism driving
and coordinating the central and peripheral clocks through a wide range of synchronizers (lighting,
feeding, physical or social activities) remains a mystery.

mammals / human / circadian rhythms / nutrients

Abbreviations: SCN: suprachiasmatic nuclei, HNF: hepatocyte nuclear factor, TGF-alpha:
transforming-growth-factor alpha, NAD(H), NADP(H): nicotinamide adenine dinucleotide (phos-
phate), NO: nitric oxide.

Convention: For a better understanding, genes are written in italics, proteins in capitals.

1. INTRODUCTION

Light/dark cycles have rhythmed the life
on Earth and created the selective con-
ditions to integrate circadian rhythms in
a genetic metabolic network functioning
with a 24-h period of oscillations and
called the circadian clock (or circadian
oscillator). This clock synchronizes the cir-
cadian rhythmicity of some procaryotes
(Cyanobacteria) and of plant or animal

* Corresponding author:
bertrand.kaeffer@nantes.inra.fr

eucaryotes from the cellular level to the
organism [1–3]. The mammalian circadian
system consists of at least two major os-
cillator systems, one entrainable by light
called the central clock and located in the
suprachiasmatic nuclei (SCN), and another
by food which is anatomically and func-
tionally distinct but of unknown location.
The circadian system is built up on a mul-
titude of oscillators organized according to
a hierarchical model in which neurons of
the suprachiasmatic nuclei of the hypotha-
lamus may drive the central circadian clock
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and all the other somatic cells may pos-
sess the molecular components allowing
tissues and organs to constitute peripheral
clocks. At the molecular level, oscillators
are molecules that are interacting to cre-
ate a pacemaker. The pacemaker is an
internal mechanism, which keeps time for
the circadian clock by either coordinating
or constructing rhythms (i.e. patterns of
reoccurring events which can be loosely
thought of as cycles).

In physiology, the circadian clock also
called the circadian oscillator, is an inter-
nal device that keeps the body’s time by
driving and (or) coordinating a circadian
rhythm. The concept has been integrated
in the definition of homeostasis which is
not only the capacity of a living structure to
withstand and adapt its internal conditions
to progressive or sudden changes of the
environment but also to anticipate the oc-
currence of reoccurring events (i.e. reactive
homeostasis; [4, 5]). The human circadian
clock and its functioning in central or pe-
ripheral tissues are currently explored to
increase the therapeutic efficacy of timed
administration of drugs or radiation [6],
and to offer better advice on lighting and
meal timing useful for frequent travelers
suffering from jet lag [7, 8] and for night
workers’ comfort.

This review presents the influence of
feeding (temporal window of food access,
meal frequency and composition) on the
regulation of central and peripheral clocks.

2. CIRCADIAN CLOCKS:
A CENTRAL CLOCK TUNING
THE NETWORK
OF PERIPHERAL CLOCKS
OR EQUIVALENT CLOCKS
RUNNING LIKE A WEB?

Somatic cells express the molecular
components of circadian oscillators both in
vivo and under artificial conditions of cul-
ture. These oscillators are able to integrate

environmental cues called synchronizers
(also entraining agent, time signal or Zeit-
geber built on the German Zeit (time) and
geber (giver)). Environmental cues with a
circadian periodicity can entrain the cir-
cadian clockwork through sensory trans-
ducers relaying the signal to synchronize
all the individual oscillators (Fig. 1). As
demonstrated by modeling synchroniza-
tion and rhythmicity of the circadian clock,
stable synchronization depends on the syn-
chronizer strength (its amplitude), if it is
too weak there is no synchronization, if it is
too strong the system loses its synchroniza-
tion [9] and entrainment of an oscillatory
system by another implies a gating pro-
cess [10] but its biological means remain
unknown.

Experimental recording of entrained cir-
cadian rhythms is highly dependent on
both the strength of the synchronizer and
the gating of the subjects’ circadian sys-
tems. As shown by tissue culture and in
vivo experiments, the inputs of the molecu-
lar clock are very diverse physico-chemical
cues acting as synchronizers on signaling
cascades integrated by period genes [11]
and ranging from heat pulses in culture
medium to the sudden exposure of cells
to high serum concentration over 2 h [12].
However, the main in vivo synchronizer is
believed to be the alternation of light and
dark and many experiments have been re-
alized on lighting and its capacity to drive
circadian rhythms.

The duration of application of a syn-
chronizer depends on the entrainment ca-
pacity of the oscillator (i.e. its intrinsic
period and distribution around 24 h). It is
now considered to be between 1 and 2 h
after in vivo experiments on the circadian
wheel-running activity rhythm of ham-
sters presented with single or double light
pulses [13] and on in vitro experiments
on SCN neurons [14]. There are strik-
ing differences between the phase response
curves to lighting of nocturnal mammals
which have a dead zone for photoactivation
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Figure 1. Relations between feeding and the circadian clocks. The central circadian oscillator has
been evidenced in the suprachiasmatic nuclei [144] and called the central clock but the surgical
deletion of these SCN changes does not always completely abolish the circadian rhythm of food
intake, nor of central core temperature indicating that the anatomical location of the control centers
driving these activities are still unknown [82,145–148]. Central and peripheral circadian clocks are
entrained by external synchronizers allowing the organisms to react and anticipate reoccuring envi-
ronmental variations with a circadian periodicity. Among these synchronizers, the light/dark cycles
play a crucial role to entrain behavior and physiology of any mammal. Lighting cues are captured
and integrated by melanopsin cells of the retina [149] which reset the central clock located in the
suprachiasmatic nuclei and according to the diurnal or nocturnal nature of the mammalian species.
The temporal windows of food access and the composition of the meal are considered synchronizers
as powerful as the sun light [102, 103] and studies in circadian clock mutant mice have shown that
the circadian clock network plays an important role in mammalian energy balance [128]. Feeding
implies the frequency of food intake (experimentally defined as the frequency and the time or the
temporal window of food access) and the nature of nutrients (the composition of food with directly
metabolizable nutrients like D-glucose, fatty acids, L-glutamin or complex foods needing a diges-
tive process by intestinal enzymes of the host or the resident microflora of the large intestine). The
central clock has been found unresponsive to a temporal access of food in contrast with peripheral
clocks like the one in the liver [112]. A hypocaloric ration was found able to entrain the central
clock [125] as well as D-glucose [105] but more data are needed to allow an analysis of periph-
eral clocks functioning under these different foods. There are no data on the synchronizing effect
of complex foods which are degraded into smaller compounds by digestive enzymes of the host or
its microflora. The expression of clock components by cells of the digestive tract is progressively
being demonstrated but the existence of a main peripheral clock driven by food, as crucial as the
one located in the SNC, has not yet received any experimental demonstration.

during the subjective day and of diurnal
mammals, like humans, which have no
dead zone and can be entrained by light
pulses during both subjective night and
day [15, 16]. As a whole, the circadian

rhythmicity of the organism relies on a
multitude of oscillators with a period close
to but different from 24 h. In that respect,
organs and tissues are tuning each cellular
oscillator to constitute its own peripheral
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clocks. However, the cell lineage provid-
ing the sensory transducers and the cellular
pacemakers are unknown except for the
central one (Fig. 1). In addition to circadian
rhythms, there are other biological rhythms
which are called ultradian by reference to
cycles that are shorter than 20 h (i.e. the
beating of the heart) and infradian which
are cycles that are greater than 28 h (i.e.
seasonal reproduction).

In this section, we will present the reg-
ulation of clock genes, the ontogenesis
of SCN circadian rhythmicity (i.e. cen-
tral clock) and the peripheral clockworks
to underline the difficulties to demonstrate
any influence of feeding on the circadian
rhythms.

2.1. Genes on which circadian clocks
are running

The mammalian genome encodes at
least a dozen of genes directly involved
in the regulation of the feedback loops
constituting the circadian clock. The pos-
itive limb of the loop is driven by two
transcription factors, CLOCK ([17, 18];
or a close analog called NPAS2 [19])
and BMAL1 [18, 20] which are basic
Helix-Loop-Helix proteins with a PER-
ARNT-SIM (PAS) domain; the equilib-
rium being post-translationally regulated
by small ubiquitin modified proteins on
BMAL1 through CLOCK-induced activ-
ity [21]. A first negative limb involves
the protein regulators PERIOD 1 [22, 23],
PERIOD 2 [24, 25] or PERIOD 3 [26].
These proteins do not directly bind to
DNA but they have a PAS domain to build
complexes with CRYPTOCHROME 1
or 2 [27–29]. Other proteins like NONO
and WDR5 are able to modulate PERIOD
activity [30]. The proteins CASEIN KI-
NASE I epsilon or delta are involved in
the turn-over of PERIOD molecules by
phosphorylating these proteins and regu-

lating their nuclear translocation [31–36].
A second negative limb involves mem-
bers of the retinoic acid-related orphan
nuclear receptors, RORA [37] and REV-
ERB-ALPHA [38], which repress and
modulate bmal1 expression. An additional
loop of regulation driven by two Differen-
tiated Embryon Chrondrocyte (DEC) pro-
teins [39–41] has been proposed. These
oscillator systems control the activity of
clock-controlled-genes that function in the
rate-limiting steps of various biological
pathways [42–46].

In the absence of any environmental
cue, the PERIOD2 protein is believed to
reboost the circadian cycle by stimulat-
ing the transcription of bmal1 gene lead-
ing to the dimerization with CLOCK and
to the reinduction of a new circadian cy-
cle [47–54]. The circadian regulation of the
period2 gene has also been linked in vivo
to tumor suppression and DNA damage
response [55] or the regulation of bone for-
mation by leptin [56]. Period1 and 2 genes
are molecular candidates to study the adap-
tive response of the cellular metabolism
with environmental stressors and they have
been associated with the signaling pathway
allowing a cell to anticipate and integrate
changes in its normal environment.

In that respect, the promotor of the
period1 gene may be a sensor and an
integrator of physiological variations in
the organism with the aim to adjust the
clock to the environment [57, 58]. Re-
cently, Yamamoto et al. [59] showed that
the promoter of the period1 gene contains
at least a glucocorticoid-responsive ele-
ment along with E-boxes for the binding
of CLOCK:BMAL1 heterodimers related
to the rhythmic expression of transcripts
and with cAMP-responsive elements for
period1 transient expression. The regula-
tion of period1 gene is considered crucial
for a quick adaptation to variations of en-
vironmental parameters [30, 60] and may
be modulated by food intake [61].
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2.2. Circadian clockwork
of suprachiasmatic nuclei:
ontogenesis and role as the central
clock

The oscillator located in the suprachi-
asmatic nuclei (SCN; [144]) may be the
center of the network and the unique os-
cillator entrainable by light/dark cycles.
Observations realized on brain sections of
human fetuses or born-dead and on new-
borns of primates suggest that there is
a neuronal zone organized as suprachi-
asmatic nuclei fully functional at mid-
gestation [62]. Likewise circadian rhyth-
micity has been detected in the fetus of
the ewe by 2-deoxy-glucose incorpora-
tion [63]. The fetus (and consequently the
neonate) may be entrained not only by ma-
ternal signals induced by light/dark cycles
but also by the rhythmicity of nutrient sup-
plies from the mother which may entrain
rhythmic variations of blood parameters,
of locomotor activities and of rectal body
temperature [64].

In the mouse, neurons sensitive to light
stimuli received by the retina are located
in the ventrolateral SCN but the photic
signal integration and the transmission of
a circadian signal by the central clock
is a complex process which may as well
imply a second population of neurons non-
sensitive to light and located in the dor-
somedian SCN [65]. The oscillating sys-
tem of these neurons may be synchronized
by other cues, the central clock deliver-
ing a signal integrating the information
from the two other neuronal populations.
During the murine development as early
as at the embryonic day 19, all clock
genes (period1, period2, cryptochrome1,
bmal1, clock) are expressed and circadian
rhythmicity has been found at postnatal
day 3 for period1, period2, cryptochrome1,
bmal1 but not clock, the circadian rhyth-
micity of the latter being detected only at
postnatal day 10 [66].

Studies on rat neonates and premature
humans propose two main synchronizers:

the light/dark cycles driving the suprachi-
asmatic nuclei oscillator and a synchro-
nizer related to feeding and delayed for
12 h. Molecular data obtained on murine
embryos are in favor of the hypothesis that
Mammal babies are born with a functional
circadian system but have to tune their
clocks with environmental synchronizers.
As proposed by Weinert [64], the onto-
genic development of the circadian system
can be modified or imprinted by changing
environmental conditions, the main conse-
quence being on nursing of preterm infants
who are reared in the relatively “timeless”
conditions of neonatal intensive care nurs-
ery. However, direct comparisons between
laboratory mammals and humans are dif-
ficult because of divergent milk composi-
tions, maternal care or maturity of the ba-
bies. A clear-cut example is the acquisition
of circadian rhythms driven by light/dark
cycles. The babies of rats or mice born with
closed eyelids remain relatively immature
up to eyes opening in contrast with piglets
or human babies born with open eyes that
are considered as more mature.

In the adult, the two SCN exhibit
rhythms in the uptake of 2-deoxyglucose,
a marker of metabolic activity, in electrical
activity, in spontaneous as well as light-
induced expression of immediate early
genes, namely c-fos, a marker of neu-
ronal activity, in the production of many
peptides (e.g. of arginine vasopressin) and
other rhythms [67]. The SCN are also driv-
ing the circadian regulation of D-glucose
and insulin plasma levels [68]. Peripheral
clocks may be entrained by signals is-
sued by the SCN but could be uncoupled
under conflictual conditions to follow the
entrainement of synchronizers more rele-
vant to their homeostasis.

2.3. Properties of peripheral clocks

In contrast with the central clock, the
peripheral clocks could not be entrained
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by sun light [69–71] but are under the
dependence of the central clock to per-
ceive the photic signal through humoral
factors like glucocorticoids [72–74], trans-
forming growth factor alpha [75, 76] or
prokineticin-2 [77]. However, the demon-
stration that the release of TGF-alpha or
prokineticin-2 from the suprachiasmatic
region may entrain the peripheral clock
is still lacking. The phase of peripheral
clocks is delayed with the central clock,
however, the peripheral clocks are not syn-
chronized, each one displaying its own
rhythmicity specific of the tissue [78] en-
trainable by the environmental cues differ-
ent from the one provided by the central
clock [79]. For example, the expression of
period1 by rat fibroblasts is 4 to 8 h delayed
with the central clock [80].

Surgical deletion of SCN and of sur-
rounding brain regions alters but does not
always completely abolish the circadian
rhythm of food intake, nor the central core
temperature [82, 145–148] indicating that
up to now the anatomical location of the
control centers driving these activities are
still unknown. In addition, rats with sur-
gical ablation of the SCN have an altered
genetic expression of clock genes in the
liver with a strong dampening or a total
abolition of gene products coding for key
metabolic pathways, cellular structural el-
ements or elements involved in vesicular
transport [45, 81]. However, the rhythmic
expression of genes implicated in the os-
cillating system (period2, bmal1) persist
even after this kind of lesion [45]. Thus,
there is not only a single central clock but
a network of circadian clocks, with the pe-
ripheral clocks being coupled to the central
one but all retaining the capacity to un-
couple with one another depending on the
nature and strength of the synchronizers.

The existence of only one central clock
is debated [82–84] suggesting that there is
another clock able to receive the feeding
signal, to integrate and dispatch the out-
come to the rest of the organism and feed-

back on central clock functioning. How-
ever the existence of such a clock driven by
feeding, as crucial as the one located in the
SNC, is hampered by the scarcity of works
on the characterization of clock com-
pounds in the digestive tract. The presence
of clock components has been demon-
strated in the digestive tract (oral mu-
cosa [85], liver [26, 86] and pancreas [87].
We have shown that the main molecular
components (period1, period2, clock) of an
intestinal clock are expressed by colono-
cytes of healthy human donors as well as
by colon carcinoma cells [88, 89]. Many
rhythms which could be controlled by cir-
cadian clocks are observed in the intestine
mainly cellular proliferation [90, 91], mi-
gration [92] or apoptosis [93]. Circadian
activities in the intestine are well known
and concern the food intake, digestion
(and associated enzyme activities), cellular
proliferation, migration of epithelial cells
along the physiological unit like crypts or
villus, and apoptosis. Several genes have
been described as regulated according to a
circadian rhythmicity [2]: sodium/glucose
cotransporter implicated in the absorption
of dietary glucose and galactose, two tran-
scription factors (hepatocyte nuclear fac-
tors HNF-1 alpha and beta), and uroguany-
lyl and guanyline which are intestinal
receptors for guanylyl cyclase. Up to now,
the liver has been the organ of choice to
study peripheral clock functioning (Fig. 1)
but a better understanding of circadian
rhythms also implies integrating complex
tissue architecture and interfacing with the
external environment as in the lung or gut.

In summary, biological circadian os-
cillators are characterized by a stable
oscillatory period of around 24 h and en-
trainability (the sensitivity of the oscilla-
tion’s phase to periodic cue i.e. gating).
Limit cycle oscillations are stable to mi-
nor perturbations of regulator concentra-
tions and they persist over time even when
the organism is not subjected to periodic
driving forces (e.g. light exposure, feeding
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rhythms). However, circadian rhythmicity
is also dependent on a lot of individual
parameters like sex [94], adolescence sta-
tus [95] or aging which has been shown to
shorten the circadian period of older sub-
jects in laboratory rodents [96, 97] but not
in humans according to a study realized
in fully controlled conditions on 11 young
volunteers (23.7 years) and 13 old volun-
teers (67.4 y) concluding that aging did not
significantly modify the mean circadian
periodicity of 24.18 h [98]. In addition,
clocks must be buffered against changes
in temperature which typically speed up
or slow down macromolecular association
but the mechanism of such a regulation is
still unknown [99–101]. Part of the positive
and negative masking effects of circadian
rhythms driven by feeding have been ad-
dressed with rodents by taking advantage
of the nocturnal nature of rats and mice
which can be bred in constant darkness.
However environmental cues are always
interacting in the real world and it would
be crucial to appreciate the resulting influ-
ence of the environment on the subjects’
well-being. That means producing the cat-
alogue of stromal cell lineages with their
clock compound profiles, understanding
the molecular regulation of clock genes
and identifying, if any, cellular transducers
and pacemakers.

3. SYNCHRONIZATION
OF CIRCADIAN CLOCKS
BY FEEDING

The hypothesis that feeding would be a
synchronizer as powerful as light/dark cy-
cles relies on many empirical observations
realized on breeding units of laboratory
rodents [102, 103] or on studies on con-
sumers [104]. The water access, bulking
effect (or capacity to induce satiety; [105])
or smell [106] are not considered as syn-
chronizers and the influence of social ac-

tivities on circadian rhythms are still being
discussed [107].

By definition, feeding implies the fre-
quency of food intake (experimentally de-
fined as the temporal window of food ac-
cess in or out of phase with the nocturnal
or diurnal nature of the species includ-
ing or not a fasting period) and the na-
ture of nutrients (the composition of food
with directly metabolizable nutrients like
D-glucose, fatty acids, L-glutamin or com-
plex foods needing a digestive process by
intestinal enzymes or microflora of the
large intestine). A simple cybernetic point
of view can help to simplify the data in
the field (Fig. 1). Feeding is not only a
question of metabolizable energy, miner-
als, vitamins and growth factors provided
at the right time and frequency, it also car-
ries some information with different mean-
ings decoded at the cellular genome level.

Experimenters have explored both sides
of the problem and in the next section we
will present the effects of temporal win-
dows of food access and meal composition.

3.1. The synchronizing effect
of temporal windows of food access

Rhythms of food intake present a high
capacity to synchronize the rhythmicity of
behaviors as well as the oscillating system
of the peripheral clocks. In rats maintained
in constant darkness or different lighting
conditions, various circadian rhythms like
the locomotor activity and the body tem-
perature cycles are synchronized by the
phase of food access [108, 109]. In ad-
dition the rhythmic expression of genes
from the oscillating system (period1, 2, 3
and cryptochrome 1, rev-erb-alpha) and of
output genes (like dbp) is reinitialized in
the different organs and tissues but not in
SCN [79, 87, 110, 111]. After such a nutri-
tional restriction, the phase delay is com-
plete for period1 expression in the liver
of transgenic rats and only partial in the
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lungs or non-existent in the SCN [112]
suggesting a local effect or a tissue-specific
effect of the synchronizer (Fig. 1). In ad-
dition, a “de-afferentiation” by capsicin
(blocking of the parasymphatic system) did
not abolish and did not alter the loco-
motor activity before a meal [113]. This
uncoupling between central and periph-
eral rhythmicities, induced by nutrition, is
founded on a study of mutated mice for
the clock gene. These mice, maintained in
constant darkness and fed with a restricted
access to food, have a persistent altered
locomotor activity, with a locomotor ac-
tivity dependent of the SCN (consequently
of the dark/light cycle) becoming arrhyth-
mic [114]. These observations are in favor
of a rapid and highly specific synchroniza-
tion. This synchronization may imply or-
gans or tissues directly entrained by the en-
vironmental cues like a nutritional stimulus
influencing gut functioning. The phase of
peripheral clocks can be modulated and
totally uncoupled with the central clock
through feeding (Fig. 1). Works in favor
of the modulation of peripheral circadian
clocks by feeding have been initiated on
livers of transgenic rats maintained under
nutritional restriction and have shown that
hepatocytes are able to uncouple their cir-
cadian clocks of signals issued by the cen-
tral clock, rephasing their oscillations on
the rhythmicity of another synchronizer:
the temporal window of food access [112].
In this study, transgenic rats had integrated
the mouse period1 promoter linked to a
luciferase reporter. The rhythmic expres-
sion of this so-called clock gene has been
easily monitored in explant cultures of dif-
ferent organs (SCN, lung, liver) and related
with the wheel-running activity of rats.
Restricted feeding consists of 4 and 8-h
time windows of food-access. The central
clock (SCN) has been found unresponsive
to a temporal access of food in contrast
to peripheral clocks like the one in the
liver [112]. Nevertheless, Miki et al. [115]
have studied the total parenteral nutrition

of rats suggesting that there is some feed-
back effect on the central clock. Indeed,
while parenteral nutrition is given during
the day in the rat, the period2 expression
is phase-advanced, in the liver as well as
in the suprachiasmatic nuclei. This study
is crucial because the nutritional intake
is provided under free-running conditions,
without external cues like visual percep-
tion or smell.

In humans, studies give contradictory
results. In 1973, Reinberg et al. [116]
showed that people working in moving
working hours (3 × 8 in rapid rotation) but
with fixed meal times, had for those work-
ing at night, delayed peaks of plasmatic
catecholamines or serotonin of more than
4 h with the day workers. More recently,
Iraki et al. [117] and Bogdan et al. [118]
showed that people following the Ramadan
rite (meals are consumed at night for
around a month) had an altered circadian
profile for a lot of parameters like rates of
insulin, glucose, calcium, gastrin but also
of prolactin, cortisol, and melatonin. Nev-
ertheless, a single meal containing high
carbohydrate levels consumed either in the
morning or in the evening has been found
without an effect on the rhythm of mela-
tonin suggesting that this temporal food
restriction does not have enough synchro-
nizing properties to modify the phase of
the central clock [119]. In addition, chronic
feeding of food with melatonin enhances
the phase shifting response to triazolam in
both young and old golden hamsters [120].

In our opinion, the main contribution in
the field is the demonstration that feeding
cycles in transgenic rats can entrain the
liver clock independently of the suprachi-
asmatic nuclei [112]. However, Mendoza
et al. [121] showed in mice that central cir-
cadian rhythmicity is partly influenced by
feeding.

To summarize, animal studies are in fa-
vor of the hypothesis that there are at least
two (or more) main circadian clocks inte-
grating either photic signals or nutritional
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cues from the feeding rhythms but human
studies on the synchronization of circa-
dian rhythms by the frequency and times
of meals are only at their beginning. Other
works are trying to correlate the composi-
tion of meals with the circadian rhythms
of physiology and behavior or to study
the effects of metabolites with the advan-
tage to relate molecular data on clock gene
regulation with cellular catabolism and an-
abolism to provide a more integrated view
of physiology and behavior.

3.2. The synchronizing effect
of the energetic value of meals

Beside the influence of food intake
rhythms, the energetic value may be im-
plicated in the modulation of circadian
rhythms [122,123] even if, according to ex-
periments on mice fed ad libitum, the light-
entrainable pacemaker controls the period
of the food-entrainable pacemaker [122].
The influence of the species’ behavior
has also been studied by comparing Syr-
ian and Siberian hamsters suggesting that
metabolic cues may directly influence the
SCN [124]. In rodents, a caloric restriction
triggers a phase advance of the altered lo-
comotor activity, of hormonal peaks (mela-
tonin, corticosterones), of body tempera-
ture [125] as well as the profile of night
activity [122, 124, 126]. In addition, the
composition of food in terms of caloric
value has been found relevant to synchro-
nize rats receiving chow as a meal. A
threshold value of 22 kcal (92 kJ) has
been proposed for a synchronizing effect
of food on feeding of an entrained cir-
cadian oscillator; [105]. The influence of
a hypocaloric food has also been studied
by reducing the daily intake from 5 g of
chow per day to 3.3 g of chow per day dis-
tributed at Zeitgeber Time 2, 10, 14, 22
(ZT 12 = lights off) recording phase ad-
vanced in the nocturnal pattern of activity
by 1, 3, 1 and 1 h [122]. By using Clock

mutant mice, Challet et al. [127] showed
that these animals are responsive to non
photic phase-shifting leading the way to a
recent demonstration that the energy bal-
ance of a meal can be influenced by the
circadian clock and responsible in part for
obesity [128].

The demonstration of the relations be-
tween feeding and circadian clocks has
not been simplified with microarray anal-
yses of mammalian cells. According to
divergent publications, only 10% of the
eucaryote transcriptome is believed to be
clock-dependent [67, 129] leaving few if
any metabolic pathways out of the control
of clockwork but indicating that experi-
menters have to take into account both
qualitative and quantitative variations of
hundreds of transcripts with tissue spe-
cific profiles. In the rat, fasting triggers
a modification of the rhythmic expression
of 325 genes on 516 genes studied in the
liver [78]. Thus even though a direct impli-
cation of circadian clock genes is not easy
to unmask, these studies are in favor of a
link between caloric restriction, circadian
clocks, and physiological modifications.

Beyond the rhythms of food intake and
the energetic value of a meal, D-glucose
may have directly or indirectly an action
on the regulation of the circadian clocks.
Indeed, on SCN lesionized rats, the al-
tered locomotor activity is delayed while
the meal is replaced with D-glucose but
this parameter is not modified if the meal
is substituted by vegetal or mineral oil or
by saccharine [123]. D-glucose may be di-
rectly implicated in the modulation of the
circadian clocks since the reinitialization
of the phase of locomotor activity by light
in the mouse is attenuated with a reduced
availability of D-glucose [130]. D-glucose
was studied by intraperitoneal injection
in order to directly study the extracellu-
lar concentration of glucose in the brain.
Challet et al. [130] showed that glucose
availability attenuates circadian responses
to light in mice. Glucose utilization was
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blocked by 2-Deoxy-Glucose (0.4 M (or
550 mg.kg−1) of glucose and 2DG) or 2 g
glucose per kg by intraperitoneal injection.
The effect of 30 h fasting and insulin in-
jection have also been studied in parallel
groups of mice.

Metabolites like D-glucose are both cel-
lular fuel used to produce ATP and signal-
ing molecules binding DNA on response
elements to modulate gene transcription;
the concentration and its variation are cod-
ing the message and correspond to the
input synchronizer strength. By taking into
account the metabolic status of the cell,
i.e. the redox potential of NAD(H) and
NADP(H) cofactors (Nicotinamide ade-
nine dinucleotide (phosphate)), it may be
possible to explain how the nutrients, and
in particular D-glucose, could be impli-
cated in the regulation of the circadian
clocks. Cellular catabolism of dietary D-
glucose implies energy. This energy is
provided by the oxidation of NAD(P)H
cofactors and the liver NADH/NADPH ra-
tios have the strongest in vivo circadian
oscillations. In this model, the binding ca-
pacity of the CLOCK:BMAL1 complex to
the DNA would be regulated by the redox
status of NAD(H) and NADP(H) cofac-
tors, the reduced form potentializating this
binding and the oxidized one reducing it
and the balance controlling the expression
of clock controlled genes [131, 132]. A
direct influence of NO, a known vasodi-
latator, has been found on the fixation of
the CLOCK:BMAL1 on the E boxes dis-
tributed along DNA molecules both in the
suprachiasmatic nuclei and in the exter-
nal neural system. This fixation is under
the influence of the NAD cofactors (i.e.
their ratios) which are under the influ-
ence of oxygen and the metabolism of D-
glucose. As a consequence, the D-glucose
supply may have an inhibiting effect on the
CLOCK:BMAL1 complex and could alter
circadian clockwork.

In addition, metabolites like D-glucose
are able to bind directly to DNA molecules

in specific regions called response ele-
ments to modulate the transcription of
some genes. The demonstration has been
realized in vitro on cell lines of fibroblastic
origin [133] and a similar effect of glucose
on period genes have been reproduced on
colon carcinoma cells [134].

In summary, a hypocaloric ration was
found to entrain the central clock [125]
as well as D-glucose [105] but more data
are needed to allow an analysis of pe-
ripheral clocks functioning under different
compositions of foodstuffs. There are no
data on the synchronizing effect of com-
plex foods which are degraded in smaller
compounds by digestive enzymes of the
host or its microflora. In addition, the influ-
ence of feeding on circadian rhythms may
be tissue specific [78] with a strong influ-
ence on the clocks of the organs implied in
the digestive process. Implication of nutri-
ents (like short-chain fatty acids, the main
energetic source for colonocytes [135] or
L-glutamine, the main energetic source for
the enterocyte [136]) in the tissular regula-
tion of peripheral circadian clocks are yet
to be explored.

4. PERSPECTIVES

The circadian clocks play a crucial
role in the integration of various environ-
mental cues (light, feeding, physical and
social activities) or in the control of vi-
tal processes (cell division cycle, differ-
entiation, apoptosis) and it may become
possible to prove the existence of local
and specialized circadian clocks in the
processing and transmission of informa-
tion coming from the environment. The
role of clock genes in human physiol-
ogy is progressively unraveled by relat-
ing behavioral and physiological trends
with some genomic mutation. Familial ad-
vanced sleep phase syndrome [137, 138],
delayed sleep phase syndrome and normal
variations of morning larks and night owls
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phenotypes [139, 140] and diurnal prefer-
ence [141] have been related with genomic
mutation. Further studies realized to un-
derstand and manipulate feeding as a syn-
chronizer of central and peripheral clocks
might improve the well-being and health
of two categories of people: Neonates born
either premature or at term who have to
organize their circadian rhythms [64, 142]
in order to understand the acquisition of
consolidated sleep, improve nursing prac-
tice and evaluate the impact of diet on the
construction of circadian rhythms and its
consequence on health of the future adult;
the night or shift workers who now repre-
sent around 20% of the work force in our
societies [143] and are highly concerned
by comfort and healthy practices to recover
from work efforts.
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