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Abstract – Follistatin was first demonstrated as an activin-binding protein, neutralizing its actions.
However, there is emerging evidence that follistatin inhibits the action of other members of the
transforming growth factor ß (TGFß) / bone morphogenetic protein (BMP) superfamily. Recently,
numerous BMP factors have been shown to play important roles in regulating folliculogenesis and
ovulation rate in mammals, and such a potential antagonistic role of follistatin is of particular interest
in the context of ovarian function. Using a biological test based on progesterone production by ovine
primary granulosa cells in culture, we show that follistatin was a strong antagonist of activin A, but
not BMP-2 or BMP-4 actions. In contrast, noggin, a known specific BMP antagonist, had no effect
on activin A but strongly neutralized BMP-2 and BMP-4 actions. BMP-6 action was only slightly
reduced by both follistatin and noggin. Our data led to the conclusion that follistatin would not
represent a determinant physiological modulator of the biological effect of BMP factors on granulosa
cells.

ovary / granulosa cells / follistatin / noggin / bone morphogenetic protein

1. INTRODUCTION

Follistatin was first described as a
gonadal inhibitor of FSH secretion from
pituitary cells, suggesting that it would act
in an endocrine way. It is now clear that fol-
listatin most likely acts as a paracrine/auto-
crine factor in a number of tissues. Follista-
tin has been demonstrated as an activin-
binding protein, neutralizing the action of
activin [1]. Two mature follistatin isoforms
of 288 and 315 amino acids encoded by a
single gene arising from alternative splicing
exist [2, 3]. The relative importance of the

two isoforms (follistatin-288 and follista-
tin-315) is discussed with particular empha-
sis on the regulation of the ovaries. Follista-
tin-288 is the predominant form present in
human follicular fluid [4]. In mammalian
ovaries, follistatin is highly expressed by
the granulosa cells (GC) of developing fol-
licles [5–7]. The level of follistatin mRNA
expression within the antral follicles increases
as follicular maturation progresses and
declines during the atretic process [5, 8].
Follistatin has been shown to block all the
actions of activin on GC, including the stim-
ulation of FSH receptor expression, inhibin
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secretion and steroidogenesis regulation
[9]. In addition, follistatin has been recently
shown to bind and regulate the function of
other members of the TGFß/BMP family,
thereby expanding its range of action.
Indeed, follistatin antagonizes the action of
BMP-2, BMP-4 and BMP-7 in the xenopus
embryo [10, 11] or BMP-7 in the develop-
ment of chick limbs [12]. Follistatin can
also inhibit the action of GDF-8/myostatin,
another TGFß/BMP family member, con-
trolling skeletal muscle mass [13]. Interest-
ingly, transgenic mice overexpressing fol-
listatin exhibited different phenotypes than
those seen in mice deficient for the activin
subunits or activin receptor [14]. Therefore,
the in vivo effect of follistatin might be
caused by the inhibition of the activins and/
or the BMP. 

Altogether, these observations indicate
that follistatin is not only an activin-binding
protein, but would also interact with other
TGFß/BMP family members, through a
probable similar binding mechanism. This
hypothesis is of particular interest in the
context of ovarian physiology, since differ-
ent BMP family members have been shown
to be involved in controlling the growth of
preantral follicles, GC differentiation and
ovulation rate (for reviews [15–17]).

In order to address this issue, we per-
formed an in vitro biological test using
ovine primary GCs to evaluate the neutral-
izing effect of follistatin and noggin, a spe-
cific BMP antagonist [18], on the action of
different members of the BMP/TGFß sys-
tem (activin A, BMP-2, BMP-4 and BMP-6).
This work was based on previous observa-
tions of similar inhibitory action of BMP-4
and activin A on progesterone secretion by
ovine GC [19].

2. MATERIALS AND METHODS

2.1. Animals

Cyclic Romanov ewes were treated with
intravaginal progestagen sponges (fluoro-

gestone acetate, 40 mg, Intervet, Angers,
France) for 13 days in order to synchronize
oestrus. The ovaries were recovered after
castration in the late follicular phase, 36 h
after sponge removal. All procedures were
approved by the agricultural and scientific
research Government committees in accord-
ance with the guidelines for the Care and
Use of Agricultural Animals in Agricul-
tural Research and Teaching (approval
A37801).

2.2. Granulosa cell cultures

Briefly, in each independent culture exper-
iment, ovarian follicles from three ewes
were quickly dissected, pooled and classi-
fied according to size. GC were recovered
from small antral follicles (1–3 mm in diam-
eter) as previously described [20]. GC sus-
pensions were seeded at 100 000 viable
cells/well in 96-well plates and cultured
for 96 h at 37 °C with 5% CO2 in serum-
free McCoy 5a medium (Sigma, L’Isle
d’Abeau Chesnes, France) containing IGF-1
(10 ng.mL–1, Ciba-Geigy, Saint-Aubin,
Switzerland), according to a previously
described method [21]. Cultures were per-
formed with or without recombinant human
activin A, BMP-2, BMP-4 or BMP-6 (R&D
Systems, Lille, France), each alone or in
combination with recombinant mouse fol-
listatin-288 (R&D Systems, Lille, France)
or recombinant human noggin (Regeneron
Pharmaceuticals, Tarrytown, NY, USA).
Each combination of treatments was tested
in triplicate in each of four independent cul-
ture experiments. Culture media were par-
tially replaced (180 over 250 µL) at 48 h.
Media conditioned between 48 and 96 h of
culture were collected at 96 h and stored at
–20 °C prior to the progesterone assay. At
the end of the culture period, the number of
cells per well was estimated after trypsini-
zation with a hemacytometer under a phase
contrast microscope. In our culture condi-
tions, the cell number was not affected by
the different combination of treatments. 
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2.3. Progesterone radioimmunoassay 

Progesterone amounts in the culture media
from each experiment were measured by
radioimmunoassay in the same assay, as
described [22]. The limit of detection of the
assay was 12 pg·tube–1 and the intra-assay
coefficient of variation was 10%. The results
are expressed as the amount of progester-
one secreted per 50 000 cells recovered at
the end of the culture period.

2.4. Data analysis

The data are presented as mean ± SEM.
The effects of treatments on progesterone
secretion were analysed by Super ANOVA
software (Abacus Concepts, Inc.). The effect
of activin and BMP were analyzed using
two-way ANOVA in order to appreciate the
ligand as well as the culture effect resulting
from variations between both animals and
the quality of the ovarian follicles dissected
for each culture. The effects of antagonists
(follistatin and noggin) were analyzed in
a similar way for each dose of the ligand
(activin or BMP). Post-hoc comparisons were

performed with the Scheffe and Newman-
Keuls tests. Differences with P > 0.05 were
considered as not significant.

3. RESULTS

As shown in Figure 1, the addition of
increasing doses of activin A led to a dose-
dependent inhibition of progesterone secre-
tion by ovine GC as previously shown [19]
(Fig. 1A). Treating GC with follistatin or
noggin, each alone, at 100 ng·mL–1 had no
effect on progesterone production. However,
follistatin completely abolished (activin A
5 ng·mL–1, P < 0.01) or significantly reduced
(activin A 50 ng·mL–1, P < 0.05) the inhib-
iting effect of activin A on progesterone
secretion. In contrast, noggin was without
an effect on the response of GC to activin A.
Thus, as expected, follistatin, but not nog-
gin, neutralized the effect on activin A on
GC steroidogenesis. 

We next investigated the effect of follista-
tin on the response of GC to other BMP/
TGFß family members in order to appreci-
ate its specificity of action in the context of
ovarian cells. As shown in Figure 2, BMP-2,

Figure 1. The effect of follistatin and noggin on activin A activity. GC from small antral (1–3 mm
in diameter) ovine follicles were cultured for 96 h in serum-free conditions. Cultures were performed
in the absence (control) or in the presence of follistatin (100 ng·mL–1) or noggin (100 ng·mL–1),
each alone or in combination with activin A (5 or 50 ng·mL–1). Each combination of treatments
was tested in triplicate in each of 3 independent experiments. The results represent the amount of
progesterone secreted by 50 000 GC between 48 h and 96 h of culture. ** P < 0.01, *** P < 0.001,
activin A vs. an untreated condition; $ P < 0.05, $$ P < 0.01 with vs. without antagonist for each
dose of activin A.
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BMP-4 and BMP-6 dose-dependently inhib-
ited progesterone secretion by ovine GC.
Follistatin did not significantly change the
GC response to BMP-2 or BMP-4. In strik-
ing contrast, and as expected, noggin strongly
abolished both BMP-2 and BMP-4 actions
(P < 0.001). The action of BMP-6 was
slightly reduced by both follistatin and nog-
gin (P < 0.05).

4. DISCUSSION

In this study, we performed an analysis
of the neutralizing effect of follistatin on the
action of various TGFß/BMP factors using
progesterone production by ovine primary
GC as an in vitro biological test. Our data
led to the conclusion that follistatin was a

strong antagonist of the actions of activin A,
but not BMP factors, on GC. Particularly,
follistatin did not affect BMP-2 and BMP-4
actions on GC, while noggin, a true BMP
antagonist, clearly inhibited their actions. In
contrast, BMP-6 action was slightly inhib-
ited by follistatin, in accordance with recent
results in bovine GC [23].

In the ovaries of most mammals, GC are
responsible for producing and secreting fol-
listatin (for review [9]). In sheep, follistatin
expression is detectable in preantral follicles,
increasing as follicular maturation progresses
and declining during atresia. Primordial
and primary follicles do not express fol-
listatin mRNA [7, 24], indicating that fol-
listatin may not be implicated in early
stages of follicular development. Among
TGFß/BMP family members present in the

Figure 2. The effect of follistatin and noggin on BMP factors activity. Experimental conditions  were
the same as in Figure 1. Ovine GC were cultured in the absence or in the presence of various doses
of BMP-2 or BMP-4 or BMP-6, each alone (control) or in combination with follistatin (100 ng·mL–1)
or noggin (100 ng·mL–1). * P < 0.05, *** P < 0 .001, BMP factor vs. untreated condition; $ P <
0.05, $$ P < 0.01, $$$ P < 0.001, with vs. without antagonist for each dose of the BMP factor.
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ovaries, oocyte-derived GDF-9, BMP-15
and BMP-6 are expressed from the primor-
dial to the preovulatory stage of follicular
development in rodents and ruminants.
GDF-9 and BMP-15 are of critical impor-
tance at very early stages of folliculogene-
sis, controlling primary to secondary folli-
cle transition [15, 16]. In later stages, it has
been established that removal of the oocyte
from antral follicle induces luteinization of
follicular cells [25], suggesting that the
oocyte is the source of anti-luteinizing factors.
Interestingly, recombinant GDF-9, BMP-
15 and BMP-6 have been shown to modu-
late the FSH differentiating action on GC in
vitro and to delay the luteinization process
[26–28]. This suggests that oocyte-derived
BMP could be such anti-luteinizing factors.
Among the three oocyte-derived BMP
identified yet, follistatin has been shown to
bind and reduce the activity of BMP-15 [29]
and BMP-6 ([23], and the present study),
reinforcing its role as a luteinizing factor of
GC in large antral follicles. In contrast, due
to its pattern of expression, follistatin is not
expected to interfere with the action of these
oocyte-derived BMP factors on the first
stages of folliculogenesis. 

Follicular cells of secondary to antral fol-
licles have also been shown to express other
various BMP factors, such as BMP-2,
BMP-3, BMP-4 and BMP-7, concomitantly
with follistatin [30–32]. In vitro experi-
ments using recombinant BMP-2, BMP-4
or BMP-7 have designated these BMP, as
well as oocyte-derived BMP, as anti-lutei-
nizing factors [19, 32, 33]. From our exper-
iments, follistatin would not be a modulator
of the action of either BMP-2 or BMP-4 on
GC. In contrast, recent results of Glister
et al. [23] indicate that follistatin is able to
bind BMP-4 and inhibits BMP-4 dependent
Smad-1 phosphorylation in bovine GCs.
This discrepancy might be due to the spe-
cies difference of the recombinant follista-
tin used, which was the mouse in the present
study and the human in the study of Glister
et al. [23]. Alternatively, the sensitivity of
our biological test might not be sufficient to

show an effect of follistatin, the affinity of
which being 10-fold lower for BMP-4 than
for activin A [23]. 

In our experiments, noggin was able to
strongly inhibit BMP-2 and BMP-4, but
weakly BMP-6 actions on ovine GC. These
results were in agreement with the known
effects of noggin in other cell types. Partic-
ularly, noggin has been reported to be a
strong antagonist of BMP-2 and BMP-4,
but a weak antagonist of BMP-7, which is
structurally related to BMP-6 [18, 34].

Noggin did not seem to be expressed in
the ovine ovaries when the RT-PCR
approach was used (S. Fabre, data not
shown). Valenzuela et al. [35] also failed to
detect noggin mRNA in rat ovaries, sug-
gesting that noggin does not represent a
physiological antagonist of BMP factors in
the ovaries. In contrast, another BMP antag-
onist, chordin, functionally related to nog-
gin (reviewed in [34]), has been shown to
be expressed by human ovaries [36]. Accord-
ingly, by RT-PCR, we detected chordin
mRNA in ovine ovaries (S. Fabre, unpub-
lished data). Thus, this raises the possibility
that in the ovaries, at least two antagonists
of BMP and BMP-related factors might par-
ticipate in modulating their anti-luteinizing
actions on GC. Follistatin could mostly
inhibit activin A, oocyte-derived BMP-15
and BMP-6 actions, and chordin might more
specifically modulate BMP-2 and BMP-4
actions. Further experiments are needed to
support this hypothesis.

In this study, we showed that follistatin
did not antagonize BMP-2 or BMP-4
actions on ovine GC and only had a slight
modulatory effect on BMP-6 actions. It is
hypothesized that follistatin does not repre-
sent a determinant physiological modulator
of the action of these BMP factors. The
existence of more specific antagonists able
to control the function of those and other
BMP molecules (GDF-9 and BMP-7) and
their physiological relevance in ovarian
function remains to be investigated. 
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