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Abstract – Normal gametogenesis and steroidogenesis is highly dependent on the pulsatile release
of hypothalamic GnRH that binds high-affinity receptors present at the surface of pituitary
gonadotrophs thereby triggering the synthesis and release of the gonadotropins LH and FSH. The
mammalian GnRH receptor displays the classical heptahelical structure of G protein-coupled
receptors with, however, a unique feature, the lack of a C-terminal tail. Accordingly, it does not
desensitise sensu stricto, and internalises very poorly. It is now well established that GnRH
stimulation induces the activation of a complex network of transduction pathways involved in the
control of gonadotropin release and subunit gene expression. Other authors and ourselves have
demonstrated that the GnRH action is associated with an increased complexity regarding gene
regulation/cell function. Indeed GnRH affects the GnRH receptor gene itself and a number of
additional genes that include some involved in cell signalling and auto-/paracrine regulation. The
fact that GnRH regulates the expression of its own receptor, together with a host of other genes
typically involved in its signal transduction cascades implies alteration/auto-adaptation in
gonadotropic responsiveness. Furthermore, some of these genes respond differentially depending on
whether the GnRH stimulation is intermittent or permanent suggesting specific roles in the dual
process of activation/desensitisation. Thus, it can be assumed that the importance of pulsatility of
GnRH action is closely related to, or dependent on, the inability of the GnRH receptor to desensitise.
Moreover, multiple post-receptor events are crucial for both the regulation/plasticity of gonadotropic
function and the maintenance of cell integrity.

GnRH receptor / signalling / gene regulation / transcription factor / gonadotropins / secretion

1. INTRODUCTION

The hypothalamic gonadotropin-releasing
hormone pGlu-His-Trp-Ser-Tyr-Gly-Leu-
Arg-Pro-Gly-NH2 known as mammalian
GnRH or GnRH I plays a key regulatory
role in the neurohormonal control of repro-

duction by stimulating the release of the
pituitary gonadotropins LH and FSH. The
pulsatile neuronal delivery of GnRH, itself
centrally regulated in amplitude and fre-
quency, is essential for maintaining the
serum gonadotropin profiles required for
normal steroidogenesis and gametogenesis.
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Whereas physiological fluctuations in GnRH
orchestrate normal reproduction, high lev-
els or prolonged stimulation lead to the sup-
pression of gonadotropin secretion. This
dual response has made the GnRH receptor
a target for short- or long-term treatments
with GnRH analogues in a wide range of
human or animal applications such as repro-
duction/fertility, steroid/growth-related dys-
function or sex steroid-dependent cancer
[1, 2]. The mechanisms by which GnRH
could regulate the secretion of two gonado-
tropins, notably in some instances in a co-
ordinate or differential manner, have been
the subject of ongoing intensive investiga-
tion. Over the past 25 years, molecular biol-
ogy, and more recently imaging and trans-
genic techniques have been used extensively,
providing a substantial amount of novel
information. In mammals, GnRH was shown
to operate via an atypical G protein-coupled
receptor and to regulate cellular function by
affecting the activity of a growing number
of genes, some of which would modulate its
functional impact in relation with the stim-
ulation mode.

2. GnRH AND PITUITARY 
GONADOTROPIN SECRETION 

The fundamental function of GnRH,
which led to the initial peptide isolation,
was the induction of the release of pituitary
gonadotropins. Nevertheless, the question
of whether GnRH alone or in combination
with other hormones/factors may also reg-
ulate the synthesis of LH and FSH was
addressed very early. As described below,
the biosynthesis and release of these hor-
mones occur in the context of a complex
secretory mechanism and the two processes
are thus closely interconnected.

2.1. Structure and biosynthesis 
of pituitary gonadotropins

LH and FSH belong to a family of struc-
turally related glycoprotein hormones that
include the pituitary thyrotropin TSH and,

in certain species such as primates and
equids, the placental choriogonadotropin
CG [3]. All these hormones are composed
of two distinct, noncovalently associated
glycosylated subunits, a common α- and a
specific β-subunit. Cell-free translation
studies and molecular cloning, have dem-
onstrated that each subunit is synthesised as
a precursor with a signal peptide preceding
the authentic subunit sequence and these
precursors are encoded by distinct mRNA
transcribed from separate genes (Tab. I).
LH and FSH, i.e. subunits α, LHβ and
FSHβ are expressed within the same cells
although mono- and bihormonal gonado-
trophs coexist [4]. Precursor cleavage and
first steps of N-glycosylation occur co-
translationally as the nascent proteins enter
the endoplasmic reticulum, allowing early
association into immature α/β heterodim-
ers. The completion of a functional LH or
FSH then takes place during migration along
the Golgi apparatus resulting in the progres-
sive acquisition of a specific mature glyco-
sylation and conformation, and an ultimate
achievement within the secretory granules
[4, 5]. The synthesis of gonadotropins thus
follows the general pathway of secreted
proteins in eukaryotes with, however, some
distinct features concerning essentially het-
erodimerisation, sugar type N-glycosylation
and sorting in separate granules. Although
this biosynthetic system has the potential
for a number of control points this review
will concentrate essentially on the gene
expression level.

2.2. GnRH control of gonadotropin 
secretion

2.2.1. Importance of the GnRH I system 
in mammals

While GnRH was initially isolated and
characterised by its ability to induce the
release of pituitary gonadotropins, an array
of evidence initially argued in favour of an
indispensable role for GnRH in promoting
gonadotropin gene expression. Indeed, it
has been known for a long time that a
genetic defect in GnRH I secretion in
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rodents [6] and humans [7, 8] results in a
substantial decrease in serum gonadotro-
pins associated with hypogonadism, impu-
berism and infertility. The same phenotype
was observed more recently in patients with
loss of function mutations in the GnRH type
I receptor gene [9]. Such mutation-induced
dysfunctions are consistent with a similar
substantial depression in serum LH and
FSH observed in response to experimental
disruption of the GnRH/GnRH receptor
system, which result from endogenous GnRH
immunoneutralisation, surgical hypothala-
mus-pituitary disconnection or an antago-
nist-mediated GnRH receptor blockade [10,
11]. In all cases, a low expression of all
three gonadotropin subunit genes α, LHβ
and FSHβ was confirmed via measurement
of pituitary mRNA content. In spite of the
possible expression of more than one
GnRH variant in a given species, and nota-
bly of GnRH II (pGlu-His-Trp-Ser-His-Gly-
Trp-Tyr-Pro-Gly-NH2) in humans [12], the
above data demonstrated the crucial impor-
tance of the GnRH I system in the control
of gonadotropin expression and conse-
quently, of the pituitary gonadotropic func-
tion. Accordingly, only reference to GnRH
I will be made further in this review, under
the usual generic term GnRH.

2.2.2. GnRH is crucial for regulated 
expression of gonadotropin 
subunit genes

A number of investigations have demon-
strated that GnRH stimulates in vitro the
synthesis of gonadotropin subunits and
increases α, LHβ and FSHβ subunit mRNA
levels as well as the transcriptional activity
of corresponding gene promoters. Taking
into account its crucial importance on gona-
dotropin release, the effect of GnRH pulse
frequency and/or amplitude on gonadotro-
pin subunit gene expression was evaluated.
Several in vitro and in vivo models such as
anterior pituitary cell cultures or animals
with surgical or pharmacological hypotha-
lamus-pituitary disconnection were used to
demonstrate that the individual gonadotro-
pin genes responded differentially to the
frequency of GnRH pulses. Indeed, low fre-
quencies in the range one stimulus every
two or four hours appear to preferentially
increase FSHβ mRNA levels whereas higher
frequencies preferentially stimulate LHβ
and α subunit mRNA [13, 14]. In vivo, per-
manent exposure to GnRH leads to a more
or less rapid depletion of both FSHβ and
LHβ mRNA in a manner that suggests a
rapid transcription arrest followed by RNA
degradation, while the α-subunit mRNA

Table I. Major characteristics of the human and rat gonadotropin subunit genes, mRNA transcripts
and precursors.

Chromosome
assignment

Transcription 
unit
(kb)

Number of 
Exons

mRNA
(kb)a

Signal
peptide

(aa)

Subunit
(aa)

S–S
bonds

CHOb

hu αGSU
rat αGSU

6 (q12-q21)
5 (q13-q24)

9
8

4
4

0.8
0.8

24
24

92
96

5
5

2
2

hu LHβ
rat LHβ

19 (q13.32)
1 (q22)

1.4
1.1

3
3

~ 0.7
~ 0.7

20
20

121
121

6
6

1
1

hu CGβc 19 (q13.32) (cluster) 3 1 20 145 6 2

hu FSHβ
rat FSHβ

11 (p13)
3 (q33)

3.9
3.1

3
3

1.7
1.7

19
19

110
110

6
6

2
2

a Includes the poly(A+) sequence. 
b CHO: asparagine-linked carbohydrate chains.
c No CGβ gene in the rat.
hu, human; aa, amino acids.



246 R. Counis et al.

remains constant or increases only slightly
for days [15–17]. The latter data are con-
sistent with current clinical studies showing
that long-term administration of GnRH super-
agonists induces depletion of LH and FSH
but increases free α-subunit levels in the
serum of treated patients [18].

Collectively these data suggest the pres-
ence of some specific mechanisms that dif-
ferentially regulate the expression of three
genes within a single cell. These may involve
GnRH receptor signalling, mRNA stability
and/or subunit gene promoter properties.
Alternatively, an indirect modulation by
factors such as steroids or members of the
transforming growth factor-β superfamily
i.e. activins, bone morphogenetic proteins
(BMPs) and inhibins, has also been sug-
gested. Indeed, the latter three types of sub-
stances as well as follistatin, a polypeptide
which binds and functionally incapacitates
activins and BMPs, are specific regulators
of FSH and, in the absence of a specific
FSH-releasing factor, may explain instances
in which FSH and LH secretion diverge.
The fact that these factors are produced in
the anterior pituitary support the potential
for a paracrine/autocrine regulation. The
mechanism of action of such factors in con-
junction with GnRH is, however, unclear.
Moreover, increasing the degree of com-
plexity of the regulatory system, GnRH
appears to function through interaction
with a particular unusual receptor.

3. STRUCTURE AND FUNCTIONAL 
PROPERTIES OF THE GnRH 
RECEPTOR

3.1. The peculiar structure 
of mammalian GnRH receptor

It was suggested by the mid 1980s [19]
that the GnRH receptor belonged to the fam-
ily of G protein-coupled receptors (GPCR).
However, it was only after 1992 that the
cloning of cDNA from various species and
the deduced amino acid sequences con-
firmed that the GnRH receptor possessed
the typical structural features of this super-

family. These include the seven membrane
spanning α-helices, which contribute to the
conformation of the ligand-binding pocket,
connected to three intracellular and three
extracellular loops functionally crucial for
ligand binding and signal transduction,
respectively [20]. The most striking struc-
tural feature of the mammalian GnRH
receptor is the lack of a cytoplasmic C-ter-
minal tail. This terminal extension present
in all classical GPCR is the target for GPCR
kinases and the consequent phosphoryla-
tion-mediated β-arrestin binding that results
in the endocytic processing of the receptor-
ligand complex via clathrin-coated pits [21,
22]. Interestingly, the non-mammalian GnRH
receptors that were discovered later do
exhibit a C-terminal tail structurally and
functionally similar to that of other mem-
bers of the GPCR family [20, 23]. There-
fore, in contrast to the latter receptors, the
mammalian GnRH receptor does not desen-
sitise and internalises poorly [24–26]).

Such pecular properties, which suggest
genetic/functional evolutionary adaptation
in relation with the pulsatile character of
GnRH secretion, imply that the so-called
“desensitisation” i.e. the loss of a releasing
response to GnRH, does not result from
proper receptor inactivation/recycling as is
common to all GPCR but rather from post-
receptor mechanisms. In this respect, another
important implication for cell function is
the possibility that GnRH, depending on the
frequency and the time of action may exert
a selective activation or inactivation on spe-
cific intracellular processes.

3.2. GnRH receptor signalling

It has long been established that the
GnRH receptor preponderantly coupled
with Gαq/Gα11 activates phospholipase C
(PLC, β isoform) resulting in the formation
of diacylglycerols and inositol-trisphos-
phate (IP3). These latter two second mes-
sengers are responsible for the activation of
several protein kinase C (PKC) isoforms
and the mobilisation of intracellular Ca2+,
respectively. This process together with the
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massive entry of Ca2+ that occurs through
voltage-dependent or -independent channels
[27] is primarily involved in acute gonado-
tropin release. GnRH can also induce the
activation of the mitogen associated protein
kinase (MAPK) cascade through PKC to
stimulate the expression of gonadotropin
subunit genes [28, 29]. Elevation of intrac-
ellular Ca2+ also activates the NO synthase
(NOS I) cascade (NOS I/NO/soluble guan-
ylate cyclase) that results in the rapid pro-
duction of cGMP [30, 31], providing another
example of an indirectly activated signal-
ling pathway. GnRH can also induce phos-
pholipases D and A2, as well as a delayed
production of cAMP however, the mecha-
nisms involved remain obscure. Cyclic AMP
has been shown to be capable of inducing
increased expression of LH subunit genes
and the release of newly synthesised LH
[32, 33] as well as an increased expression
of the GnRH receptor [34] and NOS I [35,
36] genes.

Sustained activation of the PKC is fol-
lowed by proteasome mediated degradation
of certain isoforms, a process that may be
involved, at least in part, in the desensitisa-
tion of GnRH-induced cellular responses
[37]. A similar GnRH-induced degradation
of IP3 receptors has also been described
[38]. In addition to such metabolic events,
studies have shown that GnRH may also
alter the degree of its effect on gonadotropin
secretion through its multigenic regulatory
action within the gonadotrophs.

4. ACTIVATION OF THE GnRH 
RECEPTOR MODULATES 
ACTIVITY OF A LARGE NUMBER 
OF GENES: POTENTIAL FOR 
SUBTLE, FINE-TUNE CONTROL 
OF GONADOTROPIN SECRETION

4.1. The multigenic impact of GnRH 
stimulation

Previously a few genes, in the range of
10-20, have been shown to be regulated by

GnRH using various conventional investi-
gations. More recently, microarray analy-
ses have increased the number of these
genes to over 200 [39]. To date, however,
much more is known from the first approach.
Interestingly, excluding the three gonado-
tropin subunit genes, GnRH regulates genes
essentially associated with the signalling
network such as the GnRH receptor itself
[17, 40], NOS I [41], or PKA and PKC sub-
unit isoforms [42, 43] as well as transcrip-
tion factors such as cFos, cJun or Egr-1.
Regulation of the GnRH receptor gene fol-
lowed a similar extreme dependency on the
mode of GnRH stimulation previously
revealed for the gonadodotropin β-subunit
genes [17, 40]. For both the GnRH receptor
and the NOS I genes, evidence exists that
the expression is up-regulated at proestrus
of the ovarian cycle [31, 44, 45] suggesting
a functional adaptation of the signalling
machinery at this important physiological
stage. GnRH receptor and NOS I promoters
have been isolated and studies have charac-
terised their tissue-specific and regulated
expression in vitro using a transient trans-
fection assay [36, 46–51] and/or in vivo
using transgenesis [52–54]. In each case
and regardless of their degree of character-
isation, promoters appear to require a spe-
cific combination of transcription factors to
achieve both tissue-specific and regulated
gene expression as illustrated for the GnRH
receptor gene in Figure 1. It is noteworthy
that combinations of transcription factors
share several elements in common with
those of the gonadotropin subunit genes. In
these combinations, the orphan nuclear
receptor, steroidogenic factor 1 (SF-1),
might be considered as the most critical
since it has been shown to be involved in the
tissue-specific expression of the mouse, rat
and human GnRH receptor gene as well as
in the expression of the alpha, LHβ and
FSHβ subunit genes (Tab. II).

Like gonadotropin subunits, the availa-
bility of tissue-specific promoters for the
GnRH receptor and NOS I genes shows that
GnRH itself operates through stimulation
of transcriptional activity. Domains involved
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Figure 1. Gonadotrope-specific elements within the promoter of the rat GnRH receptor gene. (A)
Linear representation of the elements identified in the proximal domain (AP-1, SAP, SF-1 and
CREB) and in the distal enhancer (GATA, LIM-HD). The proximal elements act cooperatively,
most probably by recruiting a coactivator as yet unidentified. The distal enhancer is functionally
and, at least for a part, physically linked to a couple of motifs in the proximal domain that bind SAP
and SF-1. (B) Speculative representation of the promoter taking into account the functional and
physical interactions that were recently established with regards to SF-1 and the LIM-HD factors
of the distal enhancer ([49] and Granger et al., manuscript in preparation). Similar interactions most
likely occur between SF-1 and GATA as well as between SAP, LIM-HD and GATA factors. The
coactivator may facilitate interactions between distal and proximal domains of the promoter. The
motifs identified by linker-scanning mutagenesis for each factor are indicated with their
approximate interval distances in base-pairs (bp). GATA; GATA-related factor, LIM-HD; LIM
homeodomain proteins, AP-1; activating protein 1, SAP; SF-1 associated factor (unidentified),
SF-1; steroidogenic factor 1, CREB; cAMP response element binding protein.
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in the GnRH response have been localised
and in some cases identified [36, 47, 50, 55,
56]. In the rat, mouse and human, the reg-
ulation of the GnRH receptor gene involves
PKC/MAPK and the induction of early
genes cFos and cJun that interact with acti-
vating protein-1 (AP-1) motifs. With regards
to the mouse promoter, additional elements
that bind octamer binding protein Oct-1 and
nuclear factor-Y (NF-Y) are required to ful-

fil homologous up-regulation by GnRH in
gonadotrope-derived cell lines [57]. In con-
trast to the GnRH receptor, regulation of the
rat NOS I gene involves mediation via the
cAMP pathway and activation of factors
that interact with a bipartite element com-
posed of a cAMP regulatory element (CRE)
bound to a CRE Binding (CREB)-related
factor and an additional domain situated a
few base pairs upstream [36].

Table II. Transcriptional factors shared in the combinatorial codes of GnRH regulated genes in the
pituitary gonadotrophs.

Pitx1-RE GATA LIM-HD-REa SF-1/GSE CRE Sp1 AP-1

αGSU
human
murine

–80/–65
–398/–385

–161/–141
–

–329/–320
–344/–300

–220/–211
–220/–202

–146/–111
–144/–126

LHβ
rat

bovine

–99/–96

–100/–95

–58/–51
–127/–119

–59/–52
–128/–121

–366/–354
–450/–434

FSHβ
rat

porcine

murine

–54/–49

–

–

–
–219/–209
–259/–253
–295/–284
–838/809

–1442/–1423
–5057/–5030

– –341/–333b

–239/–231b
–72/–69c

GnRH rec
human

rat
murine

–
–370/–326d

–983/–962d

–
–871/–859d

–

–142/–135d

–245/–237d

–243/–235d

–110/–103d, e

–110/–104d

–109/–102d
–352/–346d

–336/–330d

NOS I
rat

murine
–62/–55f

–206/–298g
–4/+4f –66/–57f

The presence of only clearly demonstrated functional sites is indicated in bp. In the absence of specific indi-
cations, numbering is expressed with reference to initiation of transcription. Pitx1-RE, pituitary homeobox
1-responsive element; LIM-HD-RE, LIM homeodomain-responsive element; SF-1, Steroidogenic factor 1;
GSE, gonadotrope specific element; Sp1, Specific protein 1; AP-1, Activating protein 1.
a Corresponds to PGBE (pituitary glycoprotein hormone basal element).
b Function in interaction with nuclear factor Y.
c Half-site.
d Numbering relative to ATG translation start site where A is at position +1.
e Unpublished data from our laboratory.
f Numbering relative to exon 1a transcription start site (major promoter resides in exon 1a).
g Numbering relative to exon 2 translation start site (major promoter resides in exon 2).
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4.2. The multigenic influence of GnRH 
as an integrate mechanism for 
regulated gonadotropin secretion 

4.2.1. LH

As mentioned above, GnRH can induce
cFos and cJun that form a heterodimeric
complex of transcription factors, which
increase the activity of AP-1-possessing
promoter genes. Egr-1 (early growth response
protein 1) is another transcription factor
encoding gene that is rapidly induced by
GnRH in the gonadotrophs, and this occurs
through PKC/MAPK [58, 59]. Egr-1 is
indispensable for the tissue-specific expres-
sion of the LHβ subunit gene in concert with
SF-1, Sp1 and the pituitary homeobox 1 Pitx1
[60, 61] and its increased expression enhances
LHβ production. Interestingly, a delayed
induction of the Egr-1 co-repressor Nab1
has been described in the clonal murine
gonadotrope αT3-1 cell line under pro-
longed stimulation with GnRH that could
be responsible for the arrest of LHβ tran-
scription [59]. Induction of Egr-1 and Nab1
may thus provide an attractive model to
account for an initial activation followed by
inactivation of the LHβ gene, and could
thus explain the dual regulatory action on
this gene of a single stimulator, GnRH.

4.2.2. FSH

Compared to LHβ, the nature of the cis
regulatory elements involved in the GnRH
activation of the FSHβ gene is poorly
understood. Several AP-1 domains could
be involved via PKC [62, 63]. As illustrated
in Figure 2, a time-course study by Burger
et al. [14] using as a model the castrated tes-
tosterone-treated male rat showed that tran-
scriptional activation of the FSHβ gene was
progressive but high and durable at low
GnRH pulse frequencies. However, under
a relatively rapid stimulation, it declined
after a swift but transient (1.5 h) increase.
Since the expression of the FSHβ gene is
also activine-dependent [64] and gonado-
trophs express the activin regulator, follista-

tin [65], the effects of pulsatile vs. perma-
nent presence of GnRH on the expression
of the follistatin gene were examined. As
shown in Figure 2, while GnRH applied at
slow frequency was rather inefficient, rapid
pulse frequencies increased follistatin mRNA
thus supporting the concept of an activin/
follistatin autocrine/paracrine loop [14, 66,
67]. No such effects have been observed on
activin βB mRNA levels although they sig-
nificantly decreased after prolonged high
frequency stimulation. These data thus could
account for the higher expression of the

Figure 2. Influence of the GnRH pulse fre-
quency on FSHβ, follistatin and activin βB gene
expression. Castrated, testosterone replaced
male rats were iv pulsed with 25 ng GnRH every
30 (fast) and 240 (slow) min for 1–24 h (n = 4–
8 rats/observation). Levels of primary FSHβ
transcript and follistatin (FS) and activin βB
mRNA were measured by quantitative RT-PCR
using appropriate primers and data are expressed
as fold change vs. controls (0 h). * Significant
differences (P < 0.05) vs. untreated castrated-
testosterone controls (0 h). ** Significant diffe-
rences between GnRH pulse regimen at 24 h.
From Burger et al. [14], with permission. Copy-
right 2002, The Endocrine Society.
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FSHβ gene in response to GnRH at low fre-
quencies as described earlier [13] and sug-
gest that the low FSHβ expression observed
at high frequencies could result from the
induction of follistatin working to counter-
act the stimulatory effects of activin. These
actions represent another mechanism, by
which the pulsatile profile of GnRH secre-
tion could differentially regulate FSH and
LH secretion.

5. CONCLUSION

In conclusion, while the functional activity
of pituitary gonadotrophs is highly dependent
on the GnRH pulse frequency, this property
can not rely on the classic homologous
desensitisation/endocytic recycling of GPCR
receptors. Instead, the GnRH action should
be viewed as an interaction of this neuro-
hormone with a strongly atypical receptor
lacking the C-terminal tail and thus incapa-
ble of rapid desensitisation in contrast to the
vast majority of GPCR. Consequently “desen-
sitisation” (estimated through LH and FSH
release) does not reflect general cell refrac-
toriness, but rather individual responses
limited to a group of genes/proteins, while
expecting other typical regulations to be
maintained or even amplified. Indeed under
a similar paradigm i.e. a given typical
GnRH stimulation frequency, some GnRH
responsive genes are observed to be acti-
vated while others are not (or become inac-
tivated), providing the first arguments in
favour of this concept and substantiates a
participation of the multigenic action of
GnRH in the modulation of its own action.
Recent studies have demonstrated that,
with the exception of rare primates, mam-
mals exclusively expressed the GnRH
receptor type I while in such species the
identification of genomic remnant traces of
type II GnRH receptor suggested the silenc-
ing of this gene during evolution [68]. The
acquisition of a single gene encoding a
GnRH receptor deprived of a C-terminal
tail, together with the episodic nature of the
GnRH release may represent an evolution-

ary adaptation to improve integral neuroen-
docrine control of reproduction. It is most
probable that further studies will allow the
identification of some additional alterna-
tive strategies in the differential modulation
of the gonadotropic secretory function.
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