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Abstract — According to Burkitt’s hypothesis, dietary fibres may protect against the development
of colorectal cancer. In rats, studies have shown that only butyrate-producing fibres are protective.
In parallel, in humans, non-steroidal anti-inflammatory drugs, which target cyclooxygenases, have
been shown to display a protective effect against colorectal cancer. Among them, COX-2-selective
inhibitors which present less side effects than non-selective agents, are promising as
chemopreventive agents. Our aim was to analyse the effect of an association between butyrate-pro-
ducing fibres and the COX-2 inhibitor on the development of aberrant crypt foci (ACF) in rats.
Fisher F344 rats were fed with (1) a standard low fibre control diet; (2) the standard diet supple-
mented with 1500 ppm celecoxib; (3) a diet supplemented with 6% fructo-oligosaccharide (FOS);
and (4) a diet with both celecoxib and FOS. Three weeks later, the rats were injected twice with
azoxymethane and the number of ACF was determined 15 weeks later. In the control group,
43.8 ± 6.4 ACF were found. This number was not significantly modified by the addition of FOS or
celecoxib alone to the diet. However, the association of FOS and celecoxib resulted in a 61% reduc-
tion in the number of ACF (P < 0.01). The number of aberrant crypt per foci was also reduced. Thus,
although no significant effect of celecoxib or FOS alone was identified, the association of butyr-
ate-producing fibre and celecoxib was effective in preventing the development of ACF. This prelim-
inary study argues for a strong protective effect of such an association which deserves further
studies.
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1. INTRODUCTION

Colorectal cancer is the second leading
cause of death by cancer in Europe and
America, and is thus a major concern of
public health. Several strategies have been
proposed in order to reduce its incidence
[1]. Among them, the use of non-steroidal
anti-inflammatory drugs (NSAID) has
shown promising development [2].

In fact, epidemiological studies have re-
vealed that regular consumption of aspirin
or other NSAID reduces the risk of
colorectal cancer [3–5]. These drugs target
enzymes involved in the metabolism of
arachidonic acid called cyclooxygenases
(COX), and catalyse its conversion to
prostaglandins (PG) and other eicosanoids
[6]. Two isoforms have been identified and
well characterised. COX-1 has been shown
to be constitutively expressed in a variety of
tissues including the gastro-intestinal epi-
thelium, and has been shown to participate
in several physiological processes [7].
COX-2 is a highly inducible gene that is
turned on by several stimuli including
pro-inflammatory cytokines and growth
factors [8]. An over expression of COX-2
has been described in most human
colorectal carcinomas and in about 50%
adenomas [9–11]. This overexpression has
also been observed in azoxymethane-in-
duced colonic tumours in rats [12] and in in-
testinal tumours occurring naturally in APC
mutant mice [13]. It is associated with in-
creased PG levels in the tumours, particu-
larly PGE2. [14]. The high expression
observed in premalignant adenomas in hu-
mans and in polyps in APC mutant mice ar-
gue for an implication in the early event of
carcinogenesis. This high expression leads
to phenotypic alterations including the mod-
ulation of cell adhesion and the inhibition of
apoptosis, as demonstrated in vitro after
transfection of intestinal epithelial cells with
a COX-2 expression vector [15]. These
phenotypic changes result in an enhanced
tumorigenic potential of these cells, which

is reversed by NSAID. Moreover, in a trans-
genic murine model, the overexpression of
COX-2 in the mammary glands is sufficient
to induce mammary carcinoma [16]. Conse-
quently, the targeting of COX-2 with more
or less selective inhibitors has been pro-
posed as a new protective or therapeutic ap-
proach for colorectal cancer. Two families
of compounds have been generated with
different selectivity towards the two COX
isoforms [17]). Drugs of the first family
which include aspirin, sulindac sulphide or
ibuprofen, act either on the two isoforms or
are more selective against COX-1. The
members of the second family including
celecoxib are very selective against COX-2.
In patients with familial adenomatous
polyposis, the administration of sulindac or
celecoxib results in a reduction in the num-
ber and size of polyps [18–21]. In the
azoxymethane-induced tumour model in
rats, NSAID have also been demonstrated to
reduce the number of either aberrant crypt
foci (ACF) or tumours [1, 22, 23].

Another approach to chemoprevention
has also been proposed and involves a con-
trol of the diet. Indeed, epidemiological
studies have revealed a strong association
between colorectal cancer and diet habits
[24]. The hypothesis of a protective effect of
dietary fibre was suggested by Burkitt [25],
based on the observation of a low incidence
of colorectal cancer in African countries
with high-fibre diets. Several reports either
based on cohort or intervention studies
have provided a debatable lack of a preven-
tion effect of dietary fibre [26–29], how-
ever two recent papers, also based on a
large number of cases, have shown an asso-
ciation between a high intake of dietary fi-
bre and a decreased risk of either colorectal
adenomas or colorectal cancer [30, 31]. It
is noteworthy that, in most studies, dietary
fibres are considered as an all, but individ-
ually their interaction with colon micro-
flora and thus their fermentation properties
and the production of short-chain fatty acids
varies. Among them, fibres producing large
amounts of butyrate are of particular
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interest. Indeed, butyrate is a key regulator
of the colon epithelium homeostasis. It is
the major fuel for colonic epithelial cells,
but also affects several cellular functions in-
cluding proliferation and apoptosis [32–34].
It is noteworthy that the other short chain
fatty acids present less or no cellular effects
[35]. Butyrate has also been shown to mod-
ulate the immune system by acting on par-
ticular transcription factors [36]. In animal
models of colorectal cancer, butyrate-pro-
ducing fibres exert a protective effect [37,
38]. Interestingly, wheat bran, the fibre used
in intervention studies, does not produce
large amounts of butyrate in rats after starch
removal and is devoid of an effect on aber-
rant crypt foci development [39].

None of these strategies is able to abolish
the development of ACF or tumours. Thus,
the aim of our study was to analyse the ef-
fect of the association of a COX-2 selective
inhibitor, celecoxib (CelebrexTM, Pharmacia)
with a diet supplemented with butyrate-pro-
ducing fibre on the development of aberrant
crypt foci (ACF) in rats.

2. MATERIALS AND METHODS

2.1. Animals and experimental design

Sixty male Fischer F344 rats (Charles
River, L’Arbresle, France) aged 4 weeks

were randomly divided into 4 groups. After
2 weeks of adaptation to the animal facility,
each group received one of the four experi-
mental diets ad libitum for 15 weeks. Rats
were weighed once a week until sacrifice.
Three weeks later, the animals were injected
sub-cutaneously with 15 mg·kg–1 azoxy-
methane (AOM; Sigma, St Quentin Fallavier,
France) twice at a one week interval [38].
Eleven weeks after the second injections,
the animals were killed and the tissues were
collected. All animal handling procedures
were done in accordance with the rules of
the French Ministry of Agriculture (agree-
ment No. A44565).

2.2. Experimental diet

Diets were prepared by the INRA animal
diet service (Jouy-en-Josas, France). The four
experimental diets were standard low fibre
control diets: standard diet supplemented
with short-chain fructooligosaccharide (FOS);
standard diet supplemented with celecoxib;
and standard diet supplemented with both,
FOS and celecoxib (Tab. I). Short chain
fructo-oligosaccharides (Actilight P, Beghin-
Meiji Industries, Neuilly-sur-Seine, France)
were used as previously described [38].
This diet was shown to induce a stable butyr-
ate producing colonic ecosystem. Celecoxib
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Table I. The composition of the experimental diets (in g·100 g–1).

Control FOS Celecoxib FOS + Celecoxib

Casein 20.0 20.0 20.0 20.0
Cellulose 2.00 2.00 2.00 2.00
DL-Methionine 0.40 0.40 0.40 0.40
Corn oil 2.00 2.00 2.00 2.00
Lard 6.33 6.33 6.33 6.33
Minerals* 4.50 4.50 4.50 4.50
Vitamins* 0.50 0.50 0.50 0.50
Pregelatinised
corn starch

64.27 61.12 64.27 61.12

FOS 6.00 6.00
CelebrexTM 0.15 0.15

* 102 mixed formula.



(CelebrexTM, Pharmacia, St Quentin-en-Yvelines,
France) was used at 1500 ppm. This dosage
was shown to generate a plasmatic concentra-
tion of 3.5 µg·mL–1 [22].

2.3. Tissue collection and ACF
counting

The large intestine was first isolated, re-
moved and opened longitudinally. The co-
lon was then cut into two parts following the
longitudinal axis. Half of the colon was used
for ACF counting. Briefly, the half-colons
were fixed in formaldehyde 10%, and then
stained with methylene blue (1%) as de-
scribed [39]. ACF were scored blindly, by
two independent observers unaware of the
diet received. Aberrant crypt (AC) were dis-
tinguished by their slit-like opening, in-
creased staining, and size as described
[39–41]. The number of AC per foci, rang-
ing from 1 to 10, was enumerated. The num-
ber of large ACF (≥ 4 aberrant crypt per

foci) was also considered, it was described
as an intermediate biomarker for tumour in-
cidence in rats [40, 41].

2.4. Statistical analyses

The data were examined by the Kruskal-
Wallis analysis of variance (ANOVA) on
ranks followed by the Dunn Test.

3. RESULTS

As shown in Figure 1, no difference was
noticed between the weight of the rats what-
ever the diet was. Considering the ACF
count, the two observers gave very homoge-
nous results without any statistically signifi-
cant difference between the observers.
Whatever the diet was, all proximal colons
were healthy without any aberrant crypt. On
the contrary, the distal colons were all sensi-
tive to azoxymethane-induced carcinogenesis.
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Figure 1. The weight of the rats during the experiments depending on the diet. Data correspond to
mean ± SEM of 15 rats. No statistically different value was found between each group of animals.



An average of 43.8 ± 6.4 ACF was enumer-
ated by the half-colon of rats in the standard
low fibre control diet. The multiplicity of
crypts per ACF was also considered. An av-
erage of 2.51 ± 0.05 aberrant crypts was

found, and up to 10 crypts per foci were
observed.

In the celecoxib group (Fig. 2A), an av-
erage number of 53.5 ± 8.0 ACF was
counted. Although the number of ACF was
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Figure 2. (A) Number of
aberrant crypt foci (ACF)
in the half colon of rats af-
ter azoxymethane injection
depending on the experi-
mental diet. Data are mean
± SEM of 15 rats (mean in-
dicated). a,b: different let-
ters correspond to statisti-
cally different data as tested
by ANOVA. P < 0.01. (B)
Number of aberrant crypts
per foci. P < 0.05. (C) Num-
ber of large aberrant crypts
per foci (≥ 4 aberrant crypts
per foci). P < 0.05.



increased, this was not statistically different
from the control group of rats (P > 0.05).
The number of crypts per foci was not modi-
fied (2.53 ± 0.05). In the group fed with
FOS, the number of ACF was diminished
(from less than 20%) as compared to the
control group (34.8 ± 4.9) in a statistically
non-significant manner. However, as shown
in Figure 2B, a significant reduction in the
number of crypts per foci was noticed
(2.33 ± 0.05) in this group, with the highest
number of crypts per foci being 7. Finally,
the combination of FOS and celecoxib
yielded in a major reduction in the number
of ACF. Indeed, a 61% reduction was no-
ticed in this group of rats and it was highly
significant (P < 0.001). The mean number
of ACF was 16.9 ± 2.6. The number of
crypts per foci was also affected (2.15 ±
0.09), since the maximal number of crypts
per foci was 6. Another parameter studied
was the number of ACF formed by at least
4 aberrant crypts (Fig. 2C). It was found that
diet supplementation by FOS as well as the
combination of FOS and celecoxib resulted
in a statistically significant reduction of the
number of large ACF (≥ 4 aberrant crypts
per foci).

4. DISCUSSION

Several strategies have been proposed in
an attempt to protect against the develop-
ment of colon carcinoma. Here, we evalu-
ated the impact of a nutritional intervention
using butyrate-producing dietary fibres
combined with a chemo-intervention using
a COX-2 selective inhibitor. This study
demonstrates that the administration of
celecoxib together with a diet enriched with
FOS significantly suppressed AOM-in-
duced colonic ACF formation. To our
knowledge, this is the first report of a suc-
cessful association between a COX-2 selec-
tive inhibitor and dietary fibre in vivo. The
three parameters studied, i.e. the number of
ACF, number of crypts per ACF, and num-
ber of large ACF (≥ 4 aberrant crypts per

foci) were reduced by the combination of
FOS and celecoxib. It is noteworthy that the
latter parameter was validated as an inter-
mediate biomarker for tumour incidence in
the rat model [40, 41].

Celecoxib was selected because it is rep-
resentative of the new class of NSAID
which selectively target COX-2 and present
less gastro-intestinal side effects than non
selective NSAID [2, 42]. Indeed several
studies were performed with aspirin or
sulindac sulphide which more selectively
target COX-1, or with piroxicam which is
much less selective and acts on both COX
isoforms [17]. Surprisingly, in our hands,
celecoxib did not significantly influence
AOM-induced ACF. The concentration
used (1500 ppm) has been successfully used
in the same model by others [22, 23]. In fact,
celecoxib reduced the number of ACF in
Fischer F344 male rats by around 50%.
Similar results were found by others [43].
At this concentration, celecoxib has also
been shown to reduce the size and the num-
ber of tumours induced by AOM [23, 44].
However, in another rat strain, celecoxib
was shown less efficient (22% reduction in
the number of ACF) [45]. The reason why
celecoxib was found to be inefficient is dif-
ficult to understand. The concentration
used, the rat strain and the induction proto-
col were exactly identical to the one de-
scribed by Reddy and colleagues [22]. The
only important difference is the composi-
tion of the diet and particularly the % of cel-
lulose in the diet. Indeed, we used a low
residue diet (2% cellulose), whereas 5%
was used by Reddy et al. It is questionable
whether such a difference can explain why
celecoxib was found to be ineffective, how-
ever the results of our study strongly suggest
that the diet could be a key determinant in
the celecoxib effect on colon carcino-
genesis. The presence of residue in the
colon is important for its physiology espe-
cially for the distal colon [46].

A low fibre diet was also compared to a
6% enriched FOS diet. This diet was
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previously shown to induce a high and sta-
ble butyrate concentration in the colon [38,
47]. It was also shown to reduce the number
of ACF in rats [38]. Depending on the batch,
a 32 to 46% reduction in the number of ACF
was found. In our experiments, FOS re-
duced the number of ACF by almost 20%,
but this reduction was not statistically sig-
nificant. However, it significantly affected
the number of aberrant crypts per ACF and
the number of large ACF. The only differ-
ence between our study and the previous
study is the rat strain. Indeed, we used
Fischer F344 male rats, whereas BDIX rats
were used in the aforementioned study [38].
In this respect, others using 10% FOS and
Fischer F344 rats obtained a 24% reduction
in the number of ACF [48]. Thus, the rat
strain may explain such a discrepancy. In
Wistar rats, a moderate intake in galacto-
oligosaccharide fibres (8.88%) was found
without an effect on the development of co-
lonic tumours [49].

The major finding of our study is that the
association of celecoxib to butyrate-produc-
ing fibres leads to a strong reduction in the
number of ACF. A similar association has
been proposed previously in an APC mutant
mouse model, in which aspirin was associ-
ated to resistant starches [50]. This model
mainly yielded small intestine tumours. It
was found that aspirin alone is inefficient
and that high amounts of resistant starches
(12.5% raw potato starch and 12.5% Hylon
VII) increase the number of tumours that is
reversed by aspirin. In our study, the
amount of fibre (6%) better fitted the rec-
ommendation for human consumption and
the physiological tolerance to such ferment-
able fibres. Moreover, selective COX-2 in-
hibitors, which present less gastro-intestinal
side effects, are now to be considered. The
mechanisms involved in such additive pro-
tective effects remain elusive. The direct ef-
fect of butyrate on colon cancer is now well
documented [33, 34]. It has been shown to
inhibit the proliferation of colon cancer cells
by acting on cell cycle regulatory proteins,
especially p21CIP1 [32, 33]. Considering

celecoxib, the mechanisms by which NSAID
and selective COX-2 inhibitors are acting
are now relatively well characterised [2, 42,
51]. In vitro, it was shown that butyrate may
directly increase COX-2 expression (52),
and that aspirin or NS-398, another COX-2
selective inhibitor, can exert synergistic
anti-proliferative and pro-apoptotic effects
[52, 53]. However, by using six different co-
lon carcinoma cell lines expressing different
levels of COX-2, we found no synergistic
effects of celecoxib and butyrate on cell pro-
liferation and apoptosis (unpublished data).
Thus, the importance of colonic fermenta-
tion products on COX-2 expression and on
the celecoxib effect has to be further investi-
gated in vivo.

In conclusion, although we observed a
protective effect of the association between
celecoxib and butyrate-producing fibres on
colonic ACF formation in rats, this is just a
preliminary study. It remains to be under-
stood why celecoxib had no significant ef-
fect in our hands and to analyse if the
association is also active on tumour forma-
tion. Moreover, the precise mechanism of
action of such a synergistic effect has to be
elucidated. In this regard, the analysis of the
rat colon at the molecular level has to be
performed, especially concerning the ex-
pression of COX-2. Finally, the efficiency
of this association remains to be tested in
humans. In this regard, the results of the
concerted action polyp prevention studies
(CAPP-1 and CAPP-2) in which aspirin and
resistant starch are tested alone or in syn-
ergy in patients with Familial Adenomatous
Polyposis or in Hereditary Non-Polyposis
Colon Cancer syndrome, will provide criti-
cal information on the feasibility and the rel-
evance of this kind of study [54].
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