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Review article
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Abstract - Many mammalian species from temperate latitudes exhibit seasonal variations in breed-
ing activity which are controlled by the annual photoperiodic cycle. Photoperiodic information is con-
veyed through several neural relays from the retina to the pineal gland where the light signal is trans-
lated into a daily cycle of melatonin secretion: high at night, low in the day. The length of the
nocturnal secretion of melatonin reflects the duration of the night and it regulates the pulsatile secre-
tion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. Changes in GnRH release
induce corresponding changes in luteinising hormone secretion which are responsible for the alter-
nating presence or absence of ovulation in the female, and varying sperm production in the male. It
is not yet known where and how this pineal indoleamine acts to exert this effect. Although melatonin
binding sites are preferentially localised in the pars tuberalis (PT) of the adenohypophysis, the
hypothalamus contains the physiological target sites of melatonin for its action on reproduction.
Melatonin does not seem to act directly on GnRH neurons; rather it appears to involve a complex neu-
ral circuit of intemeurons that includes at least dopaminergic, serotoninergic and excitatory aminoacider-
gic neurons. &copy; Inra/Elsevier, Paris
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Résumé &horbar; La mélatonine et le contrôle saisonnier de la reproduction. Un grand nombre de
mammifères originaires des latitudes tempérées présentent des variations saisonnières d’activité
sexuelle qui sont sous le contrôle du cycle photopériodique annuel. L’information photopériodique
transite par plusieurs relais de la rétine à la glande pinéale où le signal lumineux est traduit en rythme
nycthéméral de sécrétion de mélatonine : élevée le jour, faible la nuit. La durée de sécrétion nocturne
de mélatonine est proportionnelle à la durée de la nuit et contrôle la sécrétion pulsatile de gonadotropin
releasing hormone (GnRH). Les changements de libération de GnRH induisent des variations cor-
respondantes de sécrétion d’hormone lutéinisante qui à leur tour sont responsables de l’alternance entre
périodes ovulatoire et anovulatoire chez la femelle et des variations de production spermatique chez
le mâle. Les sites et les mécanismes d’action de la mélatonine qui sont responsables de ces effets ne
sont pas connus avec précision. Bien que les sites de liaison de la mélatonine soient localisés préfé-
rentiellement dans la pars tuberalis (PT) de l’hypophyse antérieure, l’hypothalamus contient les
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cibles physiologiques de la mélatonine pour son action sur la reproduction. La mélatonine ne semble
pas agir directement sur les neurones à GnRH. Au contraire, son action implique un circuit complexe
d’interneurones qui inclut au moins des neurones dopaminergiques, sérotoninergiques et à acides
aminés excitateurs. &copy; Inra/Elsevier, Paris
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1. INTRODUCTION

In temperate zones, many mammalian
species display a seasonal pattern of repro-
duction [7]. Depending on the time of year
when they are sexually active, species are
characterised as short-day breeders, for
instance sheep, or long-day breeders, for
instance hamsters or horses. The pineal hor-
mone, melatonin, through its nocturnal mode
of secretion, has been shown to be the pri-
mary transducer of photoperiodic informa-
tion to the neuroendocrine reproductive axis
[1, 2]. The importance of the pineal gland
was demonstrated by numerous experiments
showing that the effect of photoperiod on
seasonal functions is profoundly altered in
pinealectomised animals. In Syrian ham-
sters, pinealectomy prevents the seasonal
reduction in gonadotropin secretion and the
gonadal regression normally brought about
by experimental or natural short photope-
riod [55]. Injection of melatonin reverses
the effect of pinealectomy on gonadotropin
secretion and causes gonadal regression.
This early work, mainly in the hamster, led
to the concept of the antigonadal action of
melatonin. However, more recent data, par-
ticularly those obtained in short-day breed-
ers have led to a more generalised role of
melatonin in the control of seasonal rhythms
[26, 27, 29]. Specifically, pinealectomy sup-
presses responses to both short and long
photoperiod, and melatonin, depending on
its specific pattern, reinstates both these
responses. Thus, the role of melatonin is to
provide an endocrine code for daylength.
This role was well illustrated by replace-
ment studies in pinealectomised animals.

Melatonin delivered into the peripheral cir-
culation to mimic short-day or long-day pro-
files can reproduce the stimulatory effects of
short days or the inhibitory ones of long
days on LH secretion in the ewe [29].

2. GnRH NEURONS AS
THE FINAL NERVOUS PATHWAY
OF MELATONIN ACTION

The duration of melatonin secretion is

processed neurally to regulate the secretion
of GnRH. The final step of the action of
melatonin at the level of the central nervous

system is a modulation of GnRH secretion,
partly as a consequence of the modification
of steroid feedback. Melatonin treatment
causes an increase in the immunoreactivity
of GnRH in cell bodies located in the

hypothalamus and increased density of
GnRH-containing elements in the median
eminence, in addition to its suppressive
effects on gonadal function in white-footed
mice [17, 18]. In Djungurian hamsters, a
rapid and transient increase in the distribu-
tion of detectable GnRH mRNA-contain-

ing cells is observed 2 days after transfer to
stimulatory long days. This increase may
be an early step in the stimulation of FSH
secretion and gonadal growth which occur
days later [3]. In sheep, it is possible to mea-
sure directly and reliably the release of
GnRH in the hypophyseal portal system [9],
and melatonin, given as a short-day profile,
causes an increase in the frequency of pul-
satile GnRH release ([69], figure 1). This
increase in GnRH secretion is observed after
a long lag time, i.e. 40-60 days, when LH



secretion is stimulated. Despite this effect
of melatonin on the GnRH system, it is

thought that melatonin does not act directly
on the GnRH neurons; rather it acts indi-

rectly through some interneuronal route that
finally synapses on the GnRH neurons. The
changes in GnRH secretion are the conse-
quences of two complementary mechanisms
controlled by melatonin [53]: a direct steroid-
independent modulation of GnRH secretion
and a change in the steroid negative feed-
back on GnRH secretion. For example, in
ovariectomised (OVX) ewes, LH pulse fre-
quency is lower in animals treated with a

long-day profile of melatonin than with a

short-day one (one versus two pulses per
hour) [51, 57]. This change in LH pulsatil-
ity between these two situations is increased
dramatically when OVX ewes are treated
with estradiol (E). Indeed, in OVX ewes
treated with an E implant that elevates blood
E levels to those of follicular phase intact
ewes, one pulse is observed every 12-24 h
in long days and every 30 min in short days
[29].

3. SITES OF ACTION
OF MELATONIN

The identification of the sites of action
of melatonin is difficult since melatonin
influences many physiological functions
[ 1 ]. Melatonin could either act at a single
site in the brain or pituitary which would
then be implicated in the regulation of many
seasonal functions, or melatonin could act at
multiple sites, each involved in regulating
one seasonal function. This difficulty is
expanded by the localisation of high-affin-
ity melatonin receptors in a wide variety of
tissues in the body, although whether mela-
tonin acting at these sites could affect sea-
sonal functions remains debatable [5, 6, 52,
59].

The first demonstration that melatonin
acted in the brain was provided by studies in
the white-footed mouse. Small beeswax pel-
lets impregnated with melatonin and
implanted in the anterior hypothalamus and
medial preoptic area cause gonadal regres-
sion similar to that induced by short days.
Pellets placed in other areas of the brain and
subcutaneously have no effect on the gonads
[19]. Interestingly, similar results were
obtained with a rhythmic pattern of intrac-
erebral melatonin delivery. Melatonin deliv-
ered for 10 h, but not 5 h, in the anterior
hypothalamus or medial preoptic area causes
gonadal regression of pinealectomised
white-footed mice [13]. Similar results were
obtained in Djungurian hamsters and ger-
bils [12, 22]. However, these studies could
not define a precise target within the brain.



A major breakthrough was made with
the development of the melatonin probe,
125I-melatonin which allowed identification
of putative target sites of melatonin within
the hypothalamo-hypophyseal system whose
importance was then tested by functional
studies, mainly in hamsters and sheep.
Although binding was found in several areas
within the brain and the pituitary [6, 11, 68],
it was the pars tuberalis that drew most
attention since the density of binding was
much higher than in any other hypothala-
mic or pituitary site and because it is a con-
sistent feature among species investigated
to date. Several studies have also found a
seasonal variation in the melatonin binding
site density and in the cytology of the pars
tuberalis [15, 58]. Finally, the pars tuber-
alis is in a prime anatomical position for
interacting with both the median eminence
and the pars distalis of the pituitary and
could, therefore, influence hypothalamo-
hypophyseal function.

Surprisingly, studies in sheep and ham-
sters have led to the conclusion that the pars
tuberalis does not mediate the action of
melatonin on the neuroendocrine reproduc-
tive axis. Indeed, in the ewe, melatonin
delivered directly to the PT does not appear
to modify the secretion of LH: neither the
placement of a melatonin microimplant
directly against the anterior face of the PT
[43] nor the discrete insertion of a microim-
plant into the PT [46] modified LH secre-
tion. In contrast, microimplants placed in
the MBH or third ventricle stimulated LH
release [43, 46]. These studies provide
definitive evidence that the hypothalamus,
and not the PT, is the important melatonin

target for transducing the effects of this
indoleamine on the reproductive neuroen-
docrine axis. Moreover, the placement of
microimplants in the PT or pars distalis of
Soay rams led to similar conclusions [41]. In
that study, PT microimplants stimulated
FSH secretion but the effect was much
weaker than that obtained with MBH

implants in a previous study, suggesting that
the small effect observed with the PT

implants resulted from a passive diffusion
of melatonin to the MBH [39, 41 In this
species, melatonin binding was found in the
premammillary hypothalamic area: it is
located at the base of the brain and limited

dorsally by the fornix; it extends 3 mm on
either side of the third ventricle, is poste-
rior to the infundibular recess, and is delim-
ited caudally by the mammillary bodies ([10,
44], figure 2). A clear relationship was
observed between the proximity of mela-
tonin microimplants to the area of binding
and the effectiveness of these microimplants
to stimulate LH, strongly suggesting that
melatonin targets are located in the pre-
mammillary hypothalamic area [44]. In
hamsters, the hypothalamic localisation of
the target sites of melatonin for acting on
reproduction was also strongly suggested.
Lesions of the dorsomedial hypothalamus
melatonin binding sites block the gonado-
tropic response of male Syrian hamsters to
short photoperiod or melatonin [48]. Fur-
thermore, an overlap between melatonin
binding and androgen receptor immunore-
activity is found in the dorsomedial nucleus
and it was suggested that sensitivity to
steroid feedback, a key mechanisms of the
action of melatonin on gonadotropin secre-





tion, might be influenced in this area in Syr-
ian hamsters [47]. Although it remains to
be established whether the areas identified in
hamsters and sheep are functionally related,
these data suggest a discrete target for mela-
tonin in the hypothalamus.

The pars tuberalis mediates, at least in
part, the action of melatonin on prolactin
secretion. Indeed, in the ewe, melatonin
implants inserted within the pars tuberalis,
have an inhibitory effect on prolactin release
[46]. Also, in rams with a surgical hypotha-
lamo-pituitary disconnection in which the
central control of prolactin secretion is abol-
ished, the ability of melatonin to inhibit the
secretion of prolactin is maintained [40].
Interestingly, in hamsters, lesion of the mela-
tonin binding sites in the medial basal
hypothalamus suppresses the effect of mela-
tonin on the reproductive axis, but does not
do so on prolactin secretion [48].

The dual site of action of melatonin for

controlling gonadotropin and prolactin secre-
tion is interesting in relation to the pho-
toperiodic regulation of these two functions.
Indeed, the action of photoperiod and mela-
tonin on reproductive activity is charac-
terised by long latency and the importance of
photoperiodic history which is consistent
with an action at the level of the brain for the

storage of information. In contrast, pho-
toperiodic history is not critical to the regu-
lation of prolactin secretion [21] and the
action of melatonin is relatively rapid (only
a few days [73]) which is consistent with a
more ’classical’ endocrine regulation at the
level of the pituitary. This regulation could
involve tuberalin, a putative protein pro-
duced by the target cells of melatonin, that
would influence gene expression and secre-
tion in lactotrophs [25]. ] .

In mammals, two subtypes of high affin-
ity G-protein-coupled melatonin receptors
have been cloned (Mel-lA and Mel-1B)
[56]. The high level of expression of these
receptors in the pars tuberalis suggests that
they mediate the action of melatonin on pro-
lactin secretion. In contrast, the photore-

sponsiveness of hamsters in which the
Mel-1B receptor gene cannot encode a func-
tional receptor [74] and the failure to obtain
a strong expression of these receptors in the
hypothalamus outside of the suprachias-
matic nucleus raise the question of the type
of melatonin receptors involved in the con-
trol of reproductive activity.

4. INTERNEURONS BETWEEN
MELATONIN TARGET NEURONS
AND GnRH NEURONS

Several pieces of evidence suggest that
melatonin does not act directly on GnRH
neurons. First, the distribution of most
GnRH neurons does not match that of the

putative sites of action of melatonin. In
sheep, most GnRH neuronal perikarya are
located in the preoptic area (60 %) with a
few located in the MBH (15 %); some of
these project to the median eminence and
abut portal vessels [8, 38]; no GnRH neu-
rons were identified in the pre mammillary
area. Second, a large number of neuro-
transmitters are involved in the regulation
of the GnRH neurons and constitute poten-
tial candidates to mediate the effects of
melatonin on GnRH release. Indeed, exper-
imental evidence implicating several neu-
ronal systems has been obtained.

4.1. Dopamine

Many studies have suggested that

dopamine is involved in transducing the
negative feedback of E on GnRH secretion.
For instance, systemic injection of a
dopamine antagonist (pimozide) during
anoestrus (strong negative feedback of E)
induced a temporary increase in LH secre-
tion [49]. Similarly, pimozide caused a tem-
porary increase in LH secretion in long-day
exposed (photo-inhibited) OVX + E ewes
[33]. The A15 hypothalamic cell group
appears to be a key dopaminergic structure
involved in mediating the inhibitory effects
of E since a neurotoxic lesion of this struc-



ture during anoestrus caused an increase in
LH secretion [64]. Furthermore, it has been
shown that E increases tyrosine hyroxylase
(TH, rate limiting step enzyme of cate-
cholamine synthesis) activity in long-day
treated ewes [16] and induces c-fos gene
expression in TH-immunoreactive cells of
this structure in a season-dependent man-
ner [36]. A similar role has been proposed
for the A14 dopaminergic cell group [24].
Since a major effect of melatonin is a mod-
ulation of E negative feedback on GnRH
secretion, this implication of dopamine
makes these neurons likely candidates to
act as relays between melatonin target sites
and GnRH neurons [63].

In order to test this hypothesis, we first
determined whether photoperiod and mela-
tonin could modulate the activity of some
dopaminergic neurons in the hypothalamus.
Exposure to stimulatory short days resulted
in decreased dopaminergic activity in the
median eminence as assessed both by a
reduction in dopamine content and in TH
activity [62, 72]. No effect of short-day expo-
sure on noradrenaline content in this structure
or on TH activity in the other hypothalamic
areas investigated was found [72]. The stim-
ulation of LH secretion by a melatonin
implant caused a parallel reduction in TH
activity which suggests strongly that the
effect of photoperiod on TH activity is medi-
ated by melatonin [73]. The inhibition of
median eminence TH activity by short days
or by treatment with a melatonin implant is
expressed at a time when the inhibition of
prolactin secretion is already maximal, sug-
gesting that these photoperiod-induced
changes in TH activity are independent of
the regulation of prolactin secretion [73].
Rather, they appear to be related to the pho-
toperiodic regulation of LH secretion.
Indeed, the pharmacological blockade of
TH locally in the median eminence of ewes
treated with 35 long days led to an increase
in LH secretion [71]. This finding is con-
sistent with the effect of pimozide implants
in the median eminence of anoestrous ewes

[23]. Interestingly, the pharmacological

blockade of TH activity no longer causes a
stimulation of LH secretion when it is applied
after a longer exposure to long days (71 days
[4]). These data suggest, therefore, that an
increase in TH activity in the median emi-
nence is an important component of the
inhibitory effect of long-day melatonin pro-
file on GnRH output, at least for the initial
phase of the inhibition. However, such mod-
ulation of TH activity appears to be E-inde-
pendent because the photoperiod-induced
changes in TH activity are similar in OVX
and OVX + E ewes [72]. Thus, in contrast to
the A 15 and possibly A14 dopaminergic
nuclei, which are involved in the modula-
tion of the E negative feedback, the
dopaminergic neurons of the median emi-
nence appear to be involved upstream rela-
tive to the integration of the E signal. The
median eminence in sheep is a structure rich
in dopaminergic terminals but contains no
TH-immunoreactive perikarya [65]. The
localisation of the cell bodies projecting
their axons to the median eminence, and
more generally the anatomical and func-
tional relationship between the A14 and A15 5
nuclei and the median eminence, have yet to
be determined.

In male Syrian hamsters, exposure to
inhibitory short days, presumably through
melatonin secretion, reduces dopamine and
noradrenaline turnover in the median emi-
nence [60, 61]. This change is associated
with a decrease in L-aromatic amino acid

decarboxylase-positive cells in the arcuate
nucleus without changes in TH-immunore-
active cell number or TH activity [31, 32].
Suppression of LH and FSH release in this
species is presumably related to reduced
noradrenaline activity, whereas reduced
dopamine turnover may represent a conse-
quence of suppression of prolactin levels
by short days [60, 61 ].

4.2. Serotonin

Evidence for the implication of serotonin
was also obtained in sheep. Serotonin inhibits
LH pulsatile secretion during seasonal



anoestrus, and not during the breeding sea-
son [33, 50]. This inhibitory effect of sero-
tonin is mediated by 5-HT2A receptors [34]
and interestingly a photoperiod-induced
change in the density of 5-HT2A receptors in
the ventrolateral posterior hypothalamus
was described [35, 54].

4.3. Excitatory amino acids

The implication of excitatory amino acids
in the photoperiodic regulation of LH secre-
tion was suggested by experiments involv-
ing administration of N-methyl-D,L-aspar-
tic acid (NMDA), an agonist of neuroex-
citatory amino acids. Such an administra-
tion acutely stimulates GnRH and LH secre-
tion in seasonal species such as sheep and
hamsters. However, this stimulatory effect is
larger during periods of photoinhibited LH
secretion than during photostimulated peri-
ods [28, 42, 70]. Also, in male hamsters,
the inhibitory effect of short days on testic-
ular activity can be blocked by chronic treat-
ment with NMDA [66]. Although glutamate
is involved in the photic regulation of cir-
cadian rhythm at the level of the retinohy-
pothalamic tract, this action of NMDA can-
not be explained by an effect on the melatonin
secretory rhythm. Indeed, the differential
effect of NMDA in photoinhibited and pho-
tostimulated ewes is maintained if stimula-
tion is induced by melatonin administration
instead of short-day exposure [70]. Fur-
thermore, in Djungarian hamsters, the
chronic effect of NMDA is observed on the

photoperiod-induced changes in reproduc-
tion, but not on other functions (pelage
colour, body weight [14]). These experi-
ments suggest that a change in excitatory
amino acid input may be part of the mecha-
nism mediating the action of melatonin on
GnRH secretion. Consistent with this

hypothesis, photoperiod modifies the density
of NMDA receptors in the preoptic area of
hamsters [67].

Besides the neurotransmitters or recep-
tors mentioned above, future research will

probably reveal the involvement of other
neuronal systems in mediating the action of
melatonin on GnRH neurons. Regardless of
the nature of these neurons, the action of
melatonin on GnRH neurons most likely
involves a complex network of interacting
neurons.

Part of the mode of action of photope-
riod could be to cause morphological
changes in this neuronal network. Evidence
for such an effect was obtained at the level
of the GnRH neurons of the ewe. At the

light microscopicy level, immunostained
GnRH neurons in the preoptic area have
longer and more numerous dendrites dur-
ing anoestrus than during the breeding sea-
son [38]. However, these changes could
reflect alterations in the content or locali-
sation of immunodetectable GnRH, rather
than actual morphological changes. At the
electron microscopicy level, GnRH neurons
in the preoptic area receive more than twice
the mean number of synaptic inputs per unit
of plasma membrane during the breeding
season as during anoestrus [37, 75]. Inter-
estingly, these changes are not dependent
on changes in ovarian steroid levels which
differs markedly with the examples of sea-
sonal plasticity described in the literature
due to changing levels of steroids. The
changes observed in the preoptic area of the
ewe could, therefore, reflect the action of
photoperiod and melatonin, or the expres-
sion of the circannual rhythm of reproduc-
tion, a key element of the photoperiod
responsive mechanisms in this species [45].

In relation to possible phenomena of neu-
ronal plasticity, it is worth noting that thy-
roid hormones have been strongly impli-
cated in allowing seasonal changes in
reproductive activity [30]. Reproductive
transition from the breeding season to
anoestrus is dependent upon the presence
of thyroid hormones. Thyroidectomised
ewes do not exhibit a seasonal decline in

episodic secretion of GnRH in hypophyseal
portal blood and thus fail to enter anoestrus.
Thyroxine replacement reverses the effect of



thyroidectomy and the seasonal changes in
thyroid hormone concentrations are not nec-
essary for this reversal [30]. Since thyroid
hormones are essential for the normal mor-

phological maturation of the central nervous
system [20], the permissive role of thyroid
hormones for seasonal changes to occur may
be to cause the prerequired morphological
rearrangements for the changes in GnRH
secretion.

5. CONCLUSION

The regulation of GnRH secretion by
melatonin is central to the photoperiodic
regulation of reproductive activity. The tar-
get sites of melatonin appear to be located in
the hypothalamus but their precise locali-
sation (at a cellular level) and their neuro-
transmitter phenotype have yet to be deter-
mined. Melatonin does not act directly on
GnRH neurons; rather its action is proba-
bly mediated by a complex network of
interneurons. The identification of the ele-
ments of this network and their inter-rela-

tionship will enable us to understand the
long-term mechanisms that melatonin uses
to control GnRH secretion.
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