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Summary &horbar; The histones H2B, H3 and H4, the transition protein TP1 and protamine were localised
using ultrastructural immunocytochemistry in nuclei of rabbit spermatids and spermatozoa. Histones
are present in round spermatid nuclei and are lost during the elongation of nuclei. TP1 and protamine
appear simultaneously in all nuclei during this period. TP1 is located at the periphery of chromatin
cords, while protamine seems to be located at random in the same cords. TP1 is lost in most elongated
spermatids during step 13 of spermiogenesis, and the protamine stays in all sperm nuclei. TP1 remains
present in some old spermatids and ejaculated spermatozoa. In the rabbit, 3-6% of sperm nuclei
decondense spontaneously. Most are characterised by a retention of TP1. Respective roles of TP1 and
the protamine in spermatid nuclear condensation are discussed.

rabbit spermiogenesis I spermatozoa / electron microscopical immunocytochemistry / nucleo-
proteins / chromatin condensation

Résumé &horbar; Révélation par immunocytochimie ultrastructurale des histones H2B, H3 et H4, de
la protéine de transition TP1 et de la protamine dans les noyaux des spermatides et des sper-
matozoïdes de lapin. Leurs rôles dans la condensation de la chromatine. Les histones H28, H3
et H4, la protéine de transition TP1 et la protamine ont été révélées par immunocytochimie ultra-
structurale dans les noyaux des spermatides et spermatozoïdes de lapin. Les histones, présentes
dans les noyaux de spermatides rondes, sont perdues au cours de la phase d’allongement des noyaux.
TP1 et la protamine apparaissent simultanément dans tous les noyaux pendant cette phase. TP1 est
située à la périphérie des cordons de chromatine tandis que la protamine semble localisée au hasard
dans ces mêmes cordons. TP1 est perdue dans la plupart des spermatides allongées au cours du stade
13, tandis que la protamine persiste dans tous les noyaux de spermatozoïdes. TP1 reste toutefois
présente dans quelques spermatides âgées et spermatozoïdes éjaculés. Chez le lapin, 3-6% des



noyaux de spermatozoïdes se décondensent naturellement. Ils sont pour la plupart caractérisés par une
rétention de TPI. Les rôles respectifs de TP1 et de la protamine dans la condensation de la chroma-
tine des spermatides sont discutés.

spermiogenèse du lapin / spermatozoïdes / immunocytochimie ultrastructurale / nucléopro-
téines /condensation de la chromatine

INTRODUCTION

Mammalian spermiogenesis is characterised
by large modifications in nuclear morphol-
ogy and chromatin composition. It can be
divided into several steps characterised by
morphological patterns of the spermatids
(Clermont and Leblond, 1955). In the rab-
bit, 10 different steps have been documented
(Pl6en, 1971) and sub-types can also be
defined from electron-microscopical obser-
vations. During these steps, the spherical
nuclei of young spermatids become flattened
(during the so-called elongation phase). The
nucleolus disappears. The chromatin is
highly modified in appearance before it con-
denses to finally form a compact mass. In
the mammals studied so far, histones (H1 a,
H 1 bde, Hlc, H2A, X2 (H2A variant), H2B,
H3 and H4), present in round spermatids
(Baskaran and Rao, 1990; Unni etal, 1994)
are replaced by spermatid specific transi-
tion proteins (1-8) in elongating spermatids
(Loir and Lanneau, 1978), which in turn leave
room for the protamine(s) (P1 or P1+P2).
Not all of these nucleoprotein species are
present in all mammals and several precur-
sors for protamines are also described
(Chauvibre et al, 1992). Rabbit spermato-
zoa contain only one protamine, which differs
slightly from the main mammalian protamine
P1 (Ammer and Henschen, 1988). Transi-
tion protein 1 and transition protein 2 seem
ubiquitous among mammals (Alfonso and
Kistler, 1993), while other transition proteins
are only present in some species. The com-
paction of chromatin was first attributed to
the formation of a macro-molecular lattice
made of protamines and the DNA (Fawcett

et al, 1971). However, it is probably a more
complicated process since it starts before
the protamines enter the spermatid nuclei
in many species (Courtens etal, 1983, 1988;
Lescoat et al, 1992; Le Lannic et al, 1993),
mostly at the time transition nucleoproteins
are present (Meistrich et al, 1994). Bio-
chemical studies have shown that transition

protein 2 could play a role in condensation of
the chromatin (Baskaran and Rao, 1990),
while transition protein 1 might be involved in
its relaxation (Singh and Rao, 1987; Unni
and Meistrich, 1992). Moreover, transition
proteins (Akama et al, 1994a) and pro-
tamines (Chirat et al, 1991; Green et al,
1994) are phosphorylated/dephosphorylated
to different degrees, which hypothetically
leads to the final tightness of the chromatin.
Rabbit sperm nuclei normally display micro-
heterogeneities in protein/DNA concentra-
tions (Courtens et al, 1991, 1994a) and the
condensation of sperm chromatin in the rab-
bit is also spontaneously reversible in 3-6%
of the cells. A variable proportion of decon-
densing spermatozoa is found in all ejacu-
lates and is inversely related to litter size
(Courtens etal, 1994b).

In the present work, we have focused
our attention on the ultrastructural localisa-
tion of nucleoproteins in rabbit spermatids,
using specific antisera against histones
(H2B, H3, H4), transition protein 1 (TP1 ),
the major mammalian protamine (P1 and
a specific staining for lysine, an amino acid
present in all spermatid nucleoproteins but
absent in the protamines (Courtens and Loir,
1981). The first aim of this work was to
define the timing of major nucleoprotein
changes in normal spermatids. The second
was to record eventual nucleoprotein mis-



composition in naturally decondensing sper-
matids and spermatozoa. Interestingly, a
low proportion of old spermatid and sper-
matozoa nuclei was decondensed to differ-
ent degrees and displayed an abnormal TP1 I
content in all animals.

MATERIALS AND METHODS

Animals

A total of 15 adult rabbits were castrated under

general anaesthesia; 3 were New Zealand White,
and the rest Fauve de Bourgogne. Five ejacu-
lates were obtained using an artificial vagina from
Rex rabbits.

Electron microscopy

Rabbit testes were split into 2 pieces. One was
fixed by immersion in 1% freshly prepared
paraformaldehyde in phosphate-buffered saline
(PBS), pH 7.4. After 30 min, the testis surface
exposed to the fixative was sliced out and cut
into smaller pieces about 1 mm thick, which were
allowed to fix for a further 2 h. They were incu-
bated for 30 min (4°C) in 0.5 M ammonium chlo-
ride in PBS for saturation of free aldehydes from
the fixative before being washed for 1 h in PBS.
The second piece of testis was fixed in 4% glu-
taraldehyde in PBS for 24 h, followed or not by 1 %
osmium tetroxide in PBS for 1 h. Ejaculated sper-
matozoa were treated the same way, with an
additional centrifugation (3 000 g, 10 min) after fix-
ation. All samples were dehydrated through an
ethyl alcohol series, and were embedded in LR
white resin at 4°C (3 changes x 30 min) and in
EPON. The blocks were cured at 50°C for 2 d,
and ultrathin sections were mounted on bare
nickel grids.

Ultrastructural morphology

Transmission electron microscopy was performed
on ultrathin sections of glutaraldehyde and
osmium-fixed material, after staining with uranyl

acetate and lead citrate. The stepping of old sper-
matids is depicted in figure 1.

Histochemical demonstration of lysine

Testis samples fixed with glutaraldehyde were
stained en masse with 3% ethanolic phospho-
tungstic acid for 16 h, according to Courtens and
Loir (1981) before being embedded in EPON.

Immunocytochemistry

Antibodies

The specificity of the rabbit antisera has been eval-
uated previously (H2B, H3, H4, Muller et al, 1982a,
b, 1985; anti-transition protein 1, Heidaran et al,
1988; anti-protamine, Courtens et al, 1983).

lmmunolabelling

Ultrathin sections of formaldehyde fixed material
were floated on drops of 3% skimmed milk in PBS
for 20 min at room temperature in a humid cham-
ber before the primary antiserum was added at
a final concentration 1:500 (anti-protamine, anti-
transition protein 1, anti H2B) or 1:100 (anti-H3,
anti-H4). The humid chamber was left at 4°C
overnight, and the sections were rinsed thoroughly
in PBS, before being incubated in 1:100 biotiny-
lated anti rabbit IgG for 1 h at 20°C. After exten-
sive rinses in PBS, they were floated on drops of
1:20 streptavidin-gold particles (10 or 13 nm) in
PBS (20°C). Controls included the omission of
the primary and/or secondary antibodies or the
replacement of specific antibodies by preimmune
serum when available. The labelled sections were

stained with uranyl acetate (1%, 3 min).
Some sections were double-labelled succes-

sively with anti-protamine and anti-transition pro-
tein 1. The primary antibodies were visualised by
recombined protein A/G coupled to colloidal gold
(6 nm for TP1 and 12 nm for protamine), following
the technique described by Varndell and Polak
(1984). The sections, which were first floated over
3% skimmed milk in PBS for 20 min, were incu-
bated successively with the first primary antiserum
(1:100, 2 h), the first gold probe (1:20, 30 min),
skimmed milk (3%, 20 min), the second primary



antiserum (1:100, 2 h), and finally with the second
gold probe (1:20, 30 min) at room temperature.
Between each incubation, they were washed 6
times in PBS. Controls included the omission of
one of the primary antibodies and the inversion of
the first/second primary antiserum, for evalua-
tion of binding of the second gold probe to the
first antibody. Due to the low contrast of the 6 nm
gold particles, the sections were not post-stained.

RESULTS

Rabbit-specific morphological data

In addition to the classical rabbit spermatid
morphology, summarised in figure 1 for old

spermatids (see also P16en (1971) for addi-
tional steps), numerous nuclei of step 14 4
spermatids were classified as ’decondens-
ing’. They were characterised by 2 different
profiles.

Type 1. The formation of parallel longitudi-
nal fractures appearing in the condensed
chromatin, and its separation into threads
(fig 2). The fractures were often observed
in the posterior part of the nuclei and could
lead to the progressive complete decon-
densation (fig 3) of nuclei. Such fractures
were also present in 3-6% of ejaculated
spermatozoa nuclei.

Type 2. Few step 13-14 spermatids and tes-
ticular spermatozoa had fully decondensed
nuclei filled with tiny fibres (see fig 5).





In addition, some spermatids with the
cytoplasmic specialisation specific to step
14 (ie they have differentiated an acroso-
mal equatorial segment) displayed a chro-
matin appearance specific of step 11 (see fig
8). The frequency of such abnormal sper-
matids with arrested or delayed nuclear dif-
ferentiation could be as high as 10% of the
step 14 spermatids in some seminiferous
tubules. They were present in all studied
animals and in most ejaculates in low pro-
portions (0.5-1 %).

Histochemical demonstration of lysine

The chromatin was strongly stained by PTA
en masse in all round and elongating sper-
matids younger than step 12. At this stage,
most of nuclei were partially bleached from
the anterior part, posteriorly, with a strict
limit between fully condensed, lightly stained
anterior chromatin, and thread-like, fully
stained, less compact posterior chromatin.
The light staining disappeared from the mid-
dle of step 13 spermatids and most older
nuclei were totally white (figs 4 and 5). How-
ever, chromatin remained heavily stained
in few step 13 spermatids and in step 14 4
spermatids displaying nuclear differentia-
tion typical of step 11 (arrested or delayed
nuclear differentiation). All the decondens-
ing nuclei observed at step 14 were stained
along the fracture lines inside the nuclei.
Few nuclei with a classical morphology dis-
played stained chromatin threads (fig 4).
Fully decondensed nuclei were strongly
stained (fig 5).

Anti-histones

For all the anti-histone antibodies, the

labelling was intense on heterochromatin
of round spermatids and was severely low-
ered at steps 9-10 (beginning of elonga-
tion). It was not found on testicular and ejac-

ulated spermatozoa. H3 and H4 were only
detected in spermatid nuclei from steps 1

throughout 10, while H2B labelling was lost
at step 11.

Anti-transition-protein 1

Labelling was only present in elongating
and elongated spermatid nuclei from steps
10 (fig 6) through the middle of step 13 in all
animals. The grains were located close to
the external limits of the chromatin threads.
The labelling was weak in step 10 and was
maximum in step 11-12. At these stages,
it leads to a special decoration of nuclei
along longitudinal lines, delining more con-
densed chromatin (fig 7). These lines were
about twice as numerous as the final num-
ber of longitudinal chromatin plates observed
in normal mature testicular spermatozoa
(Koehler, 1970). The labelling disappeared
from most spermatids in the middle of step
13, but in many seminiferous tubules, sev-
eral nuclei at steps 13-15, including those
with arrested nuclear differentiation,
remained labelled (fig 8). In all seminifer-
ous tubules observed at the time of sper-
miation, several spermatozoa, with no sign
of strong nuclear decondensation, were also
heavily labelled (fig 9). Very few normally
compacted nuclei and most of decondens-
ing nuclei were labelled in ejaculated sper-
matozoa.

Anti-protamine Pl l

Labelling was first present in small amounts
at the end of step 10 and increased rapidly
in step 11 spermatids. At step 10, the few
grains were mostly distributed close to the
nuclear limits. At step 11 they were present
in all parts of nuclei. The maximum grain
density was observed on nuclear sections
from step 12, 13 and 14 spermatids. Tes-
ticular spermatozoa were generally weakly







labelled, probably due to higher chromatin
compaction and reduced access to the epi-
topes.

Double labelling against TP1
and protamine

This double labelling was weaker over sper-
matid nuclei than the single labelling
described above. This could be due to the

one-step technique used to visualise each of
the primary antibody/epitope locations. The
distribution of grains was similar to that
described above, for a given cell stage, and
for a given antiserum, whatever the order
for (and or deletion of) the first primary anti-
serum. Small grains over TP1 and large
grains over protamine locations did not over-
lap, whatever the cell differentiation, sug-
gesting that both nucleoproteins could have
separate locations over the chromatin (figs
10 and 11 However, the weak labelling,
and the lack of post-staining of the sections
could not demonstrate clearly the specific
location of TP1 over the threads of chro-
matin. Several step 14 spermatids with fully
decondensed nuclei were not labelled at all,
as if both protamine and TP1 had been lost.

DISCUSSION

In the present work, we have shown that:
i) histones are lost in elongating spermatids,
H2B being lost later (step 11) than H3 and
H4 (step 10); ii) TP1 and protamine appear
together in step 10-11 spermatids; TP1 is
located mostly at the periphery of chromatin
threads; iii) TP1 is present in fully condensed
nuclei at the middle of step 13 and is not
detected by immunocytochemistry in most
normal step 14 spermatids and testicular
spermatozoa; and iv) most of decondens-
ing spermatid and spermatozoon nuclei
were stained for lysine and were labelled
for TP1 along fracture lines separating chro-

matin lamellae while few old spermatids and
spermatozoa with normal morphology were
labelled nuclei.

Histones are lost in elongating sper-
matids, H2B being lost later (step 11) than
H3 and H4 (step 10). This is a confirmation
of results obtained in the mouse (Biggiogera
et al, 1992) and the rat (Unni et al, 1994).
The sum of labelling for all histones was
quite low at step 10, when TP1 and pro-
tamine are not yet present in large amounts.
This suggests that TP1 and protamine,
which enter the nuclei when most of core
histones have disappeared, could not facil-
itate the displacement of H3 and H4 as pos-
tulated by Unni and Meistrich (1992). The
displacement of histones by more basic
nucleoproteins is also questionable in
humans, since the persistence of histones in
many spermatozoa could be a rule, as
demonstrated by biochemistry (Gatewood
ef al, 1990), staining with en masse alco-
holic phosphotungstate (Baccetti etal, 1977)
or aniline blue (Haidl and Schill, 1994). The
present results also suggest that some other
nucleoproteins should be present in sper-
matid nuclei at the beginning of nuclear elon-
gation. These could include testis specific
histones variants (Unni et al, 1994) and/or
transition protein 2 (Alfonso and Kistler,
1993) an in vitro DNA-stabilising protein
(Baskaran and Rao, 1990). Another possi-
ble explanation for the poor histone immuno-
localisation in step 10 spermatids could be
the modification of the protein conformation
and the access to antibodies due to histone
acetylation. This was not tested in the pre-
sent work.

TP1 and protamine do appear together in
step 10-11 spermatids. This is a new obser-
vation in mammals, since transition proteins
were formerly supposed to be present only
before the first appearance of protamine in
nuclei. In the rabbit, TP1 appears in young
step 10 nuclei, while protamine 1 is only
present close to the nuclear envelope by
the end of step 10 and fills the other nuclear





areas during step 11. They remain present
in separate locations over the chromatin
threads, TP1 being mostly located at their
periphery and possibly delineating the future
chromatin lamellae of sperm nuclei. The

presence of small amounts of protamine in
early elongating spermatids (late step 10)
has not been documented in other mam-
malian species. Using our antisera, it was

demonstrated that protamine only appears
at step 12 in the ram (Courtens etal, 1983),
and is present in low amounts, close to the
nuclear envelope, at step 11 in the boar

(Courtens et al, 1988). The fact that small
amounts of protamine could be first detected
during step 10, together with TP1 in the pre-
sent work is probably not artifactual, since
both antisera reveal each one band on
Western blots of rabbit testis extracts (not
shown). Moreover, the separate locations
of protamine and TP1 on the same threads
of compacting chromatin suggest that both
proteins could cooperate in the rearrange-
ments of chromatin which occur during
nuclear elongation. In vitro, TP1 induces a
pronounced equilibrium destabilisation of
the DNA (Singh and Rao, 1987). In vivo,
protamine can fix the chromatin structure,
whatever the step at which it is introduced to
nuclei and whatever the previous local
arrangement of chromatin (Courtens, 1982;
Biggiogera et al, 1992). The fact that TP1
is located at the periphery of threads, and
seems to remain in that place, forming longi-
tudinal decorations in older spermatids, may
indicate that it is involved in the formation
of the chromatin plates which are present
in old spermatids and spermatozoa
(Koehler, 1970; Courtens et al, 1991 or
could at least facilitate their further separa-
tion in the nuclei that undergo deconden-
sation. This is documented by the fact that
TP1 remains present at the site of separa-
tion of lamellae in most spermatids and sper-
matozoa nuclei which decondense sponta-
neously (present cytochemical and

immunocytochemical demonstration). If it
can be argued that lysine-containing pro-

teins could have entered the nuclei after

decondensation, when the nuclear enve-
lope has been disrupted, it is clear that TP1

remains present in few nuclei with normal
morphology and intact nuclear envelope.
Its presence could then reveal cell nuclei
which have not yet started to decondense.
Protamine, on the other hand, could be
involved in the internal compaction of the
threads.

TP1 is not detected by immunocyto-
chemistry in most step 14 spermatids and
testicular spermatozoa but is present in well-
condensed nuclei at the middle of step 13.
This raises the question of how it is elimi-
nated, meaning separation from the DNA
and release from the dense chromatin. Sep-
aration of TP1 from the DNA is probably not
due to displacement by protamine as pos-
tulated by Green et al (1994), because both
nucleoproteins are present together in nuclei
for several days during rabbit spermiogen-
esis and because their immunolocalisations
do not overlap. This is also obvious from
the chronology of step-specific immuno-
localisation of TP1 in the mouse and the rat

(Heidaran et al, 1988). Separation of TP1
from DNA should be facilitated by its phos-
phorylation as proposed in the boar (Akama
et al, 1994a). Phosphorylation sites are also
present in ram TP1 (Chirat et al, 1991 ).
However the release of DNA-detached tran-
sition proteins from the nuclei could be a
problem in compact nuclei. They could either
follow the paths left free between the con-
densed plates of chromatin or be degraded.
They could also be simply trapped in few
condensed nuclei. The recent proposal that
a protease could be involved in the degra-
dation of transition proteins is interesting,
even if the origin of enzymes (acrosomal or
nuclear) is not documented from in vitro
experiments (Akama et al, 1994b). Hypo-
thetical intranuclear protease activity, such
as that found in the mouse (Faulkner and
Bhatnagar, 1987), could explain why sev-
eral fully decondensed rabbit spermatid



nuclei lack both immunodetectable pro-
tamine and TP1. Could proteases enter the
nuclei of old spermatids, as do protein disul-
fide isomerase (Ohtani et al, 1993), or be
already present as oligoproteins as pro-
posed for centromere proteins in bull
(Palmer et al, 1990) and rabbit (Courtens
et al, 1992) spermatozoa? On the other
hand, the lack of elimination of TP1 in sev-
eral cells could explain the spontaneous
decondensation of nuclei which occurs fre-

quently in step 14 spermatids (present work)
and in spermatozoa of the rabbit (Courtens
ef al, 1994b). The separations between
chromatin lamellae, can be both delineated
by lysine staining (alcoholic phospho-
tungstate) and immuno-localisation of TP1
(a lysine-rich protein: Heidaran et al, 1988).
TP1, which remains localised at the periph-
ery of the chromatin lamellae, could inhibit or
lower their mutual cohesiveness, and leads
to more fragile nuclei. TP1 is probably not
the only nucleoprotein to be left is some
sperm nuclei. Transition protein 4 has been
found as traces in few boar late spermatids
(Akama et al, 1994b) and rat epididymal
spermatozoa (Unni and Meistrich, 1992).
Histones are present in human spermato-
zoa (Gatewood et al, 1990). The state of
protamines phosphorylation (Chirat et al,
1993), or the underprotamination of the chro-
matin (Bianchi etal, 1994) could also explain
poor chromatin condensation in several

sperm nuclei. The lack of one protamine
species is also documented in human (De
Yebra etal, 1993). In the rabbit, chromatin
micro-heterogeneities, characterised by eas-
ily extractable protamine, have been
described in spermatozoa as sites where
the DNA is more accessible (Courtens et
al, 1994a). However, in this species, the fre-
quency of sperm nuclei which sponta-
neously decondense is the main factor
related to low litter sizes (Courtens et al,
1994b), one of the main parameters of fer-
tility. The present results, showing that sev-
eral type of nuclear decondensation are
characterised by the abnormal retention of

TP1, should therefore be considered when
rabbit fertility is investigated. Moreover, they
suggest that TP1 is involved in the lamel-
lar superorganisation of the sperm nuclei
and that its release from spermatid nuclei
is probably not a simple displacement by
protamines.
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