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Summary &horbar; Lignin-carbohydrate complexes (LCCS) are recognised as key structures in forage
degradability. Apart from ester bonds involving phenolic acids, which seem to play a major role in
grasses, little is known about the other types of linkages that must exist but have proved difficult to demon-
strate. The chemical nature of possible LCC linkages is presented and the various mechanisms
through which LCCs in the cell-wall architecture may interfere with carbohydrate utilisation by rumen
microorganisms are discussed.
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Résumé&horbar; Les complexes lignines-polyosides des fourrages : structures et conséquences sur
la dégradation des parois végétales dans le rumen. Les complexes lignines-polyosides (LCC)
sont considérés comme des structures clés pour la dégradabilité des fourrages. En dehors des liaisons
ester par l’intermédiaire d’acides phénoliques, qui jouent probablement un rôle majeur chez les gra-
minées, on sait peu de choses sur les autres types de liaisons qui devraient exister mais sont très dif-
ficiles à mettre en évidence. Dans ce document, nous décrivons les différentes liaisons chimiques
proposées, et discutons les mécanismes par lesquels les LCC peuvent interférer avec l’utilisation des
polyosides par les microorganismes du rumen.
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INTRODUCTION

It is well known that lignins restrict cell-wall
carbohydrate degradation in maturing for-
ages. Several studies have shown a nega-
tive correlation between lignin content and
cell-wall digestibility (Jarrige, 1980; Minson,

1982). However the mechanisms involved in
the disproportionate effect on cell-wall
digestibility exerted by relatively small
amounts of lignins remain unexplained. The
effect of lignins (see review by Besle et al,
1995) depends on plant variety and tissue.
This is more marked with primary than with
secondary walls (Engels and Schurmans,



1992). The chemical nature of lignins and
how they are linked with the other cell-wall
polymers seem as important as the total
amount of lignin present. This organisation
takes place when lignins become anchored
to the primary wall (Yamamoto et al, 1989;
Terashima, 1993), develops as lignification
proceeds (Jung and Deetz, 1993), and con-
tinues during cell-wall ageing. It is hypo-
thesized that the lignin-carbohydrate com-
plexes (LCCs) included in the wall structure
are key elements in explaining the impact
of lignins on cell-wall degradation. Soluble
LCCs with predominant lignin moieties have
been isolated from the rumen liquor (Gaillard
and Richards, 1975; Lomax etal, 1984). In
a mechanistic model, Chesson (1993)
explained the release of soluble LCCs as a
consequence of the degradation of the sur-
rounding carbohydrates. Cell walls were
represented as discrete blocks with different
compositions. As suggested by Wallace et
al (1991), primary layer LCC structures dif-
fered from those of the secondary layer.
While other aspects of direct and indirect
roles of LCCs in cell-wall degradation have
been reviewed by Chesson (1988) and Jung
and Ralph (1990), this paper presents the
state of knowledge about LCC structures in
forages and recent concepts concerning
their role in cell-wall degradation.

NATURE OF THE LINKAGES BETWEEN
LIGNINS AND CARBOHYDRATES

There are numerous possibilities for the for-
mation of lignin-carbohydrate linkages in
cell walls. Firstly, the polymers themselves
(polysaccharide and lignin) contain numer-
ous functional groups: primary and sec-
ondary alcohols, carboxyls and carbonyls. In
grasses, the phenolic hydroxyls of esteri-
fied phenolic acids constitute an additional
type of functional group. Secondly, enzymes
participating in building the cell-wall archi-
tecture, such as glycosyl-transferases and

peroxidases, are present in multiple forms.
Finally, the free radicals and quinone
methides produced at the time of lignin poly-
merisation are very reactive species (see
review by Leary, 1980), and have long been
suspected of reacting with carbohydrates
(Freudenberg and Neish, 1968). In this
paper, frequent references will be made to
radical and quinone methide reactions.
Those reactions have been summarised in

figure 1 to illustrate the mechanisms
described in the text. Additional information
can be found in the review by Ralph and
Helm (1993). Other hypothetical reactions,
which could lead to the formation of LCC

bonds, and which are unrelated to lignin
synthesis or occur in the cytoplasmic com-
partment, are also described.

Linkages involving phenolic acids

Phenolic acids are precursors of the phenyl-
propane units of lignins although free phe-
nolic acids are rarely found in cell walls
(Newby et al, 1980). However, such acids
esterified to lignins or polysaccharides (com-
pound 2 in fig 1) are relatively abundant in
grasses and are often referred to as ’non-
core lignins’ (an inappropriate terminology as
discussed by Ralph and Helm, 1993).

It is now well known that grass arabin-

oxylans are esterified with ferulic acid. Smith
and Hartley (1983) purified the first ’FAX’
fragment (0-[5-0-(frans-feruioy!)-p-L-ara-
binofuranosyl]-(l->2)-D-xylopyranose)
from wheat bran enzyme hydrolysate. Sim-
ilar structures, but with a-(1->3)-linked ara-

binose have since been isolated (table I).
A feruloylated xyloglucan fragment ’FXG’
( 0-[4- 0-( trans-feru loyl)-a-D- xylopyranosyl]-
(1->6)-!-glucopyranose), has also been
isolated from bamboo by Ishii et al (1990). In
addition to ferulic acid, grass arabinoxylans
have been shown to contain p-coumaric
esters, and corresponding typical fragments
(eg, ‘PAXX’: 0-[5-0-(rrans-coumaroy!)-a-L-







arabi nofu ranosyl]-( 1->3 )-O-!-D- xylopyra-
nosyl-(1->4)-!-xylopyranose) have been

isolated (table I). The frequency of esterifi-
cation of barley arabinoxylans has been
estimated to be about 1 arabinosyl residue
every 15 for ferulic acid, and 1 every 31 for

p-coumaric acid (Mueller-Harvey et al,
1986).

In dicots, ferulic and p-coumaric acids
are found mainly associated with the pectic
fraction and are about 10 times less abun-

dant than in grasses (Jung ef al, 1983). Fer-
uloylated pectins have been identified in
sugar beet (Rombouts and Thibault, 1986).
Fry (1982) isolated 2 types of feruloylated
disaccharides: 3-O-(3-O-feruloyl-a-!-ara-
binopyranosyl)-L-arabinose and 4-0-(6-0-
feruloyl-#-D-galactopyranosyl)-D-galactose,
which accounted for more than 60% of the
total ferulic acid content of cultured spinach
primary cell walls.

Feruloylation invariably occurs at the
same position on polysaccharides, which
strongly suggests an enzyme-mediated,
site-specific phenomenon. Fry (1983) pro-
posed an intracellular esterification at the
non-reducing end of newly synthesised
spinach pectins. In parsley, in vitro esterifi-
cation of wall polysaccharides by radio-
labelled feruloyi-CoA has been shown to
occur in a microsomal subfraction derived

from Golgi apparatus (Meyer et al, 1991 ).
However, Yamamoto et al (1989) observed
that the kinetics of cell-wall deposition in
grasses were different for arabinose and

ferulic acid, suggesting an extracytoplas-
mic esterification. Feruloyl-CoA however,
has never been detected in vivo in the cell

wall. Although further investigations are
needed in order to check if transesterification
can occur in the cell wall, different mecha-
nisms could be involved for individual

classes of polysaccharides; pectins, which
are abundant in primary walls of dicot-cul-
tured cells, may be feruloylated intracellu-
larly, whereas arabinoxylans and xyloglu-

cans, predominating in the grass samples
studied, could be esterified in the cell wall.

Phenolic esters on cell-wall polysaccha-
rides may undergo 2 distinct types of dimeri-
sation. 5,5’-dehydrodiferulic acid was
obtained in vitro from an artificially esteri-
fied polysaccharide in the presence of per-
oxidase and H202 (Geissman and Neukom,
1971 Such biphenyl structures have been
observed bridging polysaccharides in
spinach (Fry, 1986), wheat flour (Markwalder
and Neukom, 1976) and bamboo (Ishii and
Hiroi, 1990a), and a diferuloyl hexasaccha-
ride [XXAF-FAXX] has been isolated from
bamboo by Ishii (1991 ). In the cell wall, difer-
ulic bridges probably participate in control-
ling cell-wall elongation (Fry and Miller,
1989). Diphenyl structures have not been
described for p-coumaric acid, whereas both
ferulic and p-coumaric acids have been
found in the cyclobutane dimers truxinic and
truxillic acid. These dimers are the result of
the photochemical coupling of esterified
hydroxycinnamic acids (Hartley and Ford,
1989; Hanley et al, 1993; Turner et al, 1993).
They have mainly been observed in grasses
(Hartley et al, 1990a, b), but are also present
in minute amounts in lucerne and red clover

stems (Eraso and Hartley, 1990).
p-Coumaric acid may also be esterified to

lignins in wheat (Smith, 1955) and bamboo
(Shimada et al, 1971; Nakamura and
Higuchi, 1978). In these and in maize lignins,
evidence for ether-linked p-coumaric acid
has also been obtained (Nimz etal, 1981). ).
Ferulic acid has also been shown to be

etherified to lignins in an LCC fraction from
bagasse (Kato et al, 1987a). Scalbert et al
(1985) observed in wheat straw that more
ferulic acid (25-65%) than p-coumaric acid
(5%) was etherified to lignin.

Most of the ferulic acid linkages with
lignins are of the ether type while this acid is
abundantly esterified to polysaccharides. In n
contrast, p-coumaric acid, mostly esterified
to lignins, does not seem to be etherified to
polysaccharides.



The location on lignin units of ester-linked
p-coumaric acids has been studied in bam-
boo and grass by Shimada et al (1971 ) and
Nakamura and Higuchi (1978). The resis-
tance to methanolysis of p-coumaric acid
esters in lignin fractions compared with that
of model compounds indicates that bond-
ings through the y-position of the phenyl-
propane unit predominate over bondings
through the a-position.
Yamamoto et at (1989) proposed 2

mechanisms for ether bond formation,
involving the phenolic group of ferulic acid,
which is already esterified on polysaccharide
chains. The first was a radical coupling that
produces an ether linkage between the phe-
nolic group of the acid and the (3-carbon of
the lignin unit (compound 7 in fig 1 The
second was described by Scalbert et at
(1986), and consists of a nucleophilic reac-
tion resulting in an a-ether (compound 9 in
fig 1 Both reactions result in bridging lignins
to polysaccharides. The existence of
[polysaccharide-ester-ferulic-ether-lignin]
structures now seems to be established for

wheat (Iiyama et al, 1990), ryegrass (Kondo
et at, 1990a) and Phalaris (Lam et at,
1992a).

Likewise, dehydrodiferulic bridges
between polysaccharides become etheri-
fied to cell-wall polymers during maturation
(Lam etal, 1992b), a reaction involving the
free phenolic hydroxyls of the dimer and
quinone methides.

Ether and ester linkages of phenolic acids
can be differentiated by sequential treat-
ments with sodium hydroxide (liyama et al,
1990). Ester-only-, ether-only- and ester-
ether-linked phenolic acids can be distin-
guished using the method of Lam et at
(1992a). The authors confirmed with this
method that p-coumaric acid, unlike ferulic
acid, does not form ester-ether bridges.
They also measured the content of esterified
and total phenolic acids in internode seg-
ments of Phalaris varying in maturity. Ferulic
acid appeared at a very early stage of cell-

wall building and its total amount quickly
stabilised. The proportion of etherified ferulic
acid increased more gradually. p-Coumaric
acid remained mainly in the saponifiable
form, and its total content increased con-
tinuously during cell-wall building (Lam et
al, 1992b). Similar observations were made
in ryegrass harvested at different stages of

maturity (Kondo etal, 1990a), and in grow-
ing culms of sugar cane and rice (He and
Terashima, 1991 ). Ferulic acid can there-
fore be considered as a component of cer-
tain wall polysaccharides, acting as a group
for anchoring hydrophobic lignins to

hydrophilic carbohydrates, whereas p-
coumaric acid behaves as a fourth lignin
unit. The origin and significance of this indi-
vidual specialisation of phenolic acids is not
clear.

In dicots, the rarity of phenolic acids sug-
gests that lignin anchoring proceeds in a
different way and other types of linkages
predominate. Joseleau and Gancet (1981)
observed in aspen wood alkali-stable lignin-
araban complexes held together by alkali-
labile lignin-glucuronoxylan linkages, indi-
cating the coexistence of esters with ethers
or glycosides.

Linkages involving uronic acids

Glucuronic acid and its 4-Gmethyl derivative
occur as side groups in most xylans. In jute
fibre (Das et al, 1984a) and in other dicots
(Das et al, 1984b; Fry, 1986), they have
been shown to be largely, if not totally,
involved in ester linkages. The partner
molecule was presumed to be a lignin,
because lignins were solubilised by treat-
ments that cleave ester bonds.

Esterification of uronic acid side chains of

xylans may occur in the cell wall at the time
of lignin polymerisation. Tanaka et al (1979)
showed in vitro that carboxyl groups (in com-
parison to secondary and primary alcohols)
are the groups most reactive with quinone



methides leading to the formation of ben-
zylester linkages (compound 12 in fig 1 ).

Experiments made by Stewart (1973) on
eucalyptus wood indicate that uronic acids
are also involved in an indirect lignin-xylan
bridging: 4-0-methyl-glucoronoxylans bear
alkali-labile uronic acid residues (ester-linked
to the xylan backbone). Some of these
residues were linked to lignins by acid-resis-
tant ether bonds. As many as 7 esterified
uronic acids were estimated in each 100

xylose units, 3 of which were etherified to
lignins.

Chesson et al (1983) measured the hemi-
cellulosic hydroxyls liberated by an alkaline
treatment and estimated that about 30% of
the alkali-labile substituents in grasses as
well as in dicots, were not accounted for by
acetic and phenolic acids recovered in the
extracts. These alkali-labile substituents

could have been linked to lignins by alkali-
resistant bonds.

Thus, ester linkages seem to play an
important part in LCCs. Esters are relatively
easy to detect, due to their characteristic
infrared absorption at 1730 cm-!, and their r
sensitivity to mild alkali treatments. It is more

difficult to distinguish uronic acid from phe-
nolic acid esters. Borohydride is known to
reduce hemicellulosic uronic acid esters to

give the corresponding neutral sugar
residue. When applied to fibrous material,
however, the low yield obtained (Das et al,
1984a, b), suggests a poor accessibility to
some ester linkages in situ. Takahashi and
Koshijima (1988) showed with model com-
pounds that the use of a high pH buffer
greatly enhances the reduction yield. When
applied to LCC fractions from grasses, boro-
hydride does not cleave phenolic acid esters
(Morrison, 1974; Tanner and Morrison,
1983; Ford, 1989, 1990). This property, con-
firmed on model compounds submitted to
several hydride reducters, is due to the
presence of the conjugated double bond
(Lam et al, 1992a). Finally the ester’s part-
ner molecule and its linkage position on this

molecule need to be identified. Methanoly-
sis or mercaptolysis could prove an inter-
esting method, since the liberated hydroxyl
is consequently methylated or thioacylated.
Moreover, esters on the a-position of a lig-
nol are cleaved, whereas in the y-position
they are resistant (Nakamura and Higuchi,
1978).

Ether and glycosidic linkages

It is extremely probable that direct ether and
glycosidic bonds occur in LCCs, but con-
clusive evidence is difficult to obtain for 2

major reasons: they are likely to be very
infrequent; and their properties do not allow
them to be readily distinguished from
intrapolymeric linkages.

Hayashi (1961) reported that (3-glucosi-
dases released new reducing ends as well
as new phenolic groups in an LCC from
wheat, suggesting the occurrence of phenyl-
glycosidic linkages. Enoki et al (1983)
showed that a glycosidic linkage at any posi-
tion of the lignol could indeed be cleaved
by glycanase treatment. Ford (1990) sug-
gested that arabinoxylans from pangola
grass could be glycosidically linked to lignins,
since borohydride treatment of an LCC frac-
tion resulted in no detectable alditol. In an
LCC from aspen wood, Joseleau and
Kesraoui (1986) observed monomeric ara-
binofuranose glycosidically linked to lignin.

Soluble LCCs have been found in the
rumen liquor of steers fed on tropical grass
(Gaillard and Richards, 1975; Neilson and
Richards, 1982). Structural investigations
indicated that in these complexes, glucose,
xylose and rhamnose were glycosidically
linked to lignins (Lomax et al, 1984). In a
study on soluble LCCs from the rumen of
sheep fed ryegrass, Conchie et al (1988)
found reducing xylose and glucose residues,
which were throught to be ether-bound to
lignins. These fractions also contained rham-
nose and appreciable amounts of nitrogen.



Nordkvist et al (1989) obtained such soluble
complexes after in vitro incubation. These
LCCs had very low carbohydrate contents
and could thus be enriched in sugars directly
linked to lignins. However, it is inadvisable to

draw conclusions about plant LCC from
rumen-soluble LCC studies, due to the lack
of knowledge on the microbial transforma-
tions that could take place. For example,
in aerobic systems, glycosylations occur con-
comitantly with lignin degradation (Jeffries,
1990). In the rumen, however, lignins are
known to be poorly degraded, and such reac-
tions have not been reported.

Benzylethers have been demonstrated
in wood lignin-glucomannan and lignin-ara-
binoxylan complexes by Watanabe et al
(1986). Primary alcohol groups of glucose
and mannose, and hydroxyls in positions 2
and 3 of xylose were involved, as shown by
methylation. These results were obtained
by using a selective degradation method
with DDQ (2,3-dichloro-5,6-dicyanobenzo-
quinone) developed for LCC studies by
Koshijima et al (1984). DDQ oxidatively
cleaves benzylic bonds in the para-position
with an electron-donating group. Ben-
zylesters (Watanabe and Koshijima, 1988)
and benzylglycosides (Cornu, 1989) are
also cleaved by DDQ oxidation.

Model compound experiments by Enoki
et al (1983) showed that glycosidic linkages
in y-, benzylic or phenolic positions are resis-
tant to mild alkali except in the case of

syringyl units where they are partially
cleaved. Ether bonds in the y-position are
stable, while benzylethers are more labile
(varying with the molecular environment);
the presence of a methyl substituent on the
phenolic hydroxyl considerably enhances
the resistance of benzylether linkages (Enoki
et al, 1983; Taneda et al, 1987). Takahashi
and Koshijima (1988) observed that sodium
hydroxide released significant amounts of
xylose from a beechwood LCC, but only
traces after methylation of the LCC. DDQ
treatment released sugars in proportions

similar to those released by alkali, xylose
being linked to lignins at 0-3 or O-2. Thus
the term ’alkali-labile linkages’ includes not
only esters, but also some phenolic ben-
zylethers and glycosides involving syringyl
units. Morrison (1973) found arabinoxylan-
lignin complexes in ryegrass alkali-extracts,
whereas Al Katrib et al (1988) extracted
LCC from NaOH-treated straw, showing the
occurrence in these plants of alkali-resis-
tant bonds. From the model experiments of
Enoki et al (1983), y-ethers would be the
most easily distinguishable linkages, since
they resist most of the cleavage conditions
tested, including strong mineral acid hydrol-
ysis (H2S04 1 N, 100°C, 6 H).

Benzylethers, like benzylesters, can arise
from a reaction between polysaccharide
hydroxyl or carboxyl groups and quinone
methides (compound 11 in fig 1). Ben-
zylethers also arise spontaneously when
phenolic compounds are mixed with sug-
ars (Hemmingson, 1979; Leary et al, 1983).
The reactivity of the sugar functional groups
decreases from carboxyls to secondary alco-
hols to primary alcohols, and benzylglyco-
sidic linkages are not favoured (Tanaka et al,
1979). Glycosidic linkages, however, have
been obtained in vitro during dehydropoly-
merisation of coniferyl alcohol by a crude
enzyme extract from aspen in the presence
of free sugars (Joseleau and Kesraoui,
1986). These authors observed a greater
reactivity of arabinofuranose compared to
glucopyranose.
A possible mechanism for the formation

of glycosidic linkages has recently been
described by Kondo et al (1990b), who
showed in vitro that (3-glucosidases, which
occur in cell walls, catalyse the transfer of a
glycosyl residue on acceptor lignols. This
reaction is much more efficient if the donor

molecule already contains a glycosidic link-
age, but has also been observed with free

glucose. Primary alcohols (y) are more reac-
tive acceptors than secondary ones (a), and



the presence of a phenolic hydroxyl results
in greater efficiency.

ROLE OF LCC IN RUMEN
DEGRADATION OF CELL WALLS

Mechanistic model
of cell-wall degradation

Chesson (1993) has proposed a precise
model for the degradation of lignified cell
walls. Cell walls are schematised as being
built of bricks representing potentially
degradable polysaccharides, with other scat-
tered bricks representing LCCs in the sec-
ondary and primary layers. Since cell-wall
degradation is considered as a superficial
process, the external blocks are removed

first by microbial action. Some bricks rep-
resenting LCCs are released in the rumen
medium when the surrounding degradable
carbohydrate has been removed, while oth-
ers remain bound to the cell wall. As degra-
dation proceeds, LCC bricks accumulate at
the surface of plant particles, preventing fur- r-

ther degradation. The primary wall remains
almost intact, either due it being shielded by
the external layer, or because the LCC pre-
sent have a different structure from those in

the secondary wall and offer greater resis-
tance (Wallace, 1989). Differences in the
rate of formation of the inert layer explains
differences in digestibility observed between
cell walls. This model also suggests that
LCCs may have both negative and positive
effects on degradation.

Negative effects of LCCs

Since lignin preparations added to an in vitro
fermentation system do not impede cell-wall
degradation (Han et al, 1975; Op den Camp,
1988), the inhibition caused by phenolics is
evidently due, directly or indirectly, to link-

ages between phenolics and carbohydrates.
Hypotheses concerning the role of the
diverse structural features of cell walls in

preventing polysaccharide degradation have
been reviewed by Besle etal(1995). In addi-
tion to the physical barrier effect of lignins,
lignin-carbohydrate linkages constitute a
biochemical barrier sterically hindering gly-
canases (Jung and Deetz, 1993). In vitro
experiments by Gressel et al (1983) have
shown that polyeugenol, a lignin model poly-
mer, inhibits cellulolysis only if it is linked to

cellulose. Esterification of cinnamic acids
to either isolated hemicelluloses (Jung,
1988a) or cellulose (Jung and Sahlu, 1986)
will also inhibit glycanolysis. Phenyl-
esterases are produced by rumen fungi
(Borneman etal, 1990a) and bacteria (Akin
et al, 1993; McDermid et al, 1990). Feruloyl
esterases liberate ferulic acid from xylan
oligomers, synergistically with xylanases,
which must first liberate oligomers in the
medium (Faulds and Williamson, 1991 ).

Phenolic acids released in the rumen

medium may have a limited antimicrobial

effect, which has been shown in vitro (Ches-
son et al, 1982; Jung and Fahey, 1983;
review of Martin, 1990). Likewise, isolated
LCCs decrease microbial activity (Cherney et
al, 1992). However, except in microenviron-
ments, phenolic acids are produced in
subtoxic amounts (Jung and Ralph, 1990)
and transformed to phenylpropanoic acid
which is considered as a growth factor (Hun-
gate and Stack, 1982). As shown by Besle et
al (1988) in a semi-continuous fermentor, it

is doubtful that any consequent inhibitory
effect appears in vivo. A reduction in micro-
bial adhesion is also possible (Varel and
Jung, 1986), but this effect is not significant
(Roger and Fonty, personal communication).

Positive effects of LCCs

Release of soluble LCCs could have positive
effects, limiting the shielding of structural



polysaccharides by lignins. Soluble LCCs
accounting for 43% of the total lignin intake
have been found in the rumen liquor of steers
fed tropical grass (Gaillard and Richards,
1975). LCCs were also found in the rumen of
sheep fed ryegrass (Conchie et al, 1988)
and after in vitro incubation of wheat straw

(Nordkvist etal, 1989). It is not known if the

carbohydrate moiety is further degraded in
the rumen, but these compounds probably
precipitate in the acidic conditions found in
the abomasum (Neilson and Richards, 1978)
and the lignin portion is indistinguishable
from other lignins in the faeces. Chesson
(1981) has shown that an alkali treatment
releasing 40% of barley straw lignin in asso-
ciation with carbohydrates, was sufficient to
result in nearly complete in situ degradation
of the remaining carbohydrates. Mosoni et al
(1993) observed a similar degradation of
wheat straw apical internode after a sodium
hydroxide extraction that gave 76% deligni-
fication. The positive effect of LCC release in
the rumen on carbohydrate hydrolysis may
therefore be high. This effect could, how-
ever, be partly counterbalanced by some
inhibitory effect of soluble LCCs on rumen
enzyme activities (Jung, 1988b). An analyt-
ical study of the net effect of transformations
undergone by LCCs in the digestive tract
should be of relevance.

Heterogeneity of the effects of LCCs

Chesson’s model (Chesson, 1993) shows
a possible variation of the nature and effects
of LCCs within the different layers of the cell
wall. Likewise, structural heterogeneity cor-
responding to diverse cell-wall architecture
may also produce different effects on degra-
dation between plant species. This is the
case, for example, for differences in cell-
wall degradation kinetics observed between
grasses and legumes. After glycanolysis of
Bj6rkman LCCs, the insoluble residue from
ryegrass was enriched in phenolic acids and

contained more carbohydrates (arabinose
and xylose) than that from alfalfa (Kondo et
al, 1990c). The authors suggested that fer-
ulic acid could be responsible for the
enzyme-resistant bonds in ryegrass LCC.
The low phenolic acid content observed in
legumes means that direct linkages between
lignins and polysaccharides are enhanced.
Titgemeyer et al (1992) identified glu-
curonoxylan fractions from alfalfa stems with
a high resistance to degradation, probably
due to ester linkages of the uronic side
chains with lignins.

No soluble LCCs were found in the
rumen of steers eating high quality alfalfa
and coastal bermudagrass hay (Windham et
al, 1989). Thus, the undigestible residue of
these highly digestible forages may contain
all the original lignin (8.7 and 3.7% respec-
tively). This lignin could be of a different
type from that found in soluble LCCs of less
digestible forages. It could be localised in

walls that lignify first, less in weight but more
inhibitory.

It should be emphasized that the effects of
LCCs on cell-wall degradation, for specific
conditions of microbial attack, reflect not only
the frequency of recalcitrant linkages, but
also result (if a holistic approach is taken)
from the combined effects of the various fac-
tors determining the cell-wall environment,
namely architecture, tissue arrangement, and
presence of minerals (silica).

CONCLUSION

Lignins and hemicelluloses are linked
through several types of covalent bonds.
Heterogeneity of linkages is observed
across plant families and species and within
tissues and cell walls. The types of LCCs
in the wall are determined by the monomers
present and by the process of lignification.
Several structures have been suggested or
indirectly proposed. Some of these struc-
tures are cleaved by the enzymic activities



present in the rumen and it is not known if
totally resistant LCC bonds occur.

Mechanisms explaining the role of LCCs
have been suggested. The superficial
release of LCCs would have several con-

sequences on cell-wall degradation. The
frequency of linkages probably explains a
part of the wall resistance but the impor-
tance of this resistance is related to all the
factors of the cell-wall environment.

Further work is needed to define the
structures and to elucidate cell-wall resis-

tance mechanisms. Moreover, it should be

worthwile enhancing the positive effect of
LCC release and studying the fate of LCCs
in the digestive tract in relation to carbohy-
drate digestion. A more complete under-
standing of the nature and effects of LCCs
may have diverse agronomic conse-
quences: in plant breeding, prediction of
nutritional value, and utilisation of low qual-
ity forage. It must be noted, however, that
the resistance of cell walls to microbial

degradation, a drawback in ruminant nutri-
tion, may be an advantage for the plant.
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