Study of the potential of near-infrared reflectance spectroscopy in the analysis of the tree foliage intake of goats

Jj Waelput, R Biston, M Meuret

To cite this version:

Jj Waelput, R Biston, M Meuret. Study of the potential of near-infrared reflectance spectroscopy in the analysis of the tree foliage intake of goats. Reproduction Nutrition Development, 1990, 30 (Suppl2), pp.166s-166s. hal-00899328

HAL Id: hal-00899328
https://hal.science/hal-00899328
Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Study of the potential of near-infrared reflectance spectroscopy in the analysis of the tree foliage intake of goats

JJ Waelput¹, R Biston¹, M Meuret²

¹ CRA, Gembloux, Station de Haute Belgique, 100 rue du Serpent 6600, Libramont, Belgium;
² INRA, SAD Unité d'Ecodéveloppement, Domaine Saint-Paul, 84140 Montfavet, France

Introduction — The aim of this study, one of the first in a series, was to determine whether near-infrared reflectance spectroscopy (NIRS) could be of future use in the analysis of the food intake of goats on Mediterranean wooded rangelands.

Materials and Methods — Fodder and fecal samples were collected from 3 groups of 3 goats, browsing ad lib on fresh leafy Quercus pubescens branches. The 3 groups were made up of: 3 dried-up animals without supplementation; 3 lactating animals, supplemented with a urea–molasses mixture, in a digestibility cage (Meuret, 1988); and 3 lactating animals compelled to eat a pure Q pubescens diet on rangeland, and supplemented with a urea–battey mixture (Waelput, 1988). The separated leaves (no of samples = 100), stems and fruits (no = 50) of Q pubescens, the corresponding feces (no = 700), and the leaves of 4 other shrub samples which can be consumed on the same rangeland (Hedera helix, Quercus ilex, Pistacia terebinthus and Cornus sanguinea) were dried in a ventilated oven at 60°C until a constant weight was reached, and then ground with a standard hammer-mill (1 mm sieve). These first results concern the analysis of organic matter (OM) and lignin (Li) (Christian, 1971) by wet procedure (WP) and NIRS (PSCO, RCA 6250).

Results and Discussion — The organic matter (OM in % DM) and lignin content (Li in % OM) obtained from WP are respectively (mean ± SD) Q pubescens leaves (94.3 ± 0.6; 10.8 ± 0.8), stems and immature fruit (95.0 ± 1.2; 23.1 ± 1.4), other shrub leaves (91.7 ± 3.8; 10.8 ± 6.8) and feces (90.5 ± 1.3; 17.7 ± 1.1). The correlations (R²) for calibration equations between WP and NIRS for Q pubescens leaves alone are for OM and Li respectively 0.92 and 0.93 (standard error of calibration, SEC = 0.22 and 0.46). As all the forage samples are included in the calibration, the correlation is improved for lignin: R² = 0.98 and SEC = 0.81. The calibration of fecal samples shows that it is not necessary to develop 3 separate equations: R² = 0.86 and SEC = 0.42. WP values of fecal samples were predicted from NIRS: R² = 0.93 and standard error of prediction = 0.29.

The accuracy of the NIRS procedure seems to make it an acceptable method for providing rapid determinations of the quality of available forage and diet on wooded rangeland, although confirmation through further analysis is necessary.

Waelput JJ (1988) Mém Ing Agro Gembloux