

Relationships between structure and function of lactogenic hormones

Nicole Chêne, P. de La Llosa, Gilles Charpigny, J. Martal

▶ To cite this version:

Nicole Chêne, P. de La Llosa, Gilles Charpigny, J. Martal. Relationships between structure and function of lactogenic hormones. Reproduction Nutrition Développement, 1986, 26 (2B), pp.551-561. hal-00898463

HAL Id: hal-00898463 https://hal.science/hal-00898463

Submitted on 11 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Reprod. Nutr. Dévelop., 1986, 26 (2 B), 551-561.

Relationships between structure and function of lactogenic hormones

Nicole CHÊNE, P. de la LLOSA*, G. CHARPIGNY, J. MARTAL

Unité d'Endocrinologie de l'Embryon, Physiologie animale, I.N.R.A., 78350 Jouy-en-Josas, France.

* Laboratoire des Hormones Polypeptidiques, C.N.R.S., 91190 Gif-sur-Yvette, France.

Summary. Lactogenic activity of several hormone derivatives obtained by chemical modifications of lysine residues was studied by radioreceptor assay.

The relationships between structure and binding to lactogenic receptors are discussed taking into account lysine residue positions liable to be involved in the location of lactogenic function.

Introduction.

Placental hormones (PL) or chorionic somatomammotropins (CS) and hypophyseal hormones such as prolactins (PRL) or some growth hormones (GH) exhibit lactogenic activity in radioreceptor assay (RRA); they belong to two families of polypeptides with closely related structures probably resulting from a common ancestral short peptide (Niall *et al.*, 1971).

In some ruminants, PL hormones also exhibit a growth hormone activity (Chan *et al.*, 1976; Martal and Djiane, 1977). In human female, hCS is unable to bind to growth hormone receptors (Tsushima and Friesen, 1973), while hGH is endowed with both somatotropic and lactogenic action. Besides, amino-acid sequences of hGH, hCS and oPRL are well known (Niall *et al.*, 1971; Li *et al.*, 1971). Conversely, the oCS primary structure has not yet been elucidated, though the physicochemical characterization has been performed by Handwerger *et al.* (1974), Martal and Djiane (1975), Chan *et al.* (1976). For all these reasons, these four molecules are very interesting compounds for studying relationships between chemical structure and biological activity.

In the present work, we studied the effects of some chemical changes in lysine residues of these four hormones upon the binding capacity to lactogenic receptors. Only chemical changes preserving the basicity of the group (methylation, ethylation, guanidination and acetiminidation) were achieved, preventing proteins from secondary effects on their conformation.

Afterwards, a comparison was made between the already known primary structures of these hormones in relationship to their lactogenic activity.

Reproduction, Nutrition, Développement, nº 2 B-86. - 3

Material and methods.

Hormones.

oCS was purified in our laboratory and was not subjected to any contamination from either GH or PRL as reported by Martal (1978).

Global aminoacid composition was established by means of a Technicon autoanalyser. Lysine content was 14 residues for a MW of 22 000 daltons.

Ovine prolactin was a purified preparation kindly provided by NIH (PS-7). hGH was a gift from Drs F. Dray and F. Groh (Institut Pasteur, Paris). hCS was provided by USB Corporation.

Chemical modifications.

Four chemical modifications were performed. Methylation was accompanied by a slight change in the pK. Ethylation introduced a longer alkyl chain. Guanidination and acetiminidation modified the pK of the protein and the distance between the positive charge of the protein and the polypeptide backbone.

Reductive alkylation. — Reductive methylation and ethylation were carried out by addition of sodium borohydride and formaldehyde or acetaldehyde to the hormones (0.5-1.0 mg) dissolved in borate buffer (pH 9) as described by Means and Feeney (1968). The solutions were dialyzed against a pyridine solution (1 %) and freeze-dried. Determinations of lysine, methyl- and ethylysine were made using a Technicon autoanalyser and elution gradients containing isopropanol (Means and Feeney, 1968 ; de la Llosa *et al.*, 1974). A blank for biological assays was prepared by treating hormone with borohydride and borate buffer (pH 9, no added aldehyde). In the case of ovine prolactin whose disulfide bridges are particularly labile to the reductive action of borohydride (BH₄)⁻, the reductive alkylation was performed at lower concentration of (BH₄)⁻ (20 mM), for a shorter period (30 min) and in the presence of iodoacetamide (40 mM) to block the SH groups avoiding the disordered reconstitution of disulfide bonds.

Guanidination. — This reaction was performed using 0.3 M 0-methyl-isourea sulfate (Aldrich, France) at pH 10.3 and 5 °C (0.7 mg hormone/0.15 ml) for 24 h. At the end of the reaction, the solutions were dialyzed against pyridine solutions. After one day of reaction, some of the solutions became slightly opalescent. In both cases, the solutions were centrifuged and the precipitate discarded. The degree of guanidination was measured by aminoacid analysis. A control was prepared by treatment of the hormone at pH 10.4 for one day at 5 °C.

Acetimidination. — Prolactin (0.7 mg/0.5 ml) was treated by 1 M ethylacetimidate hydrochloride (Aldrich) for 24 h at pH 10.3 and 5 °C. hGH was treated in the same conditions but at a much lower concentration of reagent (0.01 M) to obtain a small degree of chemical modification. Determination of the ϵ -acetimidyllysine was performed by aminoacid analysis (Plapp and Kim, 1974).

Radioreceptor assay of lactogenic activity. - This activity was measured as described by Martal and Djiane (1975).

Mammary gland membranes were obtained from rabbits treated on Day 10 of lactation with 2- α -bromocryptine (CB 154, Sandoz, 2 mg twice daily for 2 days) to desaturate their receptors. The standard curve was established by incubation of membrane receptors, radioiodinated prolactin and different concentrations of unlabelled ovine prolactin (NIH-PS7, 24 IU/mg) for 5 h at 21 °C. Lactogenic activity of modified hormones was determined by adding these hormone derivatives to the incubation medium instead of the unlabelled prolactin. The specificity of the assay was checked : only hormones with lactogenic activity in the rabbit (prolactins of different species, placental lactogens and human growth hormone) are able to compete with ovine prolactin on the rabbit mammary receptor sites. The rabbit receptor exhibits less strict specificity than the ovine receptor.

Results and discussion.

Table 1 lists the relative potencies of modified hormones compared to the native hormone (in %).

A decrease in the lactogenic activity of oCS was observed after treatment with only (BH_4) - as shown by Chêne *et al.* (1984). This might be due to the disturbance in the conformation caused by partial reduction of disulfide bridges.

This effect could be avoided by adding iodoacetamide reagent in the reductive step as it was done for oPRL (fig. 1, Table 1).

 \bigcirc reduced oPRL (treated by BH₄⁻ without iodoacetamide) \bigcirc reduced oPRL (treated by BH₄⁻ in the presence of iodoacetamide)

TABLE 1

Modified hormones	Reduction	Methylation	Ethylation	Control at pH 10	Guanidina- tion	Acetimini- dation
oPRL (9L)*	90 % (¹) (OL)**	24 % (7L)	73 % (4L)	100 % (OL)	21 % (6L)	20 % (6L)
hCS (9L)*	83 % (²) (OL)	70 % (6L)	80 % (2L)	100 % (OL)	0 % (7L)	27 % (4-5L)
hGH (9L)*	90 % (²) (OL)	47 % (7L)	75 % (5L)	100 % (OL)	67 % (5L)	100 % (1-2L)
oCS (14L)*	45.5 % (²) (OL)	38 % (10L)	10 % (8L)	100 % (OL)	1 % (11L)	29 % (3L)

Compared analysis of the influence of chemical modifications of lactogenic hormones upon their biological activity.

* Number of total lysine residues ; ** Number of modified lysine residues ; (1) Protected disulfide bonds ; (2) No protected disulfide bonds.

In figure 2, methylation seemed very perturbing especially for oPRL. In this reaction, hCS preserved a good activity whereas hGH lost 50 % of its activity.

FIG. 2. - Specific binding of methylated hormones in a radioreceptor assay.

In figure 3, ethylation only slightly affected the binding activity of oPRL, hCS, hGH, but the degree of modification was smaller than that due to methylation. Only oCS exhibited a markedly reduced capacity.

A 5-day treatment of the four hormones at pH 10.4 and at 4 °C (necessary for guanidination and acetiminidation) did not apparently affect their biological activity.

Lactogenic activity of guanidylated compounds was largely depressed (except for guanidyl-hGH), those of hCS and oCS were completely abolished (see fig. 4, table 1).

FIG. 3. — Specific binding of ethylated hormones in a radioreceptor assay.

FIG. 4. - Specific binding of guanidinated hormones in a radioreceptor assay.

In figure 5, acetiminidation led to a significant loss of activity for three hormones, only hGH molecule exhibited full activity.

Whatever the type and degree of modification, it may be assumed that lysine residues are involved in the binding capacity of these four hormones to lactogenic

FIG. 5. - Specific binding of acetimidylated hormones in a radioreceptor assay.

Such modifications of the activity are depending on the protein structure, and the examination of aminoacid sequences of these different hormones in relation with lactogenic activity is envisaged in the present paper.

Primary structures of ovine (Li *et al.*, 1970), bovine (Wallis, 1974), porcine (Li, 1976), human (Shome and Parlow, 1977) and mouse PRL (Kohmoto *et al.*, 1984) were elucidated by protein sequencing. The primary sequences of rat (Cooke *et al.*, 1980) and human PRL (Cooke *et al.*, 1981) were recently investigated by complementary DNA sequencing.

Li (1978) established the primary structure of both hCS and hGH molecules. They found 85 % of identical aminoacids and 96 % homology as regards conservative mutations.

In table 2, we compared the aligned sequences of seven hormones : five prolactin hormones, hCS and hGH, according to the methods of Dayhoff (1972), and Martal (1980), taking gaps into account until aminoacids in position 62 ; afterwards disulfide bond between cysteins 62 and 180 imposes a rigid conformation to the molecule, N-terminal gaps being not involved. Only the position of lysine residues and sometimes arginine residues (a basic aminoacid) was considered. Some lysine residues were particularly well preserved during evolution : lysines 128 and 187, they are common to all prolactins (rat, pig, sheep, cattle, man), to hCS — the only placental lactogen whose primary structure was reported — and to all known growth hormones, such as human (Bewley *et al.*, 1972), ovine (Li *et al.*, 1972), pig (Mills and Wilhelmi, 1972), bovine (Wallis, 1973), rat (Wallis and Davies, 1976) and equine GH (Daurat-Larrogue *et al.*, 1977).

	Leu Leu Leu Gln Arg	50 50 50 50 50 50 50 50 50 50 50 50 50 5	5555555	Grad T T T T Phe Grad T T T T T T T T T T T T T T T T T T T
20	Met Met Met Val Leu Leu	G H G G G G	ติ ติ ติ ติ ติ ติ ติ ติ ติ ติ ติ ติ ติ	Leu Leu Val Val
	Met Met	Val Ala Ala Asp Glu	Lys Lys Lys Met Arg	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Ala Ala Ala Ala Ala	Lys Lys	Asp Asp Asp Asn Asn	Asp Glu Glu Glu
	Arg Arg Arg Asn Asn	* * * * * * 4 4	Ser	Asp Asn Asn Leu Leu
	Asp Asp Asp Asp Asp	* * * * * <u>=</u> =	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55555555 55555555555555555555555555555
	Phe Phe Phe Phe Phe Phe	××××××××××××××××××××××××××××××××××××××	747777777777777777	sererer Serererererererererererererererer
	Leu Leu Leu Leu Leu	Gln Arg Arg Arg Arg Arg	Ala Pro Pro Pro	His Arg Giu Giu
	Glu Asp Asp Asp Arg Arg	Lys Lys Glu Glu	Leu Leu Leu Ile	Leu Leu Ile * Ile
	Pro Arg Arg Ser Ser	Asp Asp Asp Glu Glu	sererer Sourcerererererererererererererererererere	Leu Leu Leu Leu
	Leu Leu Leu Leu Leu Leu	40 Phe Phe Phe Phe Phe	Ser Ser Glu	90 90 Arg Cely Leu Leu
	Pro Ser Thr * * Thr	ยุต เลีย เป็น เลีย เลีย เลีย เลีย เลีย เลีย เลีย เลีย	Thr Thr Ser Ser	Leu Leu Leu Leu Leu
	+ + × × × × × × × × × × × × × × × × × ×	lle Asn Gin Gin	His His He Phe	S S = = = = = = = = = = = = = = = = = =
	មួតមួតមុខ ៖	Phe Phe Tyr	C C C C C C C C C C C C C C C C C C C	Leu Leu Ser Ile
	* * * ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Met Met Met Thr Thr	Leu Leu	Asn Ser Ser Arg Arg
10	* Asn Asp Asp Arg	Asp Glu Glu Asp Asp	60 Ser Ser Ser Ser	Leu Leu Leu Leu Leu
	* * Ala Kal	Thr Ser Ser Phe Phe	Asn Asn Asn Asn Thr Thr	Leu Leu Phe Leu Leu Leu
	Asp Pro Pro Ala *	Tyr Ser Ser Ala Ala	Gin Beu Gin Beu Gin Beu	Val Val Glu Gln
	÷ * ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Leu Leu Leu Leu Leu	Ala Ala Ala Pro	Leu Glu Leu Frys Leu Leu
	Gly Ser Gly & \$	Thr Asn Asn Gln Gln	Lys Met Lys Met Asp Asn	His His Asn Asn
	Pro Pro Pro Pro	HIS HIS HIS HIS HIS	Ala Thr His Gin	80 His Asn Ser Ser
	le al CCS CCS Blair CCS CCS CCS CCS CCS CCS CCS CCS CCS CCS	Leu Leu	Leu Leu	Lys Lys
	다. 나다 나다 나다 나다	A T T T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Phe Phe Phe Phe	ମୁ ମ ମ ମ ମ ମ ମ ମ ମ ମ
	Pro Pro GIN Pro Pro Pro	H H H H H H H H H H H H H H H H H H H	Ser Sev Sev Sev Sev Sev Sev Sev Sev Sev Sev Sev Sev Sev	คูลอุคูลอุคูล
	H-Leu H-Thr H-Thr H-Thr H-Leu H-Val H-Phe	Ala Ala Ala Ala	Arg Lys Lys Arg Arg Tyr Tyr	Ala Ala Ala Ala Thr Thr
	rPRL bPRL oPRL hPRL hCS hGH	rPRL bPRL oPRL hPRL hCS hGH	rPRL bPRL pPRL hPRL hCS hGH	PRL PPRL PPRL PPRL PPRL PPRL PCS PGH

Compared primary sequencies of different lactogenic hormones.

TABLE 2

557

	lactogenic hormones.
3LE 2	of different
TAB	sequencies (
	primary
	Compared

	* *86666	Gh Broal Gh Broal Gh Broal			200	* * == == == <	
	* * <u>6 6 6 6 8 8</u>	Gy Giu Giu Gy Giu Giu		Phe Phe T _Y r *		se ⊨ ≡ e ≡e S se se ≡	
	en le le <u>le</u> le	Asn Thr Thr Thr		Ala Ala Ala Asn Asn		Arg Arg Arg	
	Asp Asp Asp	Glu Glu Arg Arg		Leu Ser Lys Lys		လိုလ်လိုလ်လိုလ်လိုလ်လိုလ်လိုက်လိုက်လိုက်	
	· 국 · · · · · · · · · · · · · · · · · ·	Lys Lys Arg Pro		Asp His Leu Leu		Asn Lys Gin Gin	S
120	Ala Ala Ala Ala Val	Ala Ala Ser Ser	170	Lys Arg Arg Arg Leu Leu		Leu Leu Leu Val Val	residu
	Arg Arg Asp Asp	99999996		Ser Ala Ala Ala Ala		Phe Leu Leu Met	nine
	ser er er er Ser ser er er	Pro Pro Asp Asp		Glu Asp Asp Asp Asp		Lys Lys Lys Arg Arg	r Argi
	lle Leu Asp Asn	Glu His Glu Glu		Asp Asp Asp		Leu Leu Leu Leu	ine o
	S S = = = = = = = = = = = = = = = = = =	Ala Val Val Leu Leu		Asp Asp Asp Asp Asn Asn		Phe Phe Phe Phe Phe Phe Phe Phe Phe Phe	is Lys
	Ala Ala Ala Ala Ala	140 Gin Arg Arg		His His His	190	Asn Thr Asn Asn Thr Thr	nobolo
	Asp Asp Glu Glv Glv	<u>କ</u> ୍ତୁ କୁ କୁ କୁ କୁ କୁ		Giv Met Ser Ser		Asp Asp Asp Glu Glu Glu	* Gap Homc
	Pro Pro Pro	Hee Phe Met Met		Gin Gin Asn Asn Asn		<pre>al le le</pre>	
	Ala Ala Ala Val Val	Leu Leu Leu		reu Leu Leu Leu		LYS LYS LYS LYS LYS LYS LYS	
	Leu Leu Giu V Leu Leu Giu V Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu	Cys Met Thr Thr		Ahr Ser Ahr Ser Ser		His Ser His Asp Asp	
110	His Lys Gin S Ser Asn	<u>ติติติต</u> ิต	160	Pro Pro Asp Asp		Ser Ser Met Met	
	lle Met Asn Asn Asn	Het Met Met Het Het Het Het Het Het Het Het Het H		Leu Leu Leu Phe Phe		Asp Asp Asp Asp Asp	
	A A G G G G G G	<u>. </u>		ଽୄଽଡ଼ଡ଼ଡ଼ୠ		Arg Arg Arg Arg Lys	но
	GIV Arg Arg Phe Phe	ติต ติ ติ ติ ติ ซิติ ติ ซิติ ติ ติ		Ser er ser er ser ser ser ser ser ser ser		Arg Arg Arg	Phe
	Leu Met Met	Leu Leu Glu Glu		6666677 FFFFFFF		Leu Leu Phe Phe	8999999999999
	* *©©©n"* *	130 Leu Leu Leu Leu Leu			180	C C C C C C C C C C C C C C C C C C C	လိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလ
	Ser Th Th Th	Arg Arg Arg Asp		Pro Bro Gin Gin Cin Cin Cin Cin Cin Cin Cin Cin Cin C		Arg His His His Tyr	Asn Asn Asn Ser Ser Ser
	Arg Arg Arg	Lys Lys Lys Lys Lys		77777 7777 7777		Leu Leu Leu Leu	Asn Asn Gly Asn Gly
	Leu Leu Leu Leu	Asn Asn Asn Thr Leu Leu		Phe Phe Phe		Asn Leu Leu Leu Leu	Lys Asn Glu Glu Glu
	GIN His Phe Phe	GGu GGu GGu * *		* * * * * • • •		Asn Asn Asn Gly Gly	His TTT Alis Cal
	rPRL bPRL bPRL hCS hGH	PRL PPRL PPRL PPRL PPRL PPRL PCS PCS		rPRL bPRL pPRL hPRL hCS hGH		rPRL bPRL oPRL hPRL hCS hGh	PRL PPRL PPRI PPRI PPRL PCS PGH

Lysines in position 42 and 51 of PRL family could approximately correspond in hGH and hCS sequences to the positions of lysine 47 and 50 respectively, which could occupy a similar place in the steric conformation of the molecule when gaps are excluded. Nevertheless, this aminoacid residue 50 of hGH and hCS was preserved in all known growth hormones, but lysine 47 of hGH and hCS was substituted by a glutamic acid in ovine, bovine, rat and equine GH ; these latter hormones are not lactogenic.

Other prolactin lysines (73, 146, 193) are substituted by arginines in hGH (73, 147, 193) and in hCS (146, 193). As residue 73 exists in all the molecules exhibiting prolactin activity except in hCS, this basic residue could contribute to the activity without being indispensable.

Lysines 153 and 158 are common to hGH and hCS molecules, but they do not exist in PRL family, as arginines 170 and 183 of PRL family are substituted by lysines 172 and 183 in hCS and hGH hormones.

Birk and Li (1978) assumed that an enzymatic cleavage by plasmin of the oPRL peptide bond between Met 56 and Ala 57 destroys biological activity. Lactogenic activity was preserved after selective removal of residues 148-158 by trypsin (table 2), thus lysines 153 and 158 are not implicated in the lactogenic function (Graf *et al.*, 1982).

Graf and Li (1974) and Doneen (1975) showed that partial lactogenic activity was developed by fragment 1-147 of hGH (table 2) suggesting that lysines in position after 147 are not indispensable.

In *conclusion*, aminoacid residues of PRL family in positions 42, 51, 128, 146, in positions 47, 50, 128, 147 for hGH and for hCS might be essential for the binding to lactogenic receptors. It must be pointed out however that the presence of a basic residue at positions 50, 128, 147 in hGH is observed also in the case of other growth hormones suggesting that the basic residues at these positions are essential for binding but do not define the specificity of the molecule for lactogenic receptors.

Further studies will be required to locate and define precisely the contribution of these lysines and other aminoacids to the lactogenic activity.

11º Réunion du groupe Développement, I.N.R.A., Montpellier, 22-24 mai 1985.

Acknowledgements. — We thank Mrs M. Roy for her expert technical assistance and Mrs D. Molitano for typing this manuscript. We are grateful to Drs F. Dray and F. Groh for their gift of hGH and to N.I.H. for oPRL.

This work has been financially supported by C.N.R.S., Paris (RCP 080768).

Résumé. Hormones lactogènes : relations structure-fonction.

L'activité lactogène de plusieurs dérivés hormonaux obtenus après modifications chimiques des résidus lysine a été analysée par dosage radio-hormone-récepteur. Les relations entre la structure des hormones modifiées et la liaison aux récepteurs lactogènes sont discutées en considérant les positions des résidus lysines susceptibles d'être impliqués dans la localisation de la fonction lactogène.

References

- BEWLEY T. A., DIXON J. S., LI C. H., 1972. Sequence comparison of human pituitary growth hormone, human chorionic somatomammotropin and ovine pituitary growth and lactogenic hormones. *Int. J. Peptide Protein Res.*, 4, 281-287.
- BIRK Y., LI C. H., 1978. Two fragments from fibrinolysin digests of ovine prolactin : characterization and recombination to generate full immunoreactivity. *Proc. nat. Acad. Sci. USA*, 75, 2155-2159.
- CHAN J. S.D., ROBERTSON H. A., FRIESEN H. G., 1976. The purification and characterization of ovine placental lactogen. *Endocrinology*, **98**, 65-76.
- CHÊNE N., MARTAL J., de la LLOSA P., 1984. Involvement of lysine residues in the binding of ovine chorionic somatomammotropin to lactogenic and somatotropic receptors. *FEBS Letters*, **166**, 352-356.
- COOKE N. E., COIT D., WEINER R. I., BAXTER J. D., MARTIAL J. A., 1980. Structure of cloned DNA complementary to rat prolactin messenger RNA. *J. biol. Chem.*, **255**, 6502-6510.
- COOKE N. E., COIT D., SHINE J., BAXTER J. D., MARTIAL J. A., 1981. Human prolactin cDNA structural analysis and evolutionary comparisons. *J. biol. Chem.*, **256**, 4007-4016.
- DAURAT-LARROQUE S. T., MOYA PORTUGUEZ M. E., SANTOME J. A., 1977. Reaction of bovine and equine growth hormones with tetranitromethane. *Int. J. Peptide Protein Res.*, 9, 119-128.
- DAYHOFF M. O., ECK R. V., PARK C. M., 1972. A model of evolutionary change in proteins. In Atlas of protein sequence and structure, 5, 89-99, Nat. Biochem. Res. Found., Washington.
- DONEEN B. A., 1976. Biological activities of mammalian and teleostean prolactins and growth hormones on mouse mammary gland and teleost urinary bladder. *Gen. comp. Endocrinol.*, **30**, 34-42.
- GRAF L., LI C. H., 1974. On the primary structure of pituitary bovine growth hormone. *Biochem. biophys. Res. Commun.*, **56**, 168-176.
- GRAF L., LI C. H., JIBSON M. D., 1982. Human somatotropin. Selective removal with trypsin of residues 135-145 from the hormone molecule with no loss of biological activity. J. biol. Chem., 257, 2365-2369.
- HANDWERGER S., MAURER W., BARRETT J., HURLEY T., FELLOWS R. E., 1974. Evidence for homology between ovine and human placental lactogens. *Endocrinol. Res. Commun.*, 1, 403-413.
- KOHMOTO K., TSUNASAWA S., SAKIYAMA F., 1984. Complete aminoacid sequence of mouse prolactin. *Eur. J. Biochem.*, **138**, 227-237.
- LI C. H., 1976. Studies on pituitary lactogenic hormone. Int. J. Peptide Protein Res., 8, 205-224.
- LI C. H., 1978. Noncovalent interaction of the NH₂-terminal fragment of human somatotropin with the COOH-terminal fragment of human choriomammotropin to generate growth-promoting activity. *Proc. nat. Acad. Sci. USA*, **74**, 1016-1019.
- LI C. H., DIXON J. S., LO T. B., SCHMIDT K. D., PANKOV Y. A., 1970. Studies on pituitary lactogenic hormone. The primary structure of the sheep hormone. *Arch. Biochem. Biophys.*, 141, 705-737.
- LI C. H., DIXON J. S., CHUNG D., 1971. Primary structure of the human chorionic somatomammotropin (hCS) molecule. Science, 173, 56-58.
- LI C. H., DIXON J. S., GORDON D., KNORR J., 1972. Aminoacid sequence of sheep pituitary growth hormone. *Int. J. Peptide Protein Res.*, **4**, 151-153.
- LLOSA P. de la, DUROSAY M., TERTRIN-CLARY C., JUTISZ M., 1974. Chemical modification of lysine residues in ovine luteinizing hormone. Effect on biological activity. *Biochim. biophys. Acta*, **342**, 97-104.
- MARTAL J., 1978. Placental growth hormone in sheep : purification, properties and variations. Ann. Biol. anim. Biochim. Biophys., **18**, 45-51.
- MARTAL J., 1980. L'hormone lactogène placentaire ovine. Th. Dr. ès Sci., Paris-Orsay Univ.
- MARTAL J., CHÊNE N., de la LLOSA P., 1985. Involvement of lysine residues in the binding of hGH and bGH to somatotropic receptors. *FEBS Letters*, **180**, 295-299.

- MARTAL J., DJIANE J., 1975. Purification of a lactogenic hormone in sheep placenta. *Biochem. biophys. Res. Commun.*, **65**, 770-778.
- MARTAL J., DJIANE J., 1977. Mammotrophic and growth promoting activies of a placental hormone in sheep. J. Steroid Biochem., 8, 414-417.
- MEANS G. E., FEENEY R. E., 1968. Reductive alkylation of amino groups in proteins. *Biochemistry*, 7, 2192-2201.
- MILLS J. B., WILHELMI A. E., 1972. Studies on the primary structure of porcine growth hormone 38-44. In PECILE A., MÜLLER E. E. Growth and growth hormone. Excerpta med. Amsterdam.
- NIALL H. D., HOGAN M. L., SAUER R., ROSENBAUM I. Y., GREENWOOD F. C., 1971. Sequences of pituitary and placental lactogenic and growth hormones : evolution from a primordial peptide by gene reduplication. *Proc. nat. Acad. Sci. USA*, **68**, 866-869.
- PLAPP B. V., KIM J. C., 1974. Determination of ε-acetiminidyl-lysine in proteins. *Anal. Biochem.*, 62, 291-294.
- SHOME B., PARLOW A. F., 1977. Human pituitary prolactin (hPRL) : the entire linear aminoacid sequence. J. clin. Endocrinol. Metab., 45, 1112-1115.
- TSUSHIMA T., FRIESEN H. G., 1973. Radioreceptor assay for growth hormone *J. clin. Endocrinol. Metab.*, **37**, 334-336.
- WALLIS M., 1973. The primary structure of bovine growth hormone. FEBS Letters, 35, 11-14.
- WALLIS M., 1974. The primary structure of bovine prolactin. FEBS Letters, 44, 205-208.
- WALLIS M., DAVIES R. V., 1976. Studies on the chemistry of bovine and rat growth hormones, 4-13. In PECILE A., MÜLLER E. E. Growth hormones and related peptides, Excerpta med. Amsterdam.