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Abstract – Whey protein nitrogen index (WPNI) is a well-known method of classifying nonfat dry
milk powder (NFDM) based on its heat treatment. This classification scheme provides one criterion
for the selection of NFDM for food applications. However, the effects of variation in NFDM com-
position on WPNI are not well documented. The objective of this study was to determine the effects
of changing protein content in low heat and medium heat NFDM on WPNI value. Edible lactose
powder (ELP) and permeate powder (PP) from skim milk ultrafiltration were used to downward
standardize NFDM from a protein content of 35.5–30% protein on a wet basis. These standardized
powders were analyzed for WPNI by American Dairy Products Institute (ADPI) method. Powders
were also analyzed for protein, ash, fat, moisture and lactose by standard methods to describe the
composition. Using linear regression, WPNI was found to be positively associated with protein con-
tent for both low and medium heat NFDM from several suppliers. For example, a low heat NFDM
(from supplier B) with initial protein content of 34.3% (wet basis) and WPNI of 6.38 mg soluble
whey protein nitrogen (classified as a low heat powder) had its WPNI reduced to less than 6.0 mg
of soluble nitrogen per g of powder when standardized to a protein content of less than or equal
to 31.89% (wet basis) with either ELP or PP. This would reclassify it as medium heat powder. We
conclude that standardization of NFDM with lactose or permeate will change its WPNI value and
may effect its heat classification. We propose a modified approach to calculate WPNI based upon
soluble whey protein nitrogen per g protein. This new WPNI value (protein corrected) would be
independent of powder protein content and hence be more indicative of the actual heat treatment it
is intended to reflect.

whey protein nitrogen index / protein standardization / edible lactose powder / permeate
powder / nonfat dry milk powder

摘摘摘要要要 – 乳乳乳糖糖糖和和和超超超滤滤滤透透透过过过液液液对对对乳乳乳粉粉粉中中中乳乳乳蛋蛋蛋白白白标标标准准准化化化后后后对对对乳乳乳清清清蛋蛋蛋白白白态态态氮氮氮指指指数数数和和和热热热分分分类类类的的的影影影
响响响。。。乳清蛋白态氮指数是划分脱脂乳粉热处理程度的良好方法。该分类方法为脱脂乳粉
在食品工业中的应用提供了选择标准。但是脱脂乳粉成分的变化对乳清蛋白态氮指数的
影响还没有予以证实。本文旨在研究低热及中热脱脂乳粉中不同蛋白质含量对乳清蛋白
态氮指数的影响。使用食用乳糖粉或者脱脂乳的超滤透过液,将脱脂乳粉的湿基蛋白含
量标准化到 35.5%–30.0%, 其乳清蛋白态氮指数测定采用美国乳品协会提供的测定方法,
同时按照标准方法测定其蛋白质、灰分、脂肪、水分和乳糖含量。线性回归分析结果表
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明：乳清蛋白态氮指数与低热及中热脱脂乳粉 , (不同供应商提供)的蛋白质含量均呈正相
关。例如：低热脱脂乳粉 (B供应商)在原始蛋白含量为 34.3% (湿基)、可溶性乳清蛋白态
氮指数为 6.38 mg时被认为是低热乳粉,但是当用食用乳糖粉或者超滤透过液将湿基蛋白质
含量降低至 31.89%时,则每克乳粉中可溶性乳清蛋白态氮的含量小于 6.0 mg,这样可能就被
归类为中热脱脂乳粉。这就表明使用乳糖或者超滤透过液进行脱脂乳的标准化可能改变其
乳清蛋白态氮指数,并影响其热分类结果。因此,并影响其热分类结果。因此,建议采用每克
蛋白中可溶性乳清蛋白氮来改进乳清蛋白态氮指数的计算方法。该种方法中乳清蛋白态氮
指数 (蛋白质进行了校正)与脱脂乳粉中的蛋白质含量无关,因此更能反应出热处理的真实
的程度。

乳乳乳清清清蛋蛋蛋白白白态态态氮氮氮指指指数数数 /乳乳乳蛋蛋蛋白白白标标标准准准化化化 /食食食用用用乳乳乳糖糖糖粉粉粉 /超超超滤滤滤透透透过过过液液液 /脱脱脱脂脂脂乳乳乳粉粉粉

Résumé – Impact de la standardisation en protéines de poudre de lait avec du lactose ou du
perméat sur l’indice d’azote des protéines solubles et sur sa classification thermique. L’indice
d’azote des protéines solubles (WPNI) est une méthode bien connue pour classifier les poudres de
lait écrémé selon leur traitement thermique. Cette classification procure un critère pour sélectionner
ces poudres pour des applications alimentaires. Cependant, les effets de leurs variations de composi-
tion sur le WPNI n’est pas bien documenté. L’objectif de cette étude était de déterminer les effets de
changements de teneur en protéines dans des poudres de lait écrémé « low heat » et « medium heat »
sur leur WPNI. Des poudres alimentaires de lactose ou de perméat d’ultrafiltration de lait écrémé
ont été utilisées pour standardiser à la baisse la poudre de lait écrémé à partir d’une teneur en pro-
téines de 35,5–30 % sur matière sèche. Le WPNI de ces poudres standardisées a été calculé selon la
méthode de l’ADPI (American Dairy Products Institute). Les poudres ont également été analysées
pour leur teneur en protéines, cendres, matière grasse, eau et lactose par les méthodes standards
pour en connaître la composition. L’utilisation de la régression linéaire a permis de mettre en évi-
dence que le WPNI est positivement associé à la teneur en protéines pour des poudres « low heat »
et « medium heat » provenant de plusieurs fournisseurs. Par exemple, une poudre de lait écrémé
« low heat » (fournisseur B) avec une teneur en protéines initiale de 34,3 % (sur matière sèche) et
un WPNI de 6,38 mg d’azote soluble des protéines de lactosérum (classée comme poudre « low
heat ») avait son WPNI réduit à moins de 6,0 mg d’azote soluble par gramme de poudre quand elle
était standardisée à une teneur en protéines de moins de 31,89 % (sur matière sèche) avec de la
poudre de lactose ou de perméat, ce qui pourrait la reclasser comme poudre « medium heat ». Nous
pouvons conclure que la standardisation de la poudre de lait écrémé par du lactose ou du perméat
change sa valeur de WPNI et peut avoir un effet sur sa classification. Nous proposons une approche
modifiée pour calculer le WPNI basée sur l’azote soluble des protéines de lactosérum par gramme
de protéines. Cette nouvelle valeur de WPNI (corrigée en protéines) serait indépendante de la teneur
en protéines de la poudre et par conséquent indiquerait mieux le traitement thermique réel qu’il est
censé traduire.

indice d’azote des protéines solubles / standardisation en protéines / poudre de lactose alimen-
taire / poudre de perméat / poudre de lait écrémé

1. INTRODUCTION

Prior to drying, skim milk or skim milk
concentrates can be given an additional
heat treatment to alter the functional prop-
erties such as solubility, water holding,
emulsification, and viscosity of the result-
ing dried powder [16]. It has been shown
that this heat treatment is related to the ex-
tent of whey protein denatured [9].

The above relationship was used to es-
tablish the widely practiced heat classi-
fication system based on the Whey Pro-
tein Nitrogen Index (WPNI) analytical
method [1]. In this method, the turbidity of
a sample is measured and then correlated
to a standard curve to determine the soluble
whey protein nitrogen content in 1 g sam-
ple of milk powder [12]. Nonfat dry milk
(NFDM) powders that have a WPNI value
greater than or equal to 6.0 mg soluble
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whey protein nitrogen per g powder are de-
fined as low heat, between 1.51–5.99 mg
soluble whey protein nitrogen per g pow-
der are defined as medium heat, and less
than or equal to 1.51 mg soluble whey pro-
tein nitrogen per g powder are defined as
high heat [1].

The heat classification system for milk
powders has been used commercially over
the years to provide general guidelines for
various food applications. However, the
value of the WPNI method has not been
without criticism. It has been reported that
the soluble whey protein nitrogen level can
be influenced by natural variation in the
concentration of the proteins in the raw
milk and thus, has limited value as an in-
dex of heating history [5, 10, 14, 15, 19].

There is an interest in standardizing the
protein content of milks destined for manu-
facture into skim milk powder (SMP) [11].
According to Codex Alimentarius 207 [2],
the use of milk derived permeate or edible
lactose can be used to standardize the pro-
tein content of milk powder or milk des-
tined for manufacture into SMP to 34%
protein on a solids-not-fat (SNF) basis. Re-
cently, it has been reported that amend-
ment to European Commission (EC) direc-
tive will allow for protein standardization
of SMP with 34% content (SNF) in line
with Codex Alimentarius [3]. For exam-
ple, a SMP containing moisture content of
4%, 1.4% fat content and 32.6% protein
(wet basis) translates into 34% protein con-
tent on a SNF basis. Fluid milk applica-
tion studies on protein standardization of
milk have focused to improve the yield for
cheese making [6, 18], functional proper-
ties such as heat stability [17], and storage
stability of UHT milk [7].

Despite the reported limitations of the
WPNI method, it remains a tool widely uti-
lized in commercial practice. In addition,
expectations for consistent composition
and functionality of all dairy ingredients
drive interest in protein standardization.
Further, little information is available to

document the influence of protein stan-
dardization on heat classification of milk
powders. Thus, the present study was con-
ducted to determine the impact of down-
wards protein standardization of nonfat dry
milk on its WPNI value and its subsequent
heat classification.

2. MATERIALS AND METHODS

2.1. Materials

Commercial samples of low heat and
medium heat NFDM were obtained from
three different manufacturers: A (low
heat); B (low heat); and C (medium heat).

2.2. Sample preparation

Commercial edible lactose powder
(ELP) and commercial permeate pow-
der (PP) from skim milk ultrafiltration
were obtained and used for downwards
protein standardization of low heat and
medium heat skim milk powder. While
standardization below 34% protein on
a SNF basis is not allowed by Codex
Alimentarius 207, we studied such values
to better confirm the observed trends of
the effects of protein standardization of
SMP. Figure 1 shows protein standard-
ization was achieved by dry blending of
predetermined quantity of ELP or PP to
low heat NFDM to achieve target protein
content. Protein standardized samples are
presented according to the level of protein
and type of standardization, for example,
NFDM powder standardized with ELP
standardized to 34% protein content was
named MPSELP34.

2.3. Methods

2.3.1. Whey protein nitrogen index
(WPNI)

Samples of low heat, medium heat
and standardized SMP were analyzed for
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WPNI by American Dairy Products In-
stitute (ADPI) method [1]. ADPI has
adopted the most commonly used WPNI
method, which was originally developed
by Harland and Ashworth [8] and fur-
ther modified by Kuramoto et al. [12] and
Leighton [13]. This turbidimetric method
is based on removal of casein and dena-
tured whey protein (DWPN) from unde-
natured whey protein (UWPN) by precip-
itation with saturated NaCl solution. Then,
2 drops of 10% HCl is added to a test
tube containing 1 mL sample of filtrate
and 10 mL of saturated NaCl solution.
Then, the developed turbidity of the sam-
ple is measured at 420 nm and compared
against a standard curve generated from
analysis of “standard” milk powders of
WPNI value obtained from ADPI low heat
NFDM (WPNI of 7.32 mg N·g−1) and high
heat NFDM (WPNI of 0.32 mg N·g−1)
using the above method. It is assumed
that developed turbidity corresponds to the
amount of UWPN in the original milk
powders. Hence, results are reported as
mg soluble whey protein nitrogen per g of
powder.

2.3.2. Composition analysis

Samples of low heat and medium heat
NFDM powder were analyzed for protein,
ash, moisture, fat, and lactose content. To-
tal nitrogen (TN) was determined in the
low heat NFDM, medium heat NFDM,
ELP, PP and standardized SMP samples by
Kjeldahl method (AOAC, method number
991.20; 33.2.11) [4]. Ash was determined
by ignition at 550 ◦C in an electric muffle
furnace (AOAC, method number 945.46;
33.2.10) [4]. Fat content was determined
by Mojonnier method (AOAC, method
number 989.05; 33.2.26) [4]. Free moisture
was determined by direct forced air oven
drying method (AOAC, method number
990.20; 33.2.44) [4]. Lactose content was
determined in low heat NFDM, medium

heat NFDM, and standardized SMP by dif-
ference.

2.3.3. Statistical analyses

Results were evaluated using a multi-
ple linear regression in both Minitab Ver-
sion 14.2 (Minitab, Inc., State College,
PA, USA) and Data Desk Version 6.1
(Data Description, Inc., Ithaca, NY, USA)
software. Possible predictors of WPNI
that were included in the model were
powder supplier (A, B, C), powder type
(low heat, medium heat), standardization
method (ELP, PP), and protein level (35.5–
30%).

3. RESULTS AND DISCUSSION

3.1. Descriptive NFDM composition

Crude protein analysis of three commer-
cial NFDM low heat (A), low heat (B),
and medium heat (C) along with ELP
and PP are presented in Table I. The av-
erage crude protein content observed for
low heat NFDM (A), low heat NFDM (B)
and medium heat NFDM (C) was 35.1%,
34.3%, and 35.5% respectively, 0% for
ELP and 2.40% for the PP. PP does not
have true protein and hence, the 2.4% of
crude protein value really reflects non-
protein nitrogen content of permeate. A de-
tailed analysis of the three samples is dis-
cussed below.

3.1.1. Low heat NFDM (A)

Effect of protein standardization on
composition of low heat NFDM (A)
is summarized in Table II. Low heat
NFDM (A) with 35.1% protein content on
wet basis (36.3% on dry basis; 36.9% on
SNF basis) was downward standardized to
34%, 33%, 32%, 31% and 30% protein
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Table I. Crude protein analysis (wet, dry, SNF basis) of the three commercial milk powders (non-
standardized), edible lactose powder and milk permeate powder.

Ingredient Crude protein*

Wet basis1 Dry basis2  SNF basis 3

Low heat SMP (A) 35.1 ± 0.0 36.32 ± 0.0 36.9 ± 0.0

Low heat SMP (B) 34.3 ± 0.2 35.66 ± 0.3 35.97 ± 0.3

Medium heat SMP (C) 35.5 ± 0.1 36.71 ± 0.0 37.05 ± 0.1

Edible lactose powder 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0

Milk permeate powder 2.40 ± 0.1 2.50 ± 0.1 2.50 ± 0.1

n = 2.
* Crude protein = Total nitrogen * 6.38.

2 Dry basis = 100 – % free moisture content. 
3 SNF basis = 100 – % free moisture content – % fat content.

1 Wet basis = As is. 

with ELP. The corresponding protein con-
tent on dry basis and SNF basis for low
heat NFDM (A) is listed in Table II. WPNI
values for the standardized samples were
observed to decrease up to 15% with de-
crease in protein content from 35.1–30%
protein. A decrease in WPNI values of ELP
standardized samples indicates that ELP
does contribute towards WPNI. Similarly,
ash values for the standardized samples
were observed to decrease up to 15% with
decrease in protein content from 35.1–30%
protein. The decrease of ash values is at-
tributed to the observed low mineral con-
tent of the ELP. Moisture content for the
ELP standardized samples was observed to
decrease up to 17%, with decrease in pro-
tein and hence, results in decrease of pro-
tein to lactose ratio. Fat content for the ELP
standardized samples were observed to de-
crease up to 37% because ELP has negligi-
ble fat contribution.

3.1.2. Low heat NFDM (B)

Effect of protein standardization on
the composition of low heat NFDM (B)
is summarized in Table III. Low heat
NFDM (B) with 34.3% protein content on
wet basis (35.7% on dry basis; 36% on

SNF basis) was downward standardized to
33%, 32%, 31% and 30% protein with ELP
or PP. The corresponding protein content
on dry basis and SNF basis for downward
standardized low heat NFDM (B) is listed
in Table III.

WPNI values for the ELP standard-
ized samples were observed to decrease
up to 11% as protein was standardized
downwards from 35.3–30%. A decrease in
WPNI values of ELP standardized sam-
ples indicates that ELP does contribute to-
wards WPNI. Similarly, ash values for the
ELP standardized samples were observed
to decrease up to 13%, with a decrease in
protein content of the SMP. The decrease
of ash values is attributed to the low min-
eral content of the ELP. Moisture content
for the ELP standardized samples were ob-
served to decrease up to 8%, with decrease
in protein and hence, results in decrease of
protein to lactose ratio. Fat content for the
ELP standardized samples were observed
to decrease up to 35% with decrease in
protein content from 34.3–30% protein be-
cause ELP has negligible fat contribution.

WPNI values for the PP standardized
samples were observed to decrease up
to 12% as protein was standardized
downwards from 34.3–30%. A decrease in
WPNI values of PP standardized samples
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Table II. Composition analysis (mean ± SD) of low heat NFDM powder (A) standardized with
edible lactose powder.

Sample 
type

Target 
protein

Protein
(dry matter 

basis)a

Protein
SNF 
basis

b WPNI b Ash b Moisture b Fat b Lactose* Protein/
Lactose

        

Control 35.1 36.3 36.9 6.36 ± 0.4 7.66 ± 0.0 3.36 ± 0.1 1.5 ± 0.0 52.4 0.67

MPSELP34 34.0 35.1 35.6 6.04 ± 0.9 7.52 ± 0.1 3.04 ± 0.1 1.45 ± 0.0 54.0 0.63

MPSELP33 33.0 34.0 34.5 5.84 ± 0.2 7.27 ± 0.0 2.93 ± 0.0 1.37 ± 0.1 55.4 0.60

MPSELP32 32.0 33.0 33.4 5.79 ± 2.0 7.00 ± 0.1 2.89 ± 0.1 1.25 ± 0.1 56.9 0.56

MPSELP31 31.0 31.9 32.3 5.54 ± 0.2 6.82 ± 0.0 2.88 ± 0.1 1.11 ± 0.0 58.2 0.53

MPSELP30 30.0 30.9 31.2 5.41 ± 0.2 6.49 ± 0.0 2.79 ± 0.1 0.95 ± 0.1 59.8 0.50

n = 2.
Results expressed in g/100 g of milk powder.  
a Dry matter basis = 100 – % free moisture. 
b Results based on wet basis. 
* Calculated value (by difference). 
MPSELP = Milk powder standardized with edible lactose powder.

Table III. Composition analysis (mean ± SD) of low heat NFDM powder (B) standardized with
edible lactose powder or permeate powder.

Sample 
type

Target 
protein

Protein
(dry matter 

basis)a

Protein
(SNF
basis)

b WPNI b Ash b Moisture b Fat b Lactose* Protein/
Lactose

Control 34.3 35.7 36.0 6.38 ± 0.1 7.74 ± 0.0 3.81 ± 0.3 0.83 ± 0.0 53.4 0.64

MPSELP33 33.0 34.1 34.3 6.18 ± 0.0 7.45 ± 0.0 3.18 ± 0.1 0.68 ± 0.0 55.7 0.59

MPSELP32 32.0 33.1 33.3 6.03 ± 0.0 7.23 ± 0.0 3.38 ± 0.1 0.63 ± 0.1 56.8 0.56

MPSELP31 31.0 32.2 32.3 5.89 ± 0.1 7.10 ± 0.1 3.61 ± 0.4 0.57 ± 0.0 57.7 0.54

MPSELP30 30.0 31.1 31.3 5.68 ± 0.1 6.74 ± 0.0 3.50 ± 0.0 0.54 ± 0.0 59.2 0.51

MPSPP33 33.0 34.3 34.5 6.23 ± 0.1 7.73 ± 0.1 3.66 ± 0.3 0.83 ± 0.1 54.8 0.60

MPSPP32 32.0 33.2 33.5 5.98 ± 0.0 7.72 ± 0.1 3.70 ± 0.2 0.72 ± 0.0 55.9 0.57

MPSPP31 31.0 32.2 32.4 5.86 ± 0.0 7.70 ± 0.1 3.68 ± 0.1 0.67 ± 0.1 57.0 0.54

MPSPP30 30.0 31.3 31.5 5.60 ± 0.1 7.70 ± 0.1 4.13 ± 0.1 0.60 ± 0.1 57.6 0.52

n = 2.
Results expressed in g/100 g of milk powder.  
a Dry matter basis = 100 – % free moisture.
b Results based on wet basis. 
* Calculated value (by difference).
MPSELP = Milk powder standardized with edible lactose powder.
MPSPP = Milk powder standardized with permeate powder.
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indicates that PP does contribute towards
WPNI. Similarly, mean values of ash for
PP standardized NFDM decreased up to
0.3%. The very small changes in ash value
are attributed to high mineral content of
PP. Fat content for the PP standardized
samples were observed to decrease up
to 28% with decrease in protein content
from 34.3–30% protein, as milk powder re-
placed with PP has fat content less than
0.1%. Moisture content for the PP stan-
dardized samples were observed to in-
crease up to 8%, with decrease in protein
and hence, results in a decrease of protein
to lactose ratio.

3.1.3. Medium heat NFDM (C)

Effect of protein standardization on the
composition of medium heat NFDM (C)
is summarized in Table IV. Medium heat
NFDM (C) with 35.5% protein content
on wet basis (36.7% on dry basis; 37.0%
on SNF basis) was downward standard-
ized to 34%, 32% and 30% protein with
ELP or PP. WPNI values for ELP standard-
ized samples were observed to decrease
up to 18% as protein was standardized
downwards from 35.5–30%. A decrease in
WPNI values of ELP standardized sam-
ples indicates that ELP does contribute to-
wards WPNI. Similarly, ash values for the
ELP standardized samples were observed
to decrease up to 15%, with a decrease in
protein content of the SMP. The decrease
of ash values is attributed to the low min-
eral content of the ELP. Moisture content
for the ELP standardized samples was ob-
served to decrease up to 9%, with decrease
in protein and hence, results in decrease of
protein to lactose ratio. Fat content for the
ELP standardized samples was observed to
decrease up to 56% with decrease in pro-
tein content from 35.5–30% because ELP
has negligible fat contribution.

WPNI values for PP standardized sam-
ples were observed to decrease up to 15%

as protein was standardized downwards
from 35.5–30%. A decrease in WPNI val-
ues of PP standardized samples indicates
that PP does contribute towards WPNI.
Similarly, mean values of ash for PP stan-
dardized NFDM decreased up to 0.3%.
The very small changes in ash value are
attributed to high mineral content of PP.
Fat content for the PP standardized sam-
ples was observed to decrease up to 25%
with a decrease in the protein content from
35.5–30% protein as milk powder replaced
with PP has fat content less than 0.1%.
Moisture content for the PP standardized
samples were observed to increase up to
11%, with decrease in protein and hence,
results in decrease of protein to lactose ra-
tio.

3.2. Linear regression analysis

Based on the results obtained from Ta-
bles II–IV, the relationship between pro-
tein level and WPNI was analyzed us-
ing two multiple linear regression models.
Two models are necessary because low and
medium heat samples were not available
from all three suppliers. Each model was
tested for different effects within the ex-
periment. Model 1 tests for differences be-
tween low and medium heat powders from
supplier C only. Model 2 uses all three sup-
pliers for only low heat powder.

3.2.1. Model 1

Model 1 compares WPNI and protein
level for both medium and low heat NFDM
powders. Only samples from Supplier C
were used because only Supplier C had
both low heat and medium heat NFDM.
The powders were standardized with either
ELP or PP to adjust each sample to a spec-
ified target protein level between 30% and
34%. WPNI values for ELP standardized
low heat milk powder were found to be
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Table IV. Composition analysis (mean ± SD) of medium heat NFDM (C) standardized with edible
lactose powder or permeate powder.

Sample 
type

a Ta rget 
protein

Protein
(dry matter 

basis)a

Protein
(SNF
basis)

b WPNI b Ash b Moisture b Fat b Lactose* Protein/
Lactose

Control 35.5 36.7 3.43 ± 0.0 7.75 ± 0.0 3.30 ± 0.3 0.88 ± 0.1 52.6 0.68

MPSELP34 34.0 35.1 3.11 ± 0.1 7.47 ± 0.0 3.25 ± 0.3 0.67 ± 0.1 54.6 0.62

MPSELP32 32.0 33.0 3.00 ± 0.1 7.05 ± 0.0 3.09 ± 0.2 0.44 ± 0.1 57.4 0.56

MPSELP30 30.0 30.9 2.80 ± 0.2 6.61 ± 0.0 2.99 ± 0.3 0.39 ± 0.0 60.0 0.50

MPSPP34 34.0 35.2 35.5 3.32 ± 0.1 7.80 ± 0.0 3.40 ± 0.1 0.84 ± 0.1 53.9 0.63

MPSPP32 32.0 33.2 33.4 3.16 ± 0.3 7.76 ± 0.0 3.57 ± 0.1 0.74 ± 0.1 55.9 0.57

MPSPP30 30.0 31.1 31.4 2.92 ± 0.0 7.78 ± 0.0 3.65 ± 0.2 0.66 ± 0.1 57.9 0.52

n = 2.
Results expressed in g/100 g of milk powder. 
a Dry matter basis = 100 – % free moisture.
b Results based on wet basis. 
* Calculated value (by difference).
MPSELP = Milk powder standardized with edible lactose powder.
MPSPP = Milk powder standardized with permeate powder.

37.0

35.4

33.2

31.0

6.38 ± 0.2, 5.96 ± 0.0, 5.61 ± 0.1 mg
nitrogen per g powder for 34%, 32% and
30% protein respectively. WPNI values
for PP standardized low heat milk powder
were found to be 6.39 ± 0.2, 6.09 ± 0.1,
and 5.74 ± 0.1 mg nitrogen per g pow-
der for 34%, 32% and 30% protein respec-
tively. WPNI value for control (unadjusted)
low heat milk powder sample was found
to be 6.90 ± 0.1 mg nitrogen per g pow-
der for 35.5% protein. Initially, the control
samples were omitted from the analysis so
that the interaction of standardization and
protein level could be tested. Because the
control samples did not share any target
protein levels with the ELP and PP sam-
ples, this interaction cannot be tested with
control samples in the data. After omit-
ting the control samples, data from 24 stan-
dardized powder samples were analyzed
in Model 1A. The purpose of this model
was to estimate whether the different stan-
dardizations and powder types have differ-
ing relationships between protein level and

WPNI. The equation for Model 1A is

E (WPNI) = β0 + βPro (xPro − 32)
+ βMedxMed + βPPxPP + βPro∗Med (xPro − 32)
× xMed + βPro∗PP × (xPro − 32) xPP
+ βMed∗PPxMedxPP + βPro∗Med∗PP (xPro − 32)
× xMedxPP

where E(WPNI) is mean WPNI, (xPro –
32) is the target protein level centered to a
value of 32%, and xMed and xPP are indi-
cator variables representing medium heat
NFDM and standardization with perme-
ate. The β terms represent the effects of
these variables and their interactions on the
WPNI level.

Model 1A explains 99.6% of the vari-
ation in the WPNI values of the samples.
Initial tests showed no significant differ-
ence in mean WPNI between the lactose
and permeate samples (p = 0.38), so
all terms involving standardization effects
were removed to simplify the model, and
the control samples were restored. We re-
fer to this model as Model 1B, which has
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Figure 2. Effect of protein standardization on WPNI (mg of WPN·g−1 of powder) of low heat or
medium heat SMP.

equation

E (WPNI) = β0 + βPro (xPro − 32)
+ βMedxMed + βPro∗Med (xPro − 32) xMed.

This model explains 99.5% of the variation
in WPNI. After adjusting for protein level,
mean WPNI of medium heat powder was
significantly lower than that of low heat
powder (p < 0.001). At the median pro-
tein level of 32%, medium heat powder had
an average WPNI that was 3.10 mg nitro-
gen per g of powder, lower than low heat
powder. After adjusting for NFDM pow-
der type, protein level was positively asso-
ciated with WPNI (p < 0.001). In addition,
protein level had a greater effect on WPNI
in low heat powder than in medium heat
powder (p = 0.002). These effects are de-
scribed in greater detail below.

Model 1B produced two equations to
describe the relationship between protein
and WPNI. These equations are displayed
along with the data in Figure 2. For low

heat powder,

E(WPNI) = 6.053 + 0.206(xPro − 32)

where (xPro – 32) is the deviation in per-
centage points from 32% protein. There-
fore, at 32% protein, the low heat pow-
der is estimated to have a mean WPNI of
6.053 mg nitrogen per g powder. Each in-
crease of one percentage point in protein
is associated with an increase of 0.206 mg
nitrogen per g powder in mean WPNI for
low heat powder. With 95% confidence the
change in WPNI per percent of protein is
between 0.170 and 0.242 mg nitrogen per g
powder.

For medium heat powder,

E(WPNI) = 2.952 + 0.119(xPro − 32).

Therefore, at 32% protein, medium heat
powder is estimated to have a mean WPNI
of 2.952 mg nitrogen per g powder. Each
increase of 1 percentage point in protein
is associated with an increase of 0.119 mg
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nitrogen per g powder in mean WPNI for
medium heat powder. With 95% confi-
dence the change in WPNI per percent of
protein is between 0.083 and 0.156 mg ni-
trogen per g powder, which is substantially
lower than the effect of changing protein
on low heat powders.

3.2.2. Model 2

Model 2 compares WPNI and protein
for the low heat powders from suppliers A,
B, and C. The purpose of Model 2 was
to determine if the effect of protein on
WPNI differed based on standardization or
supplier. As in the earlier model, samples
were standardized with either ELP or PP
to target protein levels between 30% and
34%. As before, the control samples were
initially omitted from the analysis to test
for interaction effects. Data from 41 sam-
ples were used in this analysis, Model 2A,
which has equation

E (WPNI) = β0 + βPro (xPro − 32)
+ βAxA+ βBxB+ βPerxPP+ βPro∗A (xPro − 32)
×xA + βPro∗B (xPro − 32) xB + βPro∗PP
× (xPro − 32) xPP + βB∗PPxBxPP + βPro∗B∗PP

× (xProt − 32) xBxPP

where E(WPNI), (xPro – 32), and xPP are
defined as before while xA and xB are indi-
cator variables for suppliers A and B.

Model 2A explains 89.4% of the vari-
ation in the WPNI values of the samples.
The poorer fit is due to larger variation
in the WPNI values from supplier A. Ini-
tial tests again showed no significant dif-
ference in mean WPNI between the lac-
tose and permeate samples (p = 0.38),
so all terms involving standardization ef-
fects were removed from the model, and
the control samples were restored. We refer
to this model as Model 2B with equation

E (WPNI) = β0 + βPro (xPro − 32) + βA xA
+ βBxB + βPro∗A (xProt − 32) xB + βPro∗B
× (xProt − 32) xC.

Model 2B explains 87.9% of the varia-
tion in WPNI values. After adjusting for
supplier, protein level was positively as-
sociated with WPNI (p < 0.001). The
effect of protein on WPNI did not differ
significantly from one supplier to another
(p = 0.24). After adjusting for protein
level, powder from supplier A had a mean
WPNI significantly lower than either sup-
plier B or C (p < 0.001). This difference
is not surprising given that each suppli-
ers’ thermal processing of milk evapora-
tion, spray drying conditions (all of which
can effect WPNI) are likely different. No
significant difference was detected in the
mean WPNI of powder from suppliers B
and C (p = 0.26).

After simplifying the model by drop-
ping insignificant terms, the equations de-
scribing the relationship between protein
and WPNI in low heat powders from our
three suppliers are

Supplier A: E (WPNI) = 5.741 + 0.187
× (xPro − 32)

Supplier B: E (WPNI) = 6.021 + 0.187
× (xPro − 32)

Supplier C: E (WPNI) = 6.063 + 0.187
× (xPro − 32).

Regardless of supplier, each increase of
one percentage point in protein is associ-
ated with an increase of 0.187 mg nitro-
gen per g powder in the mean WPNI. With
95% confidence the true change in WPNI
per percent of protein is between 0.168 and
0.207 mg nitrogen per g of powder.

Figure 3 shows that some low heat
powder samples had WPNI of less than
6.0 mg nitrogen per g powder, which
would change the heat classification of the
powder from low to medium heat. For
supplier A, the change from low heat to
medium heat classification is estimated to
occur when protein is 33.39% on wet ba-
sis (34.6 on dry basis; 35.1 on SNF basis).
These changes in classification are signif-
icant because they occur at protein values
before the legal minimum of 34% protein
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on SNF basis. For suppliers B and C, the
change from low heat to medium heat clas-
sification is estimated to occur when pro-
tein is 31.89% and 31.66% on wet basis
(33.1 on dry basis, 33.3 on SNF basis and
32.7 on dry basis, 33 on SNF basis) respec-
tively.

The results of the present study indicate
that WPNI value of SMP is influenced by
the protein level; however, protein has a
larger effect on WPNI for low heat pow-
ders compared to medium heat powders. In
some cases, this change in WPNI changes
the actual heat classification (Fig. 2), sug-
gesting that selection of milk powder based
on traditional WPNI value (standard un-
corrected) could be misleading under some
situations of protein standardization.

3.3. Proposed modification of heat
classification measure

The turbidimetric method is the stan-
dard method for heat classification of milk
powder. Since there is natural variation in
the protein concentration of raw milk, any
indicator of functionality of SMP turbid-
ity should correct for the protein level. Fur-
ther, in light of allowable downwards pro-
tein standardization and its effects reported
here on traditional WPNI value, use of un-
corrected WPNI may not be desirable. We
propose a modified classification measure
using mg of whey protein nitrogen per g of
protein (WPNIpcorr).

Low heat NFDM is defined as having
a WPNI of 6.0 mg soluble nitrogen per g
powder or more. Dividing this value by a
percent target protein level of 35.5 yields
a WPNIpcorr of 16.9 mg soluble nitrogen
per g protein. Medium heat NFDM is de-
fined as having a WPNI between 1.5 and
6.0 mg soluble nitrogen per g powder.
Dividing these values by the target pro-
tein percentage of 35.5 yields a WPNIpcorr

between 4.2 and 16.9 mg soluble nitro-
gen per g protein. Therefore for a percent

protein content of 35.5, we define low heat
NFDM as having a WPNIpcorr value greater
than or equal to 16.9 mg nitrogen per g pro-
tein, and we define medium heat NFDM as
having a WPNIpcorr value between 4.22 and
16.9 mg nitrogen per g protein. These cut-
off values and additional values for other
protein levels are shown in Tables V–VII.

To validate these proposed WPNIpcorr
levels for low and medium heat NFDM,
a linear regression model was fit to
the WPNIpcorr data for supplier C using
the powder type, standardization, target
percent protein level, and their interac-
tions as predictors. As before the model
(Model 3A) was initially fit without us-
ing the control samples in order to test the
effect of standardization type and its in-
teractions. Model 3A has the same equa-
tion as Model 1A, but with WPNIpcorr as
the response variable. This model explains
99.6% of the variation in WPNIpcorr. The
analysis shows no significant effect of stan-
dardization on WPNIpcorr (p = 0.33).

Removing all terms containing stan-
dardization type and restoring the control
samples, we create Model 3B (Fig. 4).
This model explains 99.5% of the varia-
tion in WPNIpcorr. This analysis shows that
medium heat NFDM powder has a lower
mean WPNIpcorr than low heat NFDM
powder (p < 0.01). However, there is no
significant difference in mean WPNIpcorr
for different protein levels (p = 0.15),
and the effect of protein on WPNIpcorr does
not differ significantly between low and
medium heat powders (p = 0.66).

After removing the insignificant terms
containing protein level, Model 3C was
used to estimate the WPNIpcorr for both
types of NFDM with 35.5% (supplier C)
protein content. Mean WPNIpcorr of all low
heat powder from supplier C is between
18.72 and 19.16 mg soluble nitrogen per g
protein. Mean WPNIpcorr for all medium
heat powder from supplier C is between
9.04 and 9.48 mg soluble nitrogen per g
protein. Individual samples of low heat
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Figure 3. Effect of protein standardization on WPNI (mg of WPN·g−1 of powder) of low heat SMP.

Table V. Effect of absolute protein content on heat classification of milk powder based on soluble
whey protein nitrogen·g−1 of protein.

Traditional 
WPNI

Modified  WPNIpcorr

Heat 
classification

NFDM NFDM (A) NFDM (B) NFDM (C )

mg of soluble 
 WPN·g–1 powder

mg of soluble 
 WPN·g–1 protein

mg of soluble 
  WPN·g–1 protein

mg of soluble 
 WPN·g–1 protein

(Protein = 34.3 g·100 g–1) (Protein = 35.1 g·100 g–1) (Protein = 35.5 g·100 g–1)

Low heat > 6.0  17.49 17.09  16.90

Medium heat 1.5–6.0 4.37–17.49 4.27–17.09 4.22–16.90

High heat <  1.5 4.37   4.27   4.22

Protein is expressed g·100 g–1 of powder as 34.3 or 0.343; 35.1 or 0.351; and 35.5 or 0.355.

>

<  

>

<  

>

<  

powder may vary from 18.08 to 19.79 mg
soluble nitrogen per g protein, while in-
dividual samples of medium heat powder
may vary from 8.40 to 10.11 mg soluble
nitrogen per g protein. All estimates are
made with 95% confidence. The model es-
timates of WPNIpcorr for individual sam-
ples of low and medium heat powders fit
comfortably within the ranges proposed for
35.5% protein in Table V.

Any indicator of functionality of SMP
needs to account for the protein level. For
example, PP standardized low heat (B)
SMP sample with a target of 32.0% pro-
tein content and a WPNI value of 5.98 mg
soluble nitrogen per g powder would be
a medium heat milk powder (Tab. VII) as
per current nonfat dry milk heat classi-
fication (WPNI uncorrected). However, if
WPNI values are expressed as mg soluble
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Table VI. Changes on heat classification of low heat SMP (A) due to protein standardization and
method of expression of WPNI.

Sample
 type 

Target 
protein

WPNI
(traditional)

Powder classification 
based on 

WPNI·g–1 powder

WPNI Modified
 WPN·g–1 protein

(WPNIpcorr)

Powder classification 
based on 

 WPNI·g–1 protein

Control 35.1 6.36 Low 18.11 Low

MPSELP34 34.0 6.04 Low 17.76 Low

MPSELP33 33.0 5.84 Medium 17.69 Low

MPSELP32 32.0 5.79 Medium 18.09 Low

MPSELP31 31.0 5.54 Medium 17.87 Low

MPSELP30 30.0 5.41 Medium 18.03 Low

MPSELP  =  Milk powder standardized with edible lactose powder.
WPNIpcorr  =  Protein corrected WPNI.

Table VII. Changes on heat classification of low heat SMP (B) due to protein standardization and
method of expression of WPNI.

Sample 
type

Target 
protein

Traditional 
WPNI

Powder classification 
based on 

WPNI.g−1 powder

WPN.g−1 protein
 (WPNIpcorr)

Powder classification 
based on 

WPNI.g−1 protein

Control 34.3 6.38 Low (control) 18.60 Low

MPSELP33 33.0 6.18 Low 18.72 Low

MPSELP32 32.0 6.03 Low 18.84 Low

MPSELP31 31.0 5.89 Medium 19.00 Low

MPSELP30 30.0 5.68 Medium 18.93 Low

MPSPP33 33.0 6.23 Low 18.87 Low

MPSPP32 32.0 5.98 Medium 18.68 Low

MPSPP31 31.0 5.86 Medium 18.90 Low

MPSPP30 30.0 5.60 Medium 18.66 Low

MPSELP = Milk powder standardized with edible lactose powder.
MPSPP   = Milk powder standardized with permeate powder.
WPNIpcorr  = Protein corrected WPNI.

nitrogen per g protein (WPNIpcorr), then
the WPNI value of 5.98 mg soluble ni-
trogen per g powder at 32% protein has a
WPNIpcorr value of 18.68 mg soluble nitro-
gen per g protein and would still be clas-
sified as low heat powder. In other words,
this modification in WPNI use is to prevent

misclassification of low heat powder to a
medium heat powder due to protein con-
tent.

Further, medium heat or high heat
powder classification will be promptly
achieved more often when standardizing
downwards protein content. For example,
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Figure 4. Effect of protein standardization on WPNI (mg of WPN·g−1 of protein) of low heat and
medium heat SMP.

low heat milk powder with a WPNI value
greater than or equal to 6.0 mg nitrogen
per g powder, but close to medium heat
classification value less than or equal to
5.9 mg nitrogen per g powder can achieve
medium heat classification upon its protein
standardization as WPNI is positively re-
lated to protein level. Similarly, a medium
heat milk powder with a WPNI value
closer to 1.5 mg of nitrogen per g powder
can achieve high heat classification upon
its protein standardization.

4. CONCLUSIONS

We have demonstrated that a powder
with higher protein content will inherently
have a greater chance of having a higher
traditional WPNI value (uncorrected for
protein) at equal heat treatment than a pow-
der with lower protein content. Conversely,
achieving a medium-heat classification or
higher heat classification for a high protein
powder can be more difficult. Specifying
a WPNI value for milk powder purchases
or broad heat classification without a con-
sistent protein level may not necessarily

provide the assurance in consistent perfor-
mance. Re-expression of WPNI per g pro-
tein prevents erroneous heat classification
due to protein content variation. This pro-
posed modified WPNI (protein corrected)
would enhance the value of this method
as a means to select milk powders for
their use in food applications. In light of
readily available protein testing today, re-
expression of WPNI to account for the
potential protein content impact in heat
classification may be justified. The present
study suggests milk with higher protein
content will have higher WPNI when ev-
erything else is same. However, we also
note that WPNI was different between sup-
pliers’ at equal protein content in milk
powders. Further study will be needed to
explain the effects of plant processing con-
ditions on SMP heat classification.
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