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Abstract — An optical sensor formerly developed for the monitoring of milk coagulation was modi-
fied to allow online determination of casein particle size distribution and of the volume fraction rela-
tive to the whey as a function of time. Two methods were assessed to process the signals. The first
one was based on the determination of a specific voltage threshold of the optical signal. The results
were not satisfying. The second method used multiple thresholds of the optical signal associated
with data processing using neural networks. For the considered experimental conditions, the casein
particle volume fraction was estimated with a relative error of 23%, and the casein particle size dis-
tribution with 7.5% maximum relative error.
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Résumé — Une méthode optique de suivi de la taille de particules de caséine dans le lactosérum.
Ce travail propose une nouvelle méthode pour estimer la proportion volumique de grains de caséine
par rapport au lactosérum, et la répartition par taille des grains de caséine en fonction du temps. Un
capteur optique, mis au point pour suivre en ligne la coagulation du lait, a été adapté. Deux métho-
des de traitement des signaux ont été testées. La premiere, basée sur la détermination d’un seuil spé-
cifique du signal optique, s’avere insuffisante. La seconde fait appel a la détermination de seuils
optiques multiples associée a un traitement des données par deux réseaux de neurones. Dans les con-
ditions expérimentales considérées, la proportion de grains de caillé est alors estimée avec une
erreur relative de 23 %, et la répartition des grains par taille avec une erreur relative maximale de
7,5 %.

grain de caséine / mesure en ligne / capteur optique infra-rouge / réseau de neurones / taille
de particule / caillé
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1. INTRODUCTION

The syneresis of the curd is one of the
most important steps in cheese manufactur-
ing. During this step, the protein network
constituting the gel contracts and serum
(whey) is expulsed from the curd. The
amount of expelled whey and the rate of
syneresis create various conditions for the
development of microbial strains during
ripening and, subsequently, affect the qual-
ity of the cheese. Fat and protein lost in the
whey, water, minerals and lactate contained
in the curd, and pH of the curd are affected
by syneresis. Walstra [20] described the
mechanism of gel formation and the possi-
ble cause of syneresis as the change in sol-
ubility, the rearrangement of the network
and the shrinkage of casein particles.

Various variables affect the drainage
rate of the curd, such as milk composition
(fat, casein concentration and acidity) and
rennet or inoculum concentration [7,9, 10,
13]. Factors associated with the cheese-
making procedure also affect the extent of
syneresis. The main variables are the size of
the curd particles, the temperature and the
pressure applied to the curd. Mechanical
stirring is used in some cheese-making
technologies to favor coagulum syneresis.
For different cheese-making procedures,
Whitehead and Harkness [21] showed that
the size of the curd cutting had a significant
effect on the expulsion of the whey and on
the curd moisture content. The larger the
curd particles, the higher the final moisture
content. Thus, the choice of the particle size
is a way of controlling the final cheese
moisture.

The cutting and the stirring protocols
influence the total amount of whey loss and
the final size of curd particles. Johnston
et al. [11] suggested that the curd particle
size is not only determined by the cutting
protocol alone, but also by a combination of
the speed and duration of mixing. These
results obtained for a type of cheese vat
were confirmed by trials carried out in vats
with other designs [12]. The authors pro-
posed a model to explain how variation in
speed and duration determines curd size
particle distribution. Decreasing the curd
fine losses and optimizing the moisture

level by controlling the curd particle size
had a positive effect on both product quality
and cheese yield [15]. The draining proto-
col is generally determined by the cheese-
makers and depends on the cheese technol-
ogy used. Speed of cutting, speed and
duration of mixing and temperature are
generally fixed and do not change during
the process.

Several methods of estimating syneresis,
more or less easy to perform, have been
described: (a) shrinkage of the curd,
(b) amount of whey expulsed from the curd,
(c) dry matter of the curd, (d) density of curd
and (e) changes in the electrical resistance
of the curd. The curd particle size measure-
ment is carried out on a stack of stainless
steel mesh sieves from a sample of curd.
The curd particles retained on each sieve are
weighed, and the result is expressed as the
percentage of the total curd [11]. However,
this analysis needs time and the result is
obtained too late to enable feedback on the
process. Online measurement of the curd
particle size reduction appears to be auseful
approach to control the draining process.

Since the work of McMahon et al. [16]
and Banon and Hardy [1], a lot of research
has been carried out on the use of optical
measurement systems for monitoring coag-
ulum formation in cheese-making [3, 4, 8,
14, 17, 18]. An interesting application of
optical sensor technology has been pro-
posed by Castillo et al. [5, 6]. Whey fat was
considered as an internal tracer of whey
expulsion during syneresis. In these stud-
ies, the whey fat concentration was pre-
dicted by using an optical signal and a
power law equation with a coefficient of
variation of 6.27%. These authors claimed
that the syneresis kinetic rate constant pre-
dicted from the optically estimated whey fat
concentration values was underestimated.
The inaccuracy for the prediction of the
syneresis rate constant was attributed to
both scatter in actual fat concentration data
points, probably associated with whey sam-
pling, and the relatively small decrease in
fat concentration during cooking (~44%).
Moreover, Castillo etal. [7] showed that the
mass of whey drained and the kinetic rate
constant of syneresis were predicted by an
equation that included temperature and
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Figure 1. (a) General view of the sensor; (b) LED response in the air. Percentage of reflected signal
relatively to the signal level at the Maximum Signal Point (MSP) as a function of distance from reflec-
tor; (¢) Transmitter-receiver diode cross-section.

coagulation parameters derived from an
optical signal. The model predicted the
whey drainage with a R2 of 0.96 and a
standard error of prediction of 4.43 g for a
variation in whey mass from 0 to 100 g.
These authors suggest that it may be possi-
ble to develop a sensor capable of monitor-
ing both the coagulation and syneresis
processes.

The objectives of this study were to
assess the potential of an optical sensor to
monitor casein particle size distribution and
its volume fraction relative to whey as a
function of time. This was a preliminary
evaluation of an optical method before its
use to monitor curd syneresis in a vat during
a real cheese-making process.

The device was realized with a near-
infrared reflectance sensor previously set
up for the monitoring of milk coagulation.
Two estimation methods were compared in
order to calculate the casein particle size
distribution and the volume fraction based
on the optical signal. They took into
account different thresholds of the optical
signal and specific data-processing methods.

2. MATERIALS AND METHODS

2.1. Near-infrared optical sensor

A high-resolution infrared optical sensor
[19] was located at the end of a watertight
stainless steel pipe (Fig. 1a). The infrared
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Figure 2. Experimental device used to validate the concept of the optical sensor.

sensor (Fig. 1c) included a built-in optical
lens, an emitting 700 nm wavelength LED,
and a photo detector (HBCS-1100, Agilent
Technologies). The pipe was immersed in
the whey-casein particle mixture.

The sensor provided a low voltage signal
depending on its distance from a facing
object. The output signal fluctuated each
time a particle went through its field of
vision. The length of the impulse depended
on the particle size, its speed and its direc-
tion. The signal amplitude was a non-linear
function of the particle-diode distance in
the three space directions. Figure 1b repre-
sents the non-linear response of the diode in
the air as a function of the particle-diode
distance. The response in whey had the
same shape, but its amplitude was signifi-
cantly reduced (by about 75%).

An electronic card including a Digital
Signal Processor (DSP) (EZ-Kit Lite for the
ADSP-2181, Analog Devices) was used to
digitalize and process signals. The choice of
this card was motivated by the presence of
the embedded DSP, which was well suited
to fast signal processing (48 kHz). After the
validation of the optical sensor concept, the
DSP would make the sensor stand alone
(i.e. independent of any PC). The card
enclosed a high-pass filter at the input of a
16-bit Digital Analog Converter (DAC).
The signal was first filtered, and then digi-
talized at a frequency of 48 kHz. Only the

8 most significant bits were transmitted to
a PC computer on a RS232 serial link at
230 400 bits per second. The least signifi-
cant bits were neglected. The signal was
processed on the PC in order to benefit from
apowerful and user-friendly software envi-
ronment.

2.2. Test module

An experimental device consisting of
several PVC cylindrical objects distributed
around a central part (Fig. 2) was used to
test the optical sensor. The sensor axis and
the cylindrical objects were perpendicular
to the revolution axis.

Three experiments were realized, based

on three different configurations of the test
module:
— Configuration 1: The rotational speed of
the device was 60 rpm. The distance from
the revolution axis to the top of the PVC
object was 170 mm. The top of the PVC
object was 1.4 mm away from the front of
the sensor. The device and the sensor were
immersed in water.

— Configuration 2: The same experimental
device was used to determine the response
of the diode in whey as a function of dis-
tance. The PVC objects went through the
field of vision of the sensor at different dis-
tances from 0 to 3.4 mm in 0.2-mm steps.
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Table I. Cylindrical object size determination using the optical sensor and the experimental device
in Figure 2. Size determined by the single voltage threshold method at different speeds (mean
value + standard deviation).

Rotational speed

(rpm)
Objects 20 39 61 81 100
Number  Actual size Estimated size

(mm) (mm)

3 3.1 34+0.1 34+0.2 33+0.1 34+0.2 33+0.1

3 4.1 45+02 4.4+0.2 4.1+0.2 42+0.2 4.2+0.2

5 5.5 5.6+0.2 57+03 53+0.3 54+03 54+03

5 7.1 6.9+0.1 6.9+0.3 6.9+0.3 7.0+0.2 7.0+0.2

3 8.1 8.1+0.2 82+04 8.1+0.3 82+0.2 82+0.2

2 12.9 12.8 +0.2 13.0+0.3 12.7+£0.3 12.8 +£0.3 12.8 +0.2

— Configuration 3: Several cylindrical
objects around the central part were used.
The number and diameter of the objects are
listed in Table I. The device and the sensor
were immersed in whey. The rotational
speed was constant during an experiment.
Five different speeds were used: 20, 39, 61,
81 and 100 revolutions per minute (Tab. I).
Each trial lasted about 2 min.

2.3. Calibrated casein particles

A stock of casein particles (Eurial Poi-
touraine, Nantes, France) calibrated by size
was set up. Particles were made from re-
hydrated rennet casein powder. A set of
sieves was used to define 4 classes of par-
ticles: 0.5to 1, 1 to 2, 2 to 4 and larger than
4 mm. The casein particle size distribution
among classes was selected to simulate the
curd particle size evolution during mechan-
ical draining of Emmental (Chamba, per-
sonal communication), as follows. Particle
sizes usually follow a log-normal distribu-
tion. A standard deviation of the logarithm
of the diameter equal to 0.5 logarithmic
units was found to give adequate spread among
classes. The median value of the diameter
was varied in order to simulate particle
shrinkage: 11.2, 5.6, 2.8, 1.4 and 0.7 mm.
The last four diameter values are the centers
(on alogarithmic scale) of the considered four
size classes, and the first one was obtained
by extension towards large diameters.

The experiments were carried out in a
12-L cheese vat (Guerin, Mauze, France).
They consisted of mixing particles of dif-
ferent classes in whey. The volume fraction
of particles was determined so that the vol-
ume ratio particles/whey was representa-
tive for cheese-making: 20, 30 and 40%
(Mietton, personal communication). The
re-hydrated casein particle size was checked
before and after each experiment, and it was
concluded that the size was not signifi-
cantly different. These stable particles con-
stitute a good material for the calibration of
the signal-processing chain.

2.4. Casein particles/whey volume
ratio estimation by the single
voltage threshold method

The first method used to estimate the
casein particles/whey volume ratio was
based on the use of a single voltage thresh-
old of the pre-processed signal. Suspen-
sions of casein particles belonging to a
single size class (either 0.5-1, 1-2, 2-4 or
>4 mm) were mixed with whey in a 12-L
cheese vat (Guerin, Mauze, France). The
casein particles/whey volume ratio was 20,
30 and 40%. Several values of the voltage
threshold were chosen from 5 to 10 mV.
The estimate was defined by the dimension-
less ratio (time/time) between the sum of
the time intervals when the signal was
greater than the voltage threshold and the
total measurement time. Several values of
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the voltage threshold were tested from 5 to
10 mV. The lower bound of the threshold
(5 mV) was chosen high enough to avoid
false particle detection due to noise level.
The upper bound of the threshold (10 mV)
was chosen with respect to the maximum
signal response of the sensor in whey
(Fig. 4b), in order to detect as many parti-
cles as possible.

2.5. Curd/whey volume ratio
and particle size distribution
estimation by multiple
thresholds and neural networks

A signal-processing method was pro-
posed that aims to greatly reduce the
amount of data contained in the raw signal
(from almost 3 million per min to 5) while
still retaining relevant information for
casein particle size estimation. The process-
ing method included the following steps:
1. The pre-processed DSP signal at 48 kHz
was divided into segments of one-minute
duration, thus containing 2.88 x 10 meas-
urements. This duration was a compromise
between the system reactivity requiring
short segments and estimation reliability,
which was favored by long time segments.

2. The signal was compared against a set
of 10 thresholds (from 2.5 mV to 25 mV in
2.5-mV steps) and the number of times the
signal exceeded each of the thresholds in
one minute was counted. A set of 10
descriptors for each one-minute signal seg-
ment was thus obtained.

3. The set of 10 descriptors, together with
the information about the vat agitation
speed, was processed by classical principal
component analysis (PCA) in order to fur-
ther reduce the number of signal descrip-
tors from 11 to 5, while still retaining 99%
of the variance.

4. The resulting 5 signal descriptors were
fed into two distinct neural networks. The
first one (NN1, characterized by 5 inputs,
6 hidden sigmoid neurons and 1 linear out-
put neuron) estimated the total volume
fraction of the casein particles in the whey.
The second one (NN2, characterized by
5 inputs, 15 hidden sigmoid neurons and

4 linear output neurons) estimated the size
distribution of the casein particles, in terms
of the 4 classes mentioned in Section 2.3.
For a concise but self-contained descrip-
tion of the neural network modeling meth-
odology, the interested reader is referred
for an example to [2].

According to the classical neural net-
work modeling methodology [2], the data-
base was divided into a so-called “learning
base” (150 optical signal samples with all
condition combinations represented) used
for the determination of the PCA and of the
neural network and a “validation base”
(consisting of the remaining 150 samples)
used for independent testing of the signal-
processing chain on previously unseen
optical signal samples. The architecture of
each neural network (NN 1 and NN 2) pro-
viding the best estimation accuracy on the
validation database was selected.

2.6. Assessment of the estimation
accuracy

The accuracy of the estimation of the
casein particles/whey volume ratio and of
the particle size distribution was assessed
by calculating the relative residual error
(RRE) as follows:

RRE =

/\/Z(Estimatea' value — Actual value)z

Number of measurements
(Maximum actual value — Minimum actual value)

x 100% .

The relative error has the advantage of
being independent of the scale of the vari-
ables. For the casein particles/whey volume
ratio, the range of the minimum and maxi-
mum values were 20 and 40%, respectively.
For the particle size distribution this range
was between 0 and 100%.

3. RESULTS AND DISCUSSION

3.1. Estimation of the optical signal
before DSP electronic card filter

The high-pass filter included before the
DAC on the DSP card may be of capital
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Figure 3. (a) Signal at the output of the DSP card without pre-processing when the input signal
was a 30-mV magnitude rectangular signal, with a continuous offset of 15 mV, at 100 Hz frequency
and a 50% cyclical ratio. The signal was deformed by the high-pass filter; (b) The same signal after
being pre-processed. The rectangular shape is recovered.

importance with some kinds of signals,
such as audio signals. However, in our case
it was a drawback since it caused distortion
of the optical signal. Thus, the first step in
signal processing consisted of estimating
the output diode signal, before it was fil-
tered. The estimation method is presented
in Appendix A. Figure 3 represents an
example of a filtered signal (3a) and proc-
essed one (3b) corresponding to a synthetic
squared input signal with the following
characteristics: 30 mV magnitude, 15 mV
offset and 100 Hz frequency.

3.2. Preliminary validation
of the optical measurement
device in water and in whey

Configuration 1 of the test module
described in Section 2.2 was used to validate
the repeatability of the sensor’s response.
An example of the pre-processed signal
corresponding to a 10 mm object size is pre-
sented in Figure 4a. Its magnitude was com-
pared with a voltage threshold varying in
the range 0 to 30 mV. At each revolution,
the width of the object was simply deduced
from the time when the signal level was
higher than this voltage threshold. The sig-
nal duration was approximately constant
whatever the voltage threshold. A 30-mV

50
s
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Q
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©
c
2
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§120
Y b
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=
] Jj{ XE
£
= 40
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0 1 2 3 4

Object-sensor distance (mm)

Figure 4. (a) Example of the pre-processed sig-
nal corresponding to the 1-cm PVC cylinder
passing through the field of vision of the sensor
in water; (b) Sensor response as a function of the
distance of the object to detect in water (o) and
whey (o).
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Figure 5. Histogram of measured (black) and real object (white) size when using experimental
device in Figure 2. Object number and sizes are listed in Table I. The results were obtained by a
simple threshold (10 mV) on the signal. The rotational speed of the PVC cylinder was 61 rpm.

threshold was selected. After 54 revolu-
tions, the mean measured size was 9.8 mm
and the standard deviation 0.2 mm.

Configuration 2 of the test module was
used to determine the response of the diode
in whey versus object-sensor distance. As
whey is more opaque to the light emitted by
the LED than water, the threshold value was
reduced from 10 mV to 5 mV. Each time the
signal was beyond the voltage threshold, its
maximal magnitude was recorded. The
obtained values are represented in Figure 4b.
The response of the diode in water obtained
in the same conditions is also shown for
comparison. In water, a maximal magni-
tude of 95 mV was obtained at 1.8 mm. In
whey, the optimal distance from object to
sensor was reduced from 1.8 mm to 1.2 mm,;
the magnitude was attenuated by a factor of
4. The limit of distance of visibility fell
from more than 3.4 mm in water to 2.6 mm
in whey.

Finally, a mixture of different sized
objects at different speeds was studied using

configuration 3 of the test module. The histo-
grams of the measured sizes were recorded
for different rotational speeds and com-
pared with the theoretical ones. The mean
values and the standard deviation for each
object size at every speed are given in Table I.
For each object size, Fisher’s Least Signif-
icant Difference test (LSD) results showed
that the rotational speeds have no signifi-
cant effect on the estimated size (P < 0.05).

Figure 5 represents the number of
objects measured at different sizes for a
rotational speed of 61 rpm, which corre-
sponds to a linear speed of 53 cm/s in front
of the sensor. Six distinct classes in the
measured sizes centered on the real object
sizes were observed. Analogous results
were obtained with the other tested speeds.
The error in the mean values was 0.4 mm
at worst (object size = 4.1 mm; speed =
20 rpm), and lower than 0.1 mm most of the
time (Tab. I). The device could distinguish
between objects whose size differed by
more than one millimeter.
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Table II. Estimated casein particles/whey ratio with a simple voltage threshold method. The
particle size classes that best fit reality are emphasized (bold characters) for each of the three

voltage threshold values.

5-mV threshold

8-mV threshold

10-mV threshold

Real ratio

(%)
Particle size 20 30 40 20 30 40 20 30 40
(mm) Estimated ratio

(%)
0.5-1 61 54 46 36 29 23 13 9 6
1-2 75 75 72 62 60 54 45 41 31
2-4 41 54 63 27 44 46 21 29 30
>4 22 40 51 17 27 34 12 19 23

Table III. Experimental design with mixtures of different classes of casein particles.

Size class
(mm)
0.5-1 12 2-4 >4
Median particle size Percentage of each size class Total percentage
(mm)* (%) (%)
11.2 0 0 2 98 100
5.6 0 2 24 74 100
2.8 2 23 52 23 100
1.4 23 51 22 2 98
0.7 51 22 2 0 75

* For a theoretical log-normal size distribution including the <0.5-mm particles.

3.3. Casein particles/whey volume
ratio estimation by the single
voltage threshold method

The evolution of the estimated ratio as a
function of the particle size was increasing
from 0.5-1 to 1-2 mm classes, and then
slowly decreasing for the classes of higher
size, regardless of the threshold used
(Tab. II). The best results were obtained for
an 8-mV threshold. However, no single
voltage threshold value tested was suitable
for all the classes and all the ratios. The low
accuracy of the estimation could be due to
the variation in the object-sensor distance
from one object to another. This observa-
tion led us to develop a more sophisticated
method which takes into account results for
different values of the voltage threshold.

3.4. Casein particles/whey volume
ratio and particle size
distribution estimation by
multiple voltage thresholds
and neural networks

The tests were performed on a database
of 300 one-minute optical signal samples
obtained in various combinations of casein
particle volume fractions and particle size
distributions, presented in Table III. Five
repetitions of each combination were done.
The casein particle size distributions were
selected to simulate curd particle size evo-
lution during mechanical draining, as
described in Section 2.3. Since particles
smaller than 0.5 mm were not considered,
the total percentage of all classes was not
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Table IV. Estimation accuracy of the signal-processing method based on the neural networks.
NN 1 was used to model the casein particles/whey ratio, NN2 was used to model the 4 classes of

casein particle size (see Materials and Methods).

Relative residual error

(%)
Estimated parameter Learning database Validation database
(150 samples) (150 samples)

Casein particles/whey volume ratio (NN 1) 21 23

Casein particles size distribution (NN 2)

0.5-1 mm 1.1 32

1-2 mm 1.6 3.0

2-4 mm 2.8 52

>4 mm 3.0 7.5

always equal to 100%. To limit the disinte-
gration and the disappearance of the casein
particles as much as possible, the experi-
ments all went on for only five minutes. The
re-hydrated casein particle size was
checked after the experiments. No signifi-
cant change was observed.

The obtained estimation accuracies are
given in Table IV. The estimation of the
casein particles/whey ratio (NN 1) appears
to be the most difficult, with a relative resid-
ual error of 23%. The estimation of particle
size fraction (NN 2) is comparatively more
accurate, with arelative residual error com-
prising between 3 and 7.5%. The fraction of
the small particles (less than 2 mm) is esti-
mated more accurately than that of the
larger particles (more than 2 mm). This is
compatible with the potential use of the sys-
tem for the determination of the end of the
mechanical draining process, when the par-
ticle size reaches the size desired by the
cheese-maker. The estimation accuracies
for the learning database, used for the devel-
opment of the signal-processing chain, and
for the validation database, not used for sen-
sor calibration, differ by a factor of at most
2.5. This indicates satisfactory generaliza-
tion ability to new optical signal samples
obtained in similar experimental condi-
tions, and hence potential for use in the
cheese-making industry after a calibration
phase.

The overall estimation performance can
be visually appreciated in Figure 6, where
only the 150 optical measurements used

from the validation database are shown.
Various measurements correspond to vari-
ous combinations of casein particles/whey
volume ratios and particle size distributions
(Tab. IIT). Either two or three replicate
measurements for each combination are
present in the validation database. The con-
clusions drawn from Table IV are con-
firmed. The estimation of the casein
particles/whey volume ratio (Fig. 6a)isless
accurate than of the size distribution
(Fig. 6b). The estimation of the casein par-
ticles/whey volume ratio appears to be most
difficult when the percentage of large par-
ticles (classes 2—4 mm and >4 mm) is high.
Similarly, the percentage of small particles
(0.5-1 and 1-2 mm) is estimated more
accurately than that of the large particles
(2—4 and >4 mm). The exact reason for this
phenomenon could not be determined, but
it may be related to the geometry of the
infrared diode field of vision. The proxim-
ity of small particles is expected to cause
well separated signal peaks, while peaks
caused by large particles are more likely to
overlap. The overall accuracy of the casein
particle parameter estimation was satisfac-
tory, however.

4. CONCLUSION

A new tool to monitor the casein particle
size in whey is described. An optical sensor
set up for coagulation monitoring was used.
Its ability to give measurements correlated
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to the casein particles/whey volume ratio
and the casein particle size distribution was
demonstrated. The casein particles/whey
ratio and the fraction of casein particles in
four different size classes were estimated
using two neural networks. The method was
validated on mixtures of casein particles of
various sizes in whey, obtaining at most
23% relative estimation error for the casein
particles/whey volume ratio and 7.5% error
for the particle size distribution.

These results suggest that this device
could be a useful tool for the monitoring of
industrial-scale cheese-making processes.
It should be borne in mind, however, that
these results were obtained in well-control-
led laboratory conditions. Transposition to
industrial cheese-making conditions would
be a non-trivial step. For example, the sen-
sor location inside the vat and the stability
of the flow pattern of the whey-curd mix-
ture in front of the optical sensor are
expected to be of crucial importance.

However, the experimental results were
acquired with casein particles and not with
real curd particles in a vat during the
cheese-making process. The properties of
the real particles might be not the same, as
their shape and composition differ, and the
composition of the curd particles changes
during the process. The heterogeneity of
dry matter in curd particles, the outer layer
having a much greater dry matter content
than the center, would lead to variation in
the difference in density between particle
and whey. These modifications would
change the behavior of particles (speed, ori-
entation, etc.) and increase the uncertainty
of the optical measurement. Moreover, var-
iation in the turbidity of the whey can affect
the signal. The curd-whey mixture is often
diluted with water, which could change the
level of the optical signal. Consequently,
significant additional trials in real condi-
tions would be necessary to measure the
evolution of the curd particles during the
process, and a new calibration of the signal-
processing chain will be required to take
into account the modifications and to check
the ability of this software sensor to monitor
the mechanical draining process ade-
quately.
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APPENDIX A

The first step in signal processing con-
sisted of estimating the output diode signal,
before it was distorted by the high-pass fil-
ter on the DSP card. It was assumed that the
filter was of order one, with its time con-
stant T. The equation between the output
diode signal v, and the filtered signal v,
was:

de dVl

TE-FVZ:E (1)

t
or V(1) = Tvy() + ] v()dr+e (2)
0

where ¢ was a constant.

In practice, to compute v{, we only had
a numerical series corresponding to
approximate values of the v, signal at time
kAt, where At is the data acquisition period
on the PC. We noted v,[n] the nth sample
of the series. The nth sample v{[n] was
estimated by:

vi[n] = by[n]—m,[n] 3
with

n

bilnl = tvylnl+ Y (v,[k]-v,[k])

k=0
4)
1 N
myln] = 5= 3 siln—kl ()

s;[n] = Min{b,[n—kl, N<k<N} (6)

N

S vyln—kl. (1)
N

vl =N

(b;) was a numerical approximation of
relation (2). To avoid numerical divergence,
we subtracted from each sample (v,) its
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mean value (v_2) during 1 sec. This time was
determined by N. The final estimate of (v)
series was obtained by subtracting (b;) and
(m;), which represented low variations of
(by) series minima. The resulting signal had
a constant sign. Its residual variations were
reduced. A median filter on 21 points was
then applied to reduce electronic noise.

The ignorance of constant c, the lack of
calculation accuracy and numerical stability
problems led us to approximate a solution
by relation (3). However, this solution was
only satisfying after some period necessary
for the particles to become more mobile. At
the beginning of the mechanical draining
step, the mixture casein particles-whey was
compact, and most of the casein particles
were almost motionless; namely, in front of
the sensor.

The estimation was validated on syn-
thetic signals produced by a wave genera-
tor. The generator was plugged into the
input of the DSP card. The signal was rec-
tangular, of 30 mV magnitude and with a
15 mV constant offset. As expected, what-
ever the value of the constant offset, the
observed filtered and processed signals
were left unchanged.

In order to simulate objects of different
size passing through the sensor’s field of
view at the same speed, we did trials with
a constant frequency of 100 Hz and three
different cyclic ratios: 20%, 50% and 80%.
Then we did trials with a constant 50%
cyclic ratio and three frequencies (1 Hz,
10 Hz and 1 kHz) to simulate objects of the
same size passing through the sensor’s field
of view at three different speeds. Each trial
was conducted for 1 min. The calculation was
made afterwards. The value of the constant
time T was determined so that the shape of
resulting signals was rectangular on the
largest possible frequency domain. The
results were satisfying for all trials.
Figure 3 represents an example of a filtered
signal (left) and a processed one (right) with
a 50% cyclic ratio and 100 Hz frequency.
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