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Abstract – Puberty is a fundamental development process experienced by all reproduc-
tively competent adults, yet the specific factors regulating age at puberty remain elusive in
pigs. In this study, we performed a genome scan to identify quantitative trait loci (QTL)
affecting age at puberty in gilts using a White Duroc · Erhualian intercross. A total of
183 microsatellites covering 19 porcine chromosomes were genotyped in 454 F2 gilts and
their parents and grandparents in the White Duroc · Erhualian intercross. A linear
regression method was used to map QTL for age at puberty via QTLexpress. One
1% genome-wise significant QTL and one 0.1% genome-wise significant QTL were
detected at 114 cM (centimorgan) on SSC1 and at 54 cM on SSC7, respectively.
Moreover, two suggestive QTL were found on SSC8 and SSC17, respectively. This study
confirmed the QTL for age at puberty previously identified on SSC1, 7 and 8, and reports
for the first time a QTL for age at puberty in gilts on SSC17. Interestingly, the Chinese
Erhualian alleles were not systematically favourable for younger age at puberty.

age at puberty / quantitative trait loci / White Duroc / Erhualian

1. INTRODUCTION

Puberty in females is defined as the time of the first expressed oestrus with
ovulation, which is a critical development process marking the transition into
adulthood. Although the timing of the onset of puberty is influenced by environ-
mental factors, evidence has accumulated that at least 50% of the phenotypic
variance of age at puberty is genetically determined in humans [29]. However,
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to date, the specific genetic determinants regulating the maturation of the
hypothalamic-pituitary-gonadal axis remain largely unknown. Thus, the identifi-
cation of determinant factors of age at puberty will improve our understanding
of pubertal development and pathophysiology of many reproductive endocrine
pathways in mammals.

In pig production, the rate of pubertal development and successful preg-
nancy in gilts affect the efficient management of breeding females. Selection
for growth rate and leanness in modern commercial pigs has resulted in delay
in the onset of puberty [23]. Because ages at puberty and weaning to oestrus
interval are positively correlated [27] and the primary reason for culling sows
is failure to return to oestrus after weaning; selection for younger pigs at pub-
erty has a favourable effect on sow reproductivity [13]. Although the average
heritability estimated for puberty age in gilts is 0.32 [25], ages at puberty and
oestrus cycles are very laborious to measure. Thus, marker-assisted selection
(MAS) may provide a practical and efficient method to improve age at puberty
in gilts.

As a first step to identify the gene(s) underlying age at puberty, several gen-
ome scans have been performed to identify quantitative trait loci (QTL) for age
at puberty. Rohrer et al. [24] reported the first two QTL for age at puberty on pig
chromosomes (SSC) 1 and 10 in a multigenerational Meishan-White composite
resource population. Subsequently, Cassady et al. [4] and Holl et al. [14] found
several QTL for age at puberty on SSC7, 8, 12 and 15. A positional candidate
gene on SSC10, aldo-keto reductase 1C2, showed an association with age at
puberty in the Meishan-White composite resource population [19]. However,
the causal gene(s) remain(s) unknown so far.

Erhualian is a Chinese indigenous pig breed that is characterised by early matu-
rity and prolificacy [31], and White Duroc is a commercial composite boar line
with good growth performance and a late puberty age.We have developed aWhite
Duroc-Erhualian F2 resource population. Thus, the objective of this study was to
identify QTL for age at puberty in this population using a whole-genome scan.

2. MATERIALS AND METHODS

2.1. Animals

A three-generation F2 population was developed by crossing the Chinese
Erhualian and the White Duroc pigs. Two White Duroc boars and 17 Chinese
Erhualian sows were mated to produce F1 pigs, from which 9 F1 males and
59 F1 females were intercrossed to produce six batches of 1912 F2 pigs. In this
assay, F2 gilts (n = 541) from 55 families were recorded for age at puberty.
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2.2. Phenotype recording

All gilts were kept in half-open houses, each of which held 10 gilts and 1 cas-
trated boar. During the period between day 90 and day 240, all F2 gilts were
checked twice a day for oestrus signs at approximately 09:00 and 15:30 by
inspection of the vulva and detection of the standing reflex using the back pres-
sure test [9]. Oestrus signs including redness, degree of swelling, mucosal dis-
charge from the vulva and the standing reflex during puberty were recorded.
All gilts were slaughtered at about 240 days. Their ovaries were then checked
to verify historical records of oestrus cycle. Age at puberty was defined as the
age at which the first oestrus sign was observed.

2.3. Genotyping

Genomic DNAwas extracted from pig ear tissues or blood using the standard
phenol/chloroform method. All DNA samples were quantified with a DU640
spectrophotometer (Beckman, CA, USA) and diluted to a standardised concen-
tration of 20 ngÆlL�1 in 96-well plates. Microsatellite markers were selected
from the USDA-MARC linkage map (http://www.animalgenome.org/maps/
marcmap.html/) to genotype all founder and F1 animals of the White
Duroc · Erhualian intercross. A final set of 183 informative markers covering
19 porcine chromosomes was used to carry out a whole-genome scan across
the entire resource population. The polymerase chain reaction conditions for
each marker locus were optimised using standard protocols. After amplification
with primers labelled by three fluorescent dyes (NED, FAM and HEX), geno-
types were recorded and collected in an ABI PRISM� 3130XL Genetic Ana-
lyser with the GeneMapperTM Genotyping Version 3.7 (Applied Biosystems,
Foster City, USA).

2.4. Statistics

The sex-average linkage map was constructed and analysed using the BUILD
and CHROMPIC options of CRI-MAP Version 2.4 [11]. The QTL mapping
analysis was performed using the QTLexpress software available at
http://qtl.cap.ed.ac.uk/ [12]. This method is based on the assumption that alter-
native alleles for a QTL are fixed in the two founder breeds, respectively, and
follows a robust two-step procedure to identify QTL. First, the probabilities
of alleles for each individual in the F2 generation were calculated for every cen-
timorgan (cM) throughout the genome using the information of the flanking
markers. Second, a multiple linear regression model with the additive (a) and
dominance (d) effects of a QTL at a given position and other fixed or random
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effects were fitted by least squares for each interesting trait [15]. The following
one-QTL model was initially used to detect the primary QTL:

Yi ¼ l þ batchi þmaternalk þ w21i þ caiaþ cdid þ ei; ð1Þ

where Yi is the phenotype of individual i, l is the overall mean of the pheno-
type, batchi is the fixed effect of F2 batch, maternalk is another fixed effect of
the individual i’s maternal effect, w21i is the individual i’s weight as a covar-
iate, a and d are the QTL additive and dominant effects and ei is the residual
effect. The caia and cdid are the coefficients of additive and dominant effects,
respectively, which were defined as described by de Koning et al. [8]. After
the primary QTL analysis, the multiple QTL model was used, in which
QTL effects, initially detected, were integrated as fixed effects.

The genome-wide significance thresholds were determined by a permutation
test as described by Churchill and Doerge [5]. The chromosome-wide signi-
ficance level was used as the suggestive level, which was inferred from the
5% genome-wide level using:

P chromosome � 1� 1 � P genome

� �19 ð2Þ

to correct the multiple tests [7].

3. RESULTS

The pubertal stage was confirmed in 454 of the 541 F2 gilts studied by con-
sistent historical records and in vitro ovary examination, including 344 cyclic
animals and 110 juvenile animals that did not reach puberty at the age of
240 days. The average age at puberty in the cyclic animals was
192.6 ± 28.59 days and ranged from 123 to 240 days, showing diverse pheno-
typic segregations in the F2 population. The juvenile animals showing no defect
in ovary development were assumed to reach puberty randomly at an age rang-
ing from 240 to 300 days, and were also used for the QTL analysis together with
the cyclic animals.

A whole-genome linkage map comprising 183 microsatellite markers was
constructed. Its total length was 2350.3 cM and the average marker interval
on the sex-average map was 12.84 cM. The marker orders were consistent with
the USDA-MARC reference map (data not shown).

We performed the QTL analysis under a multiple QTL model. The F-ratios of
significance thresholds for the 0.1, 1 and 5% genome-wise significance levels
and the 1 and 5% chromosome-wise significance levels were 14.0, 9.9, 8.6,
7.0 and 5.2, respectively.
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Four significant QTL were found for age at puberty in the White Duroc ·
Erhualian intercross (Tab. I), and F-statistic curves for these QTL are shown
in Figure 1. A 1% genome-wide significant QTL was found at position
114 cM on SSC1 (Fig. 1A) and the Erhualian allele at this locus is favourable
for decreased age at puberty. A 0.1% genome-wide significant QTL was
detected on SSC7 at 54 cM (Fig. 1B) and interestingly, the Duroc allele is
favourable for decreased age at puberty at this locus. Two 5% chromosome-wide
significant QTL were identified for age at puberty on SSC8 at 77 cM (Fig. 1C)
and SSC17 at 88 cM (Fig. 1D), respectively. In these two QTL regions, favour-
able alleles were observed in the Erhualian breed.

4. DISCUSSION

The resource population used for the QTL analysis in this study was estab-
lished by crossing the Chinese Erhualian sows and the White Duroc boars.
The ages at puberty of Erhualian and White Duroc pigs are 79.2 days [31]
and 6–8 months [2], respectively. The remarkable phenotypic and genetic origi-
nal differences between the grandparents [17] make this resource population
suitable to identify genomic regions affecting age at puberty.

Phenotypic definition and assessment are critical issues for QTL mapping,
especially for some traits that are difficult to record. In this study, age at puberty
of each gilt was confirmed by the following oestrus cycle, and juvenile animals
were checked for ovary development when they were slaughtered at the age of
240 days. The mean age at puberty in this F2 population is greater (192.6 days
vs. 181.3 days) than in a resource population of F2 females reported by Cassady
et al. [4]. This is probably due to the fact that these F2 gilts were checked with-
out boar exposure after 90 days when ages at puberty were measured. It is well
known that boar exposure can accelerate sexual development in gilts [3,28].

The timing of puberty in humans approximates a normal or Gaussian distri-
bution [20]. In this study, we found that the phenotype data of cyclic F2 animals

Table I. Positions of QTL for age at puberty in the White Duroc · Erhualian
intercross.

SSC Position
(cM)

F-value Additive
effect ± SE

Dominance
effect ± SE

Var%

1 114 9.98 �10.47 ± 2.76 �7.34 ± 3.84 3.9
7 54 19.19 15.18 ± 2.47 �4.13 ± 3.52 8.0
8 77 5.49 �8.08 ± 2.44 1.29 ± 3.58 2.0
17 88 6.61 �2.56 ± 2.52 �12.41 ± 3.46 2.4
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followed a skewed distribution (Fig. 2), and that the ovaries of juvenile F2 ani-
mals were normally developed when slaughtered at the age of 240 days (data
not shown). The phenotype data of F2 animals conformed to the Gaussian dis-
tribution when age at puberty of each juvenile animal was randomly assigned in
a range of 240–300 days. Thus, it is reasonable to assume that juvenile animals
with a normal ovary development generally reach puberty after the age of 240–
300 days. We then performed the QTL analysis using combined data of cyclic
animals and juvenile animals and found evidence for a genomic region affecting
age at puberty.

Figure 1. The F-ratio test curve indicating QTL for age at puberty on SSC1 (A),
SSC7 (B), SSC8 (C) and SSC17 (D). Markers and distances in cM are given on the
x-axis, and F-ratios are indicated on the y-axis.
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Until now, only a limited number of QTL for age at puberty have been iden-
tified in pigs (http://www.animalgenome.org/QTLdb/pig.html). We found a
0.1% genome-wide significant QTL for age at puberty at position 54 cM on
SSC7 close to the SLA complex, which is the most significant QTL found in
this study, confirming previous QTL mapping results [4,14]. SSC7 is of partic-
ular interest to the pig industry since it carries numerous QTL affecting diverse
economically important traits. At the QTL for age at puberty on SSC7, one inter-
esting phenomenon is that the favourable QTL allele originates from the Duroc
breed, which is in contradiction with the breed characteristic differences for this
trait. This observation has been repeatedly documented in many QTL studies
around this region, such as the QTL for fat androstenone levels [21] and for

Figure 1. Continued.
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average daily gain [26]. The reason for this remains unknown. Although many
QTL have been evidenced in the region around the SLA complex, it is difficult
to know whether these QTL are due to the pleiotropic effect of a single locus or
to effects of closely linked genes because of high gene density in the region.

We confirmed the existence of a QTL at 114 cM for age at puberty on SSC1
that had been previously found in the crossbred Meishan-White composite pop-
ulation [24]. Several significant QTL for average daily gain and average backfat
thickness have been mapped at a position close to the QTL region found in this
study [6,18]. It has been shown that age at puberty shows high genetic correla-
tions with body weight [30], growth rate and fatness in pigs [10,25]. The over-
lapping QTL region for age at puberty, growth and fatness traits indicates that
there might be gene(s) with pleiotropic effects on these traits in the region.

Another QTL for age at puberty on SSC8 was consistently detected by our
research group and others [4,14]. The QTL is centred at 77 cM, where QTL
for litter size [16], ovulation rate [22], uterine capacity [24] and number of nip-
ples [1] have been found. The multiple associations with these correlated repro-
ductive traits displayed convincing evidence for the QTL for age at puberty in
this region.

A suggestive QTL for age at puberty was detected at 88 cM on SSC17. To
our knowledge, this is the first time that this QTL region is reported. However,
we did not detect the QTL on SSC10, 12 and 15 that were previously reported.
These differences are possibly due to the different genetic backgrounds of
founder animals in different experimental populations. It highlights that the

Figure 2. The distribution of age at puberty in the F2 population of the White
Duroc · Erhualian intercross.
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implementation of the MAS program in different populations using QTL mark-
ers requires caution.

In conclusion, we found a novel QTL for age at puberty on SSC17 but with a
low significance level and confirmed those on SSC1, 7 and 8. The two QTL
regions on SSC7 and SSC1 are of particular interest, showing highly significant
associations across different resource populations. Future work will be directed
at fine mapping of the QTL identified using additional markers and advanced
intercross populations or recombination backcross populations [26].
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