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Abstract – High levels of androstenone and skatole in fat tissues are considered the primary
causes of boar taint, an unpleasant odour and flavour of the meat from non-castrated male pigs.
The aim of this article is to review our current knowledge of the biology and genetic control
of the accumulation of androstenone and skatole in fat tissue. Two QTL mapping studies have
shown the complexity of the genetic control of these traits. During the last ten years, several
authors have taken a more physiological approach to investigate the involvement of genes con-
trolling the metabolism of androstenone and skatole. Although some authors have claimed the
identification of candidate genes, it is more appropriate to talk about target genes. This suggests
that genes affecting androstenone and skatole levels will have to be sought for among specific
or non-specific transcription factors interacting with these target genes.

androstenone / skatole / pig / boar taint / QTL

1. INTRODUCTION

Castration of male pigs is a common practice, which reduces aggressive be-
haviour, makes animal management easier and reduces the occurrence of boar
taint, a strong perspiration-like and urine-like unpleasant odour and flavour re-
leased by heating or cooking boar meat. Boar taint is primarily derived from
the accumulation of androstenone and skatole in fat tissue [30,49]. This subject
has already been reviewed by Claus et al. [9]), and Bonneau [5] but our present
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study will focus on the progress made in understanding the genetic aspects of
boar taint.

Androstenone is a steroid, which causes a pronounced urine-like odour and
flavour in meat. There is a large variation in the consumers’ sensitivity to an-
drostenone i.e. some consumers are able to detect very low concentrations
while others are anosmic to it [51]. Androstenone is formed in the testis, to-
gether with the steroid hormones, androgens and estrogens, and its produc-
tion level depends on the sexual maturation [8, 16]. The second contributors
to boar taint are indoles, especially 3-methyl indole or skatole. Almost all the
consumers are sensitive to skatole, which gives meat a faecal-like odour and
flavour [50]. Indoles are produced by bacteria in the colon, from the breakdown
of the amino-acid tryptophan [18]. The reason why high levels of skatole in fat
tissue exist in some intact pig males, but not in castrates and gilts, is not fully
understood.

The genetic determinism of androstenone and skatole levels has been inves-
tigated primarily through the estimation of genetic parameters. In the litera-
ture, the average heritability value of androstenone levels is high (h2 = 0.56),
ranging from 0.25 to 0.88 [35] with recent estimated values in the same
range [36, 48]. Skatole levels show medium heritability values ranging from
0.19 to 0.54 [31, 45]. In addition, it has been suggested that a major gene
controlling the level of androstenone in fat is segregating in a Large White
population [15] and that another major gene is affecting the skatole level [27].
Tajet et al. [45] have reported a positive genetic correlation between skatole
and androstenone levels (0.36–0.62).

The aim of this review is to carry out an inventory of approaches undertaken
to understand the genetic factors involved in boar taint. First, we shall describe
how several teams have carried out the characterization of QTL, revealing
the particular complexity of these traits. Second, we shall present the studies
aimed at characterizing the metabolic pathways involved and the physiological
methodologies used to identify candidate genes. In order to better confront the
two approaches, we provide in Table I data on the genes cited in this review
with their putative position in the pig genome deduced from their location on
the human physical map (http://www.ensembl.org/Homo_sapiens/index.html)
and the comparative pig/human map established by Robic et al. [34]
(http://www2.toulouse.inra.fr/lgc/pig/msat/). Lastly, we shall give some per-
spectives on the use of these various strategies to identify genes involved in
such complex traits. These genes often belong to a multigenic family and are
located in a cluster. However, since the number of porcine genes included in a
cluster can differ from that in man (Tab. I), the correct identification of which
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gene the authors have worked on is not always obvious. Thus, we have chosen
not to attribute numbers to the porcine genes.

2. DETECTION OF QUANTITATIVE TRAIT LOCI (QTL)

The first QTL analysis of androstenone levels in fat was performed on a
three-generation experimental cross between Large White (LW) and Meishan
(MS) pig breeds [33]. The level of androstenone in fat was measured on F2
generation boars aged 100, 120, 140 and 160 days and on individuals slaugh-
tered at around 80 kg live weight. Four major QTL were detected on pig chro-
mosomes SSC3, SSC7, SSC13 and SSC14, which explained respectively 7 to
11%, 11 to 15%, 4 to 9% and 6 to 8% of the phenotypic variance. Two mi-
nor QTL were characterized on SSC4 and SSC9, which explained 4 to 7% of
the variance. Some QTL were found to have a significant (SSC6) or suggestive
(SSC10, SSC11, SSC18) effect on androstenone level only at one stage i.e. 100
or 120 days of age. In slaughtered individuals, the only QTL detected were the
QTL on SSC7 and the suggestive QTL on SSC14. High androstenone levels
were associated with alleles from the Meishan breed, except on SSC7. The
variation in the number and position of QTL according to age indicates that
the biochemical mechanism of this trait is complex and involves numerous
genes.

The second QTL analysis [21] was performed on a similar experimental
F2 population and androstenone levels in fat were determined only at slaugh-
ter (85 kg live weight). Five QTL were detected for androstenone on SSC2,
SSC4 (mostly significant because of a dominant effect), SSC6, SSC7, and
SSC9, which explained respectively 7.1, 8.6, 7.5, 6.2 and 6.2% of the phe-
notypic variance. Additionally, QTL for androstenone score assessed by a sen-
sory panel, were detected on SSC13 and SSC14, but the authors speculated
that the androstenone score was more related to skatole or indole levels than
to androstenone level. In both studies, the power to detect QTL was limited by
the size of the populations. The French study [33] included 485 intact males
and only one QTL was detected at slaughter. The British study [21] was per-
formed with only 178 boars and authors characterized five androstenone QTL
at slaughter. Although the two F2 populations were quite similar, only the QTL
on SSC7 was detected in both studies at close locations (64 and 70 cM) with a
Meishan allele associated with a lower androstenone level.

Lee et al. [21] and Bidanel et al. [4], worked on subgroups of the Large
White × Meishan pig population used in the French study [33] and measured
skatole and indole accumulation in fat at slaughter (80–85 kg live weight).
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Each team identified QTL on different chromosomes i.e. for skatole SSC6,
SSC13 and SSC14 [21] versus SSC7, SSC12 and SSCX [4] and for indole
SSC13 and SSC14 [21] versus SSC2, SSC6 and SSC7 [4]. The results of the
assessment of lean and fat samples by a sensory panel [21] resulted in the
detection of a QTL on SSC14 for skatole scores, half way between the QTL
identified for skatole and indole levels. In conclusion, although the population
sizes, genotypes and measurements were similar, the subsets of QTL identified
were completely different.

A third study on boar taint QTL was carried out on a Landrace outbred popu-
lation [48]. Androstenone and skatole concentrations in fat were determined in
217 intact boars. Only 10 regions of the genome, chosen on the basis of previ-
ously detected QTL for growth and fatness, were scanned with two microsatel-
lite markers. Except for SSC3, 4, 6 and 7, none of the other regions studied
included locations where boar taint QTL had previously been described. The
authors identified only one QTL for skatole on SSC6 in a region where a QTL
had been previously detected for androstenone [21].

3. GENES INVOLVED IN THE METABOLISM
OF ANDROSTENONE

3.1. Androstenone synthesis and metabolism

Together with other 16-androstene steroids, androstenone (5 α-androst-16-
en-3-one) is synthesized in the testis from pregnenolone [16,19,20], in relation
with sexual development, and stored in fat tissue because of its lipophilic prop-
erties. The pathways of the synthesis of androstenone in the testis are presented
in Figure 1, drawn according to Brooks and Pearson [6] and to which we have
added the two steps of degradation, which are now clearly identified: phase I
i.e. metabolism by hydrogenation and phase II i.e. metabolism by sulfoconju-
gation in the testis or in the liver [14, 38, 39]. Therefore, in theory, high levels
of androstenone in fat can be ascribed to a high intensity of testicular synthesis
or/and a low intensity of liver degradation or/and a low intensity of testicular
metabolism.

3.2. Genes involved in the testicular synthesis of androstenone

The initial step in steroidogenesis is the formation of pregnenolone from the
cleavage of the side chain of cholesterol, catalysed by the enzyme CYP11A
(Fig. 1). The sequence of the mRNA for porcine CYP11A1 is available (Tab. I)
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and has been mapped to SSC7 at a location different from that of the QTL char-
acterized on this chromosome [33]. CYP11A1 can therefore be excluded as a
candidate gene for this QTL. Moreover, the mutation proposed by Greger [17]
in the regulatory region of this gene has been excluded as an explanation of the
variation of androstenone levels in fat [33].

The formation of 16-androstene steroids from pregnenolone is catalysed by
the andien-β synthetase enzyme system [19] and CYB5 is the major compo-
nent of this system (Fig. 1). High levels of CYB5 have been indicated as one
of the causes of overproduction of 16-androstene steroids by the testis [11].
The mRNA of porcine CYB5 has been sequenced (Tab. I) and a SNP at base 8
upstream of the ATG in the CYB5 5’UTR has been identified [24]. This SNP
is associated with a significant decrease in CYB5 protein expression (in vitro
demonstration) and a low level of androstenone in the fat of animals from a
variety of European breeds [24]. The putative location of CYB5 in the porcine
genome (Tab. I) excludes this gene as a candidate gene for previously identi-
fied androstenone QTL [21, 32, 33] but CYB5 is most likely a target gene for
regulations, which remain to be determined.

Other genes encoding enzymes well known for their involvement in
steroidogenesis have also been investigated to identify mutations affecting the
synthesis of androstenone in testis. CYP17 and CYP21 are cytochrome P450
enzymes (Fig. 1). No non-synonymous mutation has been detected in the cod-
ing sequence of the CYP21 gene located in the region of the androstenone QTL
on SSC7 [33]. The CYP17 gene has been tested but without success [25].

3.3. Genes involved in the degradation of androstenone

Doran et al. [14] have identified the initial reaction in the metabolism of
androstenone in pig liver microsomes: androstenone is reduced by the enzyme
3β-HSD, mainly to β-androstenol (Fig. 1). The expression of 3β-HSD pro-
tein, which is lower in liver microsomes from Meishan pigs (exhibiting high
levels of androstenone) than from Large White pigs (exhibiting low levels of
androstenone in fat), is accompanied by a reduced level of the corresponding
mRNA [29]. This result suggests a defective regulation of the hepatic 3β-HSD
expression at the transcription level [29]. Although 3β-HSD is active in both
liver and testis, only expression of the hepatic form is negatively correlated
with androstenone levels in fat [29]. In pig, a single gene HSD3B, encodes
this enzyme (Tab. I) and its expression is regulated by a tissue-specific mech-
anism [29]. This gene is expected to be localized between 90 and 100 cM
on the linkage map of SSC4, near the region where a QTL has been detected
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for androstenone level in fat (105 cM by Lee et al. [21]). The HSD3B gene has
been entirely sequenced including the promoter. Variations detected in the pro-
moter sequences of the porcine HSD3B do not show any relationship with the
level of androstenone in fat, but are breed-dependent [10]. It can be speculated
that transcription factors responsible for the liver-specific regulation of the ex-
pression of HSD3B may play an important role in regulating the deposition of
androstenone in pig adipose tissue.

Hydroxysteroid sulfotransferase (SULT2A) is responsible for sulfoconju-
gating the 16-androstene steroids in the liver [37] and testis [39] (Fig. 1).
According to Sinclair and Squires [38], a decreased testicular ability to sul-
foconjugate androstenone would result in increased levels of unconjugated
androstenone in plasma, permitting the accumulation of androstenone in fat.
Sinclair et al. [40] have demonstrated that the testicular activity of the en-
zyme SULT2A is negatively correlated to fat androstenone levels in Yorkshire
boars. The expected porcine location of the gene (SSC6, near 80 cM) is too
distant from the androstenone QTL characterized on this chromosome [21].
Although the sequence of the porcine SULT2A promoter is unavailable, an
indirect study [40] has shown that nuclear receptors are involved in the regu-
lation of porcine SULT2A. Moreover, the number of genes coding for SULT2A
porcine enzyme is currently unknown.

4. GENES INVOLVED IN THE METABOLISM OF SKATOLE

Skatole or 3-methyl indole is a derivative of tryptophan produced in the
hindgut of pigs by intestinal bacteria. The level of skatole intestinal production
is mainly dependent on nutritional factors [18] and no genetic control has been
demonstrated so far. This compound is a pneumotoxin in several mammalian
species including goats, cattle and man [52] but not in pigs. No physiological
function of skatole is known in pigs. Pigs are not sensitive to skatole toxicity,
suggesting that they metabolise skatole differently from other species. Phase I
of skatole metabolism involves enzymes of the cytochrome P450 family [1]
and phase II a sulfoconjugation.

4.1. Phase I metabolism

The role of different cytochrome P450 enzymes in skatole metabolism has
been investigated by Diaz and Squires [12] who have demonstrated the impor-
tant role of CYP2A and CYP2E1. Terner et al. [47] have ascribed the major
role to CYP2E1.
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Hepatic cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme, which
is mainly involved in the metabolism of a number of low molecular weight
xenobiotics (ethanol, pyridine, acetone. . . ). In porcine liver, CYP2E1 has an
additional important role in catalysing the first step of skatole degradation and
a defective hepatic skatole metabolism will lead to skatole accumulation in fat.
Low skatole levels in fat have been associated with high levels of CYP2E1
in animals obtained from F4 wild pig crosses (but not in Swedish Yorkshire
pigs) [13, 43]. Skinner et al. [41] have shown an association between a SNP
in the promoter region of CYP2E1 gene and skatole deposition in a popula-
tion of commercial pigs. Lin et al. [26] have characterized a substitution in the
CYP2E1 gene causing a significant decrease in the expression and functional
activity of CYP2E1 in the liver. No QTL for skatole has been characterized
around the location of CYP2E1 (near 110 cM on SSC14 [41]), therefore it is
unlikely that this mutation plays a major role in boar taint. However, a better
understanding of the regulation of the expression of this gene might help to
identify other candidate genes [13]. Tambyrajah et al. [46] have exploited the
recent sequencing of the 5’ flanking region of the CYP2E1 gene to character-
ize factors regulating the CYP2E1 promoter activity. They have demonstrated
that in pig, binding of two transcription factors (HNF-1 and COUP-TF1) to
CYP2E1 could activate the promoter. The regulation of the expression of hep-
atic CYP2E1 by HNF-1 has previously been shown in mice [7] but the activa-
tion of the CYP2E1 promoter by COUP-TF1 is a novel observation, which may
be specific to the pig species. In man, targeted disruption of the HNF-1α gene
leads to a decreased expression of CYP2E1 [28]. Further research is needed
to investigate the polymorphism of the two HNF-1α genes, TCF1 and TCF2.
TCF1 is expected to be located in the pig genome near the position 35 cM
on the linkage map of SSC14, which is compatible with a QTL for sensory
assessed skatole, found by Lee et al. [21].

It has been shown that CYP2A enzymes are involved in the metabolism of
skatole in liver [12,47]. The relationship between gene polymorphism and ska-
tole levels has been investigated by Lin et al. [22] using a sequence named
CYP2A6. However, the corresponding porcine protein shares more similarities
with the human protein encoded by CYP2A13 gene than with CYP2A6. To
date, the number of genes coding for CYP2A porcine enzymes is not known.
The same authors [22] have found that a single base deletion causing a frame
shift in the coding region produces a non-functional enzyme. This polymor-
phism has been characterized in European breeds but could not be identi-
fied in Large White × Meishan crosses [42]. Moreover, the expected location
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of CYP2A on the porcine linkage map i.e. SSC6 at position 70/80 cM is not
compatible with that of the skatole QTL characterized by Lee et al. [21].

Terner et al. [47] have suggested that P450 cytochromes other than the
CYP2A and CYP2E1 enzymes could be involved in the degradation of ska-
tole. Analysis of the porcine CYP2C18 gene encoding another enzyme of the
cytochrome P450 family and localized on SSC14 has been carried out but
the detected sequence variations did not show any relationship with fat ska-
tole levels in pigs from a Danish commercial population [42] (hybrids Lan-
drace/Yorkshire/ Duroc).

4.2. Phase II metabolism

Involvement of sulfation in phase II of the liver catabolism of skatole has
been first described by Babol et al. [2], who have demonstrated that sulfation
by phenol sulfotransferase (SULT1A) is a major step of skatole clearance. The
number of genes coding for the SULT1A porcine enzyme (see Tab. I) is cur-
rently not known. A study by Lin et al. [23] with 69 intact male pigs from
a variety of European breeds has shown that a polymorphism in the SULT1A
gene (Tab. I) causes a significant decrease in its sulfation activity and might
be, at least partially, responsible for higher skatole levels. This mutation has
been found neither in Large White × Meishan crosses nor in a Danish com-
mercial population [42]. Moreover its location on SSC3 is incompatible with
any identified skatole or indole QTL [42].

5. RELATIONSHIP BETWEEN ANDROSTENONE
AND SKATOLE LEVELS

Skatole levels in the fat of intact males increase at puberty and are corre-
lated with fat androstenone levels [2, 3]. A first hypothesis to account for this
observation is that male sex hormones increase skatole production [9]. How-
ever, a second hypothesis considering that androgens inhibit the catabolism of
skatole has been more widely investigated [13]. Tambyrajah et al. [46] have
proposed that regulation mechanisms acting on the promoter of the CYP2E1
gene are very important to explain the variability of skatole level in fat. They
have shown that androstenone can inhibit the binding of COUP-TF1 to the
promoter of the CYP2E1 gene. Since COUP-TF1 is a member of the steroid
hormone receptor family, it is not surprising that androstenone associates with
it. In addition, Zamaratskaia et al. [53] have recently shown by other in vitro
studies the inhibitory effect of androstenone on CYP2E1 activity, but with con-
centrations very different from those present in vivo.
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6. CONCLUSION AND PERSPECTIVES

In this paper, we have discussed androstenone and skatole metabolisms as
equivalent processes. It is important to recall that metabolization of skatole is
necessary to eliminate xenobiotic substrates whereas storage of androstenone
is biologically important for reproduction function. Understanding the mech-
anisms of accumulation of these two products has been investigated with a
similar interest but their impact on selection is probably different.

Mapping data of QTL involved in boar taint demonstrate its multifactorial
nature. Currently, no clear conclusion can be drawn from the whole genome
studies on QTL locations for androstenone and skatole levels. The detection of
these QTL has been carried out using a whole genome scan approach with mi-
crosatellite markers but without further fine mapping. With the currently avail-
able tools, a new whole genome scan with a dense panel of SNP markers could
permit the fine mapping of QTL. QTL identifications have been performed on
an F2 generation of Large White ×Meishan crossed populations [21, 33]. All
Meishan alleles except that on SSC7 are associated with a high level of an-
drostenone in backfat. Identification of the gene responsible for the QTL on
SSC7 will require the production of specific backcrosses to isolate this QTL
in a different genetic background. Moreover, it would be very interesting to
characterize this QTL in other breeds. QTL studies in pigs at different ages
unnecessarily add extra complexity, which may be due to the effect of sexual
maturity. Moreover, in many published studies of candidate genes, it is not
clear if sexual maturity has been evaluated.

The search for mutations in genes involved in the metabolism of an-
drostenone and skatole has not been very successful in identifying candi-
date genes responsible for the QTL characterized on Large White × Meishan
crossed populations. This could be explained by the dramatic effect of breed
on the incidence of boar taint leading to the fixation of some loci affecting
boar taint in certain populations. Moreover, many of the studies on candidate
genes involve a very small number of animals. Nevertheless mutations have
been found in some genes, which could explain a minor part of the phenotype
or restricted to a limited population. Their possible involvement as candidate
genes does not exclude them as target genes. The functional investigation of
these two metabolic pathways should permit the identification of genes, which
act in regulation mechanisms, the most obvious being the regulation of their
transcription. Candidate genes will be searched for among genes coding for
these transcription factors.

In the next years, the use of microarrays to identify differentially expressed
genes associated with the accumulation of androstenone or skatole in fat
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should result in the identification of new target genes. The approach could
be similar to that of Stewart et al. [44] who has demonstrated using a human
microarray that genes well-known for their involvement in steroidogenesis are
over expressed in the testis of pigs with high testicular steroidogenesis. The
near availability of the entire porcine sequence will make it possible to ana-
lyze all target promoters. It will also be necessary to identify the molecular
regulations of these genes. Previous studies have shown which relevant organs
should be chosen i.e. testis and liver but the sorting and the choice of relevant
animals remain delicate.

The identification of genes involved in a QTL remains a difficult task but in
the case of boar taint, it has proven a really complex and complete exercise.
It will probably require the fine mapping of QTL and the characterization of
QTL on a larger panel of breeds. Although very useful, it is most probable
that molecular approaches cannot provide the whole answer. At present, the
challenge is to integrate all available strategies on the same animals.
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