
HAL Id: hal-00894584
https://hal.science/hal-00894584

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Character process model for semen volume in AI rams:
evaluation of correlation structures for long and

short-term environmental effects
Ingrid David, Loys Bodin, Gilles Lagriffoul, Non Renseigné, Christèle

Robert-Granié

To cite this version:
Ingrid David, Loys Bodin, Gilles Lagriffoul, Non Renseigné, Christèle Robert-Granié. Character
process model for semen volume in AI rams: evaluation of correlation structures for long and short-
term environmental effects. Genetics Selection Evolution, 2007, 39 (1), pp.55-71. �hal-00894584�

https://hal.science/hal-00894584
https://hal.archives-ouvertes.fr


Genet. Sel. Evol. 39 (2007) 55–71 55
c© INRA, EDP Sciences, 2006
DOI: 10.1051/gse:2006033

Original article

Character process model for semen volume
in AI rams: evaluation of correlation

structures for long and short-term
environmental effects

Ingrid Da∗, Loys Ba, Gilles Lb,
Eduardo Ma, Christèle R-G́a

a Station d’amélioration génétique des animaux, Institut national de la recherche agronomique,
BP 52627, 31326 Castanet-Tolosan Cedex, France

b Institut de l’élevage – ANIO, BP 42118, 31321 Castanet-Tolosan Cedex, France

(Received 24 May 2006; accepted 11 October 2006)

Abstract – The objective of this study was to build a character process model taking into ac-
count serial correlations for the analysis of repeated measurements of semen volume in AI rams.
For each ram, measurements were repeated within and across years. Therefore, we considered
a model including three environmental effects: the long-term environmental effect, which is a
random year∗subject effect, the short-term environmental effect, which is a random within year
subject∗collection effect, and the classical measurement error. We used a four-step approach
to build the model. The first step explored graphically the serial correlations. The second step
compared four models with different correlation structures for the short-term environmental ef-
fect. We selected fixed effects in the third step. In the fourth step, we compared four correlation
structures for the long-term environmental effect. The model, which fitted best the data, used a
spatial power correlation structure for the short-term environmental effect and a first order au-
toregressive process for the long-term environmental effect. The heritability estimate was 0.27
(0.04), the within year repeatability decreased from 0.56 to 0.44 and the repeatability across
years decreased from 0.43 to 0.37.

serial correlations / longitudinal data / semen / sheep

1. INTRODUCTION

Artificial insemination (AI) is an important tool applied in programs of ge-
netic improvement of dairy and meat sheep. In France, AI is used essentially
with fresh semen, during summer, a period when semen production units need
to produce large amounts of useful semen per day from a limited number
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of rams. For a given conservation technique, the number of doses produced
per ejaculate depends on the volume, sperm concentration and sperm motil-
ity. Each ram in an AI centre is collected repeatedly and frequently during
the summer season over several years. Semen records of an adult ram may
be considered as repeated measures of a single trait. The classical approach
for repeated measures of a single trait is the simple repeatability model. This
is widely used for the genetic analysis of semen characteristics in domestic
species [1,10,20,23,24,33]. However, the simple repeatability model assumes
that residual effects are independent and that permanent environmental effects
are constant over the productive life of each subject, which may be too restric-
tive. This may result in biased estimates of variance components [31] and may
invalidate inferences about the mean response profile in longitudinal data [9].
Several general models that consider a smooth change over time in the mean
as well as in the variance structures are given in the literature: the random re-
gression model, which attempts to model the forms of the functions of time
for each component of the phenotype (mean, genetic additive value, perma-
nent environment) [14], the structured antedependence model, which defines
the observation at time t as a function of the previous observation [17] and the
character process model, which focuses on modelling the covariance functions
themselves [27]. The aim of this study was to find the character process model
that fits best the semen volume data recorded on adult rams of one French AI
centre.

2. MATERIALS AND METHODS

2.1. Data

Data on the ejaculates used in this study originate from rams collected dur-
ing the 1996–2004 period in a French AI centre. We have focussed our study
on data recorded between May and August, which corresponds to the period of
intensive semen collection. A total of 36 480 ejaculates from 974 adult males,
sons of 230 different sires, was analysed. The final pedigree file consisted of
20 761 animals. The rams were between 2 and 7 years old. The intervals be-
tween successive collections within one year varied from 1 to 28 days. The
rams were collected over 1 to 5 successive years. The number of records per
animal was on average 36 and ranged from 1 to 183. Three traits (volume,
sperm concentration and mass motility) were measured at each collection. The
character of interest in the present study was the volume, which was read di-
rectly in millilitres from a graduated collection tube.
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2.2. Model

The assumptions of the simple repeatability model are not compatible with
the analysis of this semen data. Firstly, the assumption of independence be-
tween residual effects could not be fulfilled. Indeed, uncontrolled daily en-
vironmental (temperature) or biological (animal health) influences on semen
production on a particular day may be similar to those on neighbouring days.
Secondly, the random animal effect may not be constant over years. For in-
stance, animals are assigned to different pens each year and thus a ram may
be dominant one year and not be dominant another year, which can affect
its semen production. Thus, it is more realistic to update yearly the perma-
nent environmental effect. As a result, three random environmental compo-
nents influencing each semen record may be considered. Following notations
used by Carvalheira et al. [4], the first is the long-term environmental effect
(LTE), which includes all uncontrolled events that permanently influence the
semen production of a particular ram during one year. This LTE effect includes
past events specific to each animal that occurred during its first months of life
(health, rearing conditions) and within year conditions such as feeding man-
agement, relations with other animals in the pen and health events. The second
component is the short-term environmental effect (STE), which comprises all
other sources of unaccounted temporary variations (correlated) that affect se-
men production. The third is the classical measurement error.

To fit the data with these new assumptions, the following character process
model was used:

y = Xβ + Za +W p+ ε1 + ε2 (1.1)

where: y is a vector of ejaculate volumes of order K (K =
∑N

i=1 ni, N being the
number of animals, ni the number of measurements per animal). β is a vector of
fixed environmental effects of order q. a is a vector of random genetic additive
effect of order s (s = 20 761). p is a vector of random LTE effects of order
r (r =

∑N
i=1 ci, where ci is the number of years of collections for subject i).

ε1 is a vector of random correlated STE effects of order K. ε2 is a vector of
independent residuals of order K. X, Z and W are incidence matrices of order
K × q, K × s, K × r, respectively.

The distribution of random effects are the following: a ∼ N(0, σ2
a A)

where A is the numerator relationship matrix, p ∼ N(0, σ2
pH2), ε1 ∼
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N(0, τ2H1) and ε2 ∼ N(0, σ2
e IK). H1 and H2 are

H1 =
N⊕

i=1

ci⊕
c=1

H1ic with H1ic =



1 hic,12 · · · hic,1Lci

hic,12 1 · · · hic,2Lci
...

... · · · ...
hic,1Lci hic,2Lci · · · 1


and hic, jl= g1

(
xic, jl

)

H2 =
N⊕

i=1
H2i with H2i =



1 si12 · · · si1ci

si12 1 · · · si2ci

...
... · · · ...

si1ci si2ci · · · 1


and si,mc= g2

(
di,mc
)

where g1 and g2 are unknown correlation functions, ⊕ represents the direct
sum. Lci is the number of observations made during year c for subject i. xic, jl

is a measurement of “distance” between collections j and l of subject i during
year c. dimc is a measurement of “distance” between collections performed
during year m and c for subject i.

The vector of observations y is assumed to be normally distributed with
E (y) = Xβ and var (y) = σ2

aZ AZ′ + σ2
pWH2W′ + τ2H1 + σ

2
e IK.

Under this model, a heritability estimate is σ̂2
a/σ̂

2
T where σ̂2

T = σ̂
2
a + σ̂

2
p +

τ̂2+σ̂2
e . The within year repeatability estimate is, for all subjects i, a function of

x of the forms:
(
σ̂2

a + σ̂
2
p + τ̂

2g1 (x)
)
/σ̂2

T and the repeatability estimate across

years is, for all subjects i, a function of d of the forms
(
σ̂2

a + σ̂
2
pg2 (d)

)
/σ̂2

T .

2.3. Model selection

Selection of appropriate correlation structures for LTE and STE is a non-
trivial step in the model selection process. The method used is inspired from
methods proposed by Verbeke and Molenberghs [34], Verbeke et al. [35] and
Lesaffre et al. [21] and involves four steps.

The first step consisted in exploring graphically the correlation between col-
lections using the empirical semi-variogram [9, 34]. To detect this correlation,
the following model was used:

y = Xβ + M f + ε1 + ε2 (1.2)

where y, β, ε1 and ε2 are the same as in model (1.1), f is the random sub-
ject intercept ( f ∼ N(0, INσ

2
f )) with the corresponding incidence matrix M,
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we draw the scatter plot of 1
2 E
(
ei j − eil

)2
= σ2

e + τ
2
(
1 − g1

(
xi jl

))
vs. the cor-

responding “distance” xi jl where e is the vector of independent residuals of
model (1.3):

y = Xβ + M f + e (1.3)

where the notations are the same as in model (1.2). The total process variance

(σ2
e + τ

2 + σ2
f ) was estimated by 1

2 E
(
ei j − ei′k

)2 ∀i � i′. For the exploration of
the function g1, the distance considered was the interval in days between ob-
servations. For the exploration of g2, we used residuals obtained with a model
similar to (1.3) where y corresponded to the subject average trait per year and
the distance considered was the interval in years between mean records. In
this step, β is the vector of all the potential fixed effects and all the two-way
interactions are described in detail in David et al. [7].

The second step consisted in choosing g1 fitting and comparing several serial
correlation structures for the model (1.2). We considered four different struc-
tures for H1. The first model (C0S) assumed independent STE (g1(x) = 0), the
second model (ARS) assumed a first-order autoregressive correlation structure
for H1 (g1(x) = ρx where x is the difference between ranks of collection), the
third (SPS) and fourth (SGS) models assumed a spatial power (g1(x) = ρx)
and a spatial Gaussian (g1(x) = ρx2

) where x is the interval between collec-
tions in days, respectively. The models were fitted using the mixed procedure
of SAS© 8.2 [30] and the restricted maximum likelihood method to estimate
variance components. We used restricted likelihood ratio tests to compare the
C0S model to the three other models (nested models). The corresponding null
and alternative hypotheses were ρ = 0 and ρ � 0, respectively. Under the
null hypothesis, the test statistic is expected to be distributed as a chi-square
with two degrees of freedom. We used the Akaike information criteria (AIC)
to compare the non-nested models (ARS, SPS, SGS). The best model will be
the one that has the lowest value of −2AIC.

The third step selected fixed model terms in (1.2) based on the model re-
tained in step 2. This has been done step by step by comparing nested models
with the likelihood ratio test. For this step, models were fitted using the mixed
procedure of SAS© 8.2 [30] and the maximum likelihood method.

The fourth step selected an appropriate correlation structure for the LTE
according to the correlation structure for H1 selected in step 2 and the mean
structure retained in step 3. We compared four different correlation structures
for H2 using the model (1.1). The first model assumed no correlation be-
tween LTE (C0L, g2 (d) = 0), the second model assumed a correlation of 1
between LTE (C1L, g2 (d) = 1), the third model assumed a first-order autore-
gressive correlation structure for H2 (ARL, g2 (d) = ηd, where d is the absolute
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Figure 1. Ram semen volume: observed semi-variogram for the short-term environ-
mental effect. σ2

e , τ
2 and σ2

f represent the variability of the measurement error, the
serial correlation component and the random intercept in (1.2), respectively.

difference between ranks of year of collection) and the fourth, a uniform corre-
lation structure (UCL, g2 (d) = constant). Restricted likelihood ratio tests were
used to compare C0L or C1L to ARL or UCL structures while AIC criteria
were used to compare the other models. For this step, data were analysed with
an animal model using the ASReml software [13]. Variance components and
genetic parameters were estimated at the end of this step using the restricted
maximum likelihood method.

Finally, to clarify the relative role of the various model components, we
compared the four models obtained by fitting the ARL or C1L structure to the
LTE variation and the SPS or C0S structures for the STE variation. Thereafter
in the text, the various sub-models (1.1) are labelled according to the structure
of H1 and H2, for instance ARL/SPS.

3. RESULTS

3.1. Semi-variogram

The empirical semi-variograms drawn for the exploration of g1 and g2 are
presented in Figures 1 and 2, respectively. In both cases, this suggests a serial
correlation dependent on time that may be described by an increasing function
of the interval between observations. Nevertheless, in both cases, the semi-
variogram did not give enough information to choose among the potential
g(x) functions. In Figure 1, the empirical estimates of variance components
for σ2

f , τ
2 and σ2

e were 0.052, 0.02 and 0.045, respectively.
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Figure 2. Ram semen volume: observed semi-variogram for the long-term environ-
mental effect.

Table I. Variance component estimates, minus twice restricted log-likelihood and mi-
nus twice Akaïke information criteria for different correlation structures for short term
environmental effect in model (1.2).

STEa C0S ARS SPS SGS

−2RL1 4905 2767 2560 2644
∆(−2RL)2 - 2138 2345 2261
−2AIC3 4909 2775 2568 2652
σ2

e 0.059 0.049 0.048 0.050
τ2 - 0.018 0.019 0.013
ρ - 0.93 0.97 0.96
σ2

f 0.050 0.039 0.040 0.043

1 −2RL = minus twice restricted maximum likelihood.
2 ∆(−2RL) = likelihood ratio statistics of the corresponding model vs. the C0S model.
3 −2AIC = minus twice Akaïke information criteria.
a Correlation process for the STE: C0S ⇔ g1 (x) = 0 | SPS ⇔ g1 (x) = ρx | SGS ⇔ g1 (x) = ρx2

,
where x is the absolute interval in days between observations, ARS ⇔ g1 (x) = ρx, where x is
the absolute interval between ranks of observation.

3.2. Selection of short-term environmental effect correlation matrix

Variance component estimates, minus twice-restricted log-likelihood and
AIC criteria (−2AIC), obtained with the different correlation structures to
model STE are presented in Table I. When we compared the C0S structure
to ARS, SPS and SGS structures, the smallest likelihood ratio statistic of two
models was 2138, indicating that the C0S structure fitted the data less well
than the other. Concerning the comparison among SPS, SGS and ARS struc-
tures, the −2AIC criteria were smaller for the SPS and all differences in the
−2AIC criteria were higher than 80, indicating that the SPS structure was the



62 I. David et al.

best. The estimates of variance components with the SPS structure were close
to those estimated with the empirical semi-variogram 0.048, 0.019, 0.040 vs.
0.052, 0.02 and 0.045 respectively. The correlation estimate was very high be-
tween two STE separated by one day (ρ = 0.97).

3.3. Fixed effects

The fixed effects included in the final model for the mean structure were the
age at collection, the week, the year of collection, the interval with previous
collection, the daily variation (AM/PM) and the interaction week∗year. The
number of collections during the previous year, the rank of the within season
collection, the breeding value for milk production in quartile and all other two-
way interactions were discarded. Minus twice the difference of maximum log-
likelihood values between the full fixed effect model and the reduced models
equals 210. The associated number of degrees of freedom is 180, implying that
the reduced model was acceptable at the 5% level of significance (P = 0.0623).
Estimates of the selected fixed effects are described in detail in David et al. [7].

3.4. Selection of long-term environmental effect correlation matrix

Variance components, heritability estimates, minus twice AIC criteria and
restricted log-likelihood obtained with the different correlation structures for
the LTE are presented in the first four columns of Table II. The smallest
value of the restricted likelihood ratio tests corresponding to the comparison
of ARL/SPS model to the C0L/SPS or the C1L/SPS model was 55, and the
ARL/SPS model presenting a lower −2AIC criteria than the UCL/SPS model.
These results indicate that the ARL/SPS model has the best fit. The correlation
estimate for LTE was η = 0.88 and was significantly different from 1 (by the
LRT test with C1L/SPS).

Repeatability within and across years, estimated with the ARL/SPS model,
were decreasing functions of the interval between collections. Within year
repeatability varied from 0.56 to 0.44 (Fig. 3) and repeatability across years
varied from 0.43 to 0.37 (Fig. 4).

The four last columns in Table II contains the results for the four models ob-
tained by fitting the ARL or C1L structure to the LTE variation and the SPS or
C0S structures for the STE variation. The log-likelihood ratio values indicate
that models with the ARL structure were significantly better than the models
with the C1L structure, and that including the STE component (SPS vs. C0S)
was also significantly better. The simple repeatability model (C1L/C0S) just
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Table II. Variance component, heritability estimates and minus twice restricted log-
likelihood for different correlation structures for long and short term environmental
effects in model (1.1).

1 2 3 4d 5c 6

LTEa C0L UCL C1L ARL C1L ARL

STEb SPS SPS SPS SPS C0S C0S

−2RL1 −64 882 −64 897 −64 896 −64 951 −62 357 −64 337

−2AIC2 −64 872 −64 885 −64 886 −64 938 −62 351 −64 329

σ2
e 0.0481 0.0481 0.0481 0.0479 0.0596 0.0540

τ2 0.0162 0.0161 0.0176 0.0131 - -

ρ 0.97 0.97 0.97 0.96 - -

σ2
p 0.0018 0.0143 0.0126 0.0182 0.0190 0.0210

η - 0.88 - 0.88 - 0.66

σ2
a 0.0508 0.0319 0.0321 0.0306 0.0327 0.0367

h2 0.43 (0.04) 0.29 (0.04) 0.29 (0.04) 0.27 (0.04) 0.29 (0.04) 0.33 (0.04)

1 −2RL = minus twice restricted log likelihood.
2 −2AIC = minus twice Akaïke information criteria.
a Correlation process for the LTE:
C0L ⇔ g2 (d) = 0 | C1L ⇔ g2 (d) = 1 | UCL ⇔ g2 (d) = η | ARL ⇔ g2 (d) = ηd, where d is the
absolute difference between ranks of year of observation.
b Correlation process for the STE: SPS ⇔ g1 (x) = ρx | C0S ⇔ g1 (x) = 0, where x is the
absolute interval between collections in days.
c Simple repeatability model.
d Retained model.

Figure 3. Within year repeatability for ram semen volume in a model with spatial
power and autoregressive correlation structures for the short and long-term environ-
mental effect, respectively.
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Figure 4. Repeatability across years for ram semen volume in a model with spatial
power and autoregressive correlation structures for the short and long-term environ-
mental effect, respectively.

fitting the subject effects inflated the proportion of variance in the residual rel-
ative to the other models. A major improvement in fit was observed when either
the ARL correlation to LTE or a correlation structure to the STE was added to
the simple repeatability model. Both of these models effectively allow a lower
correlation between records from different years than for records within the
same year. Having both terms in (ARL/SPS) gives a small, though significant,
further gain, and results in a lower heritability estimate than the other models.
The correlation structures between observations (overall repeatability) mod-
elled with these four models are presented in Figure 5. The simple repeatability
model (C1L/C0S) assumes a constant correlation between observations, which
is quite different from the correlations modelled with the three other models.
The ARL/C0S model, which considers that the correlation between observa-
tions made during the same year is constant, tended to underestimate the cor-
relation between observations separated by less than 15 days, and to overesti-
mate the correlation between observations separated by more than 15 days and
less than 2 years. The correlations modelled with the ARL/SPS and C1L/SPS

models were quite similar but may differ significantly when the number of
years between observations increases.

4. DISCUSSION

4.1. Model

The model proposed here, for the analysis of repeated measurements of se-
men volume, is a special case of the parametric character process models that
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Figure 5. Evolution of the correlation between observations depending on the model
C1L ⇔ g2 (d) = 1 | ARL ⇔ g2 (d) = ηd | C0S ⇔ g1 (x) = 0 | SPS ⇔ g1 (x) = ρx,
where g1 and g2 are the functions of the correlation processes for the STE and the
LTE, respectively, d is the absolute difference between ranks of year of observation
and x is the absolute interval between collections in days.

model the covariance functions [27]. Such models also accommodate a corre-
lation other than 1, over time, for the genetic component. However, we did not
use this approach since we checked that the genetic correlations between traits,
in a multiple trait analysis with one trait per age, were all high (>0.95). Similar
models to the one proposed here have been used to study cow lactations [4,31]
but the modelling process differed from ours by omitting the formal justifica-
tion of the choice of the correlation structures. Other models can be used for
the analysis of repeated and correlated data. For example, random regression
or structured antedependence models have been proposed for the evaluation of
cattle [17–19,25,26]. Nevertheless, Jaffrézic and Pletcher [15] have shown that
character process models perform well in comparison to alternative methods,
often providing a better fit to the covariance structure.

A first attempt to extend the character process model to the multiple-trait
case has been proposed by David et al. [6] considering cross-correlations equal
to 0, identical ρ and identical η for all traits. Other models that do not ignore
cross-correlations have been proposed by Jaffrézic et al. [16] using a method
that involves an eigen transformation of the variance covariance matrices while
Gilmour and Thompson [12] proposed to model the covariance matrix on the
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inverse scale. However, in both cases these methods assume that the corre-
lation process has the same form for all traits. These assumptions may be
too restrictive and cannot be extended in the case of different correlation pro-
cesses for each single trait. Exploring graphically the cross-correlation could
be an interesting first step to this extension. If we consider two traits A and
B, the method for exploring the cross-correlation process for STE would be

to draw 1
2 E
(
eA

i j − eB
ik

)2
vs. the corresponding distance jk , where eA

i j and eB
ik are

the residuals of model (1.3) extended to the multiple trait case where only
cov( f A, f B) � 0. However, further analyses are needed to validate and confirm
this approach.

4.2. Model selection

We used a graphical technique to detect serial correlation. This first step
in the analysis has three advantages: it indicates whether a correlation struc-
ture exists or not, it can help the user in determining an initial form of the
covariance matrix, and it gives initial values of variance components that may
help convergence to a maximum likelihood solution. However, this technique
cannot be used to select an appropriate correlation function. Another way to
explore the correlation structure would be to fit a mixed model with an unstruc-
tured covariance structure and to use the resulting estimated covariance matrix
to suggest a more parsimonious structure. Nevertheless, when the number of
time points is large, the REML algorithm may not converge [8]. This was the
case for semen production records and the graphical technique was then more
suitable.

Fitting linear models implies that an appropriate mean structure as well as
a covariance structure be specified, but these structures are not independent
of each other [34]. For our analysis, the covariance structure for the STE was
determined first, using a full fixed model, while the fixed effects were tested
later. Nevertheless, to confirm the choice of the correlation structure for the
STE, the different correlation structures were also compared with the reduced
mean model and the spatial power structure was still “optimal”. A robust pro-
cedure for choosing the fixed model was proposed by Liang and Zeger [22]. It
is relatively insensitive to the structure of the variance covariance assumed for
the data. Verbeke and Molenberghs [34] showed that this estimator is consis-
tent as long as the mean is correctly specified in the model. In agreement with
Robert-Granié et al. [29], the results we obtained with this approach showed
that, in most cases, the robust standard error was smaller than the naïve one.
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Concerning the selection of g1 (x), our analysis clearly showed an STE cor-
relation of sequential measurements. Rams were collected with unequal time
lags, and models using a function of time-lag in days between collections (SPS

and SGS structures) fitted the data better than the ARS model based on the or-
der of collections rather than the actual time interval. The daily correlation of
the STE in the final model (ARL/SPS) is high: 0.96. However, this correlated
component is one-third the size of the uncorrelated component (τ2/σ2

e � 0.27).
These results indicate that an important component of unexplained and uncor-
related daily variation remained.

With regards to the selection of g2 (x), the assumption of independent LTE
was discarded (C0L/SPS model) indicating that some influences on semen pro-
duction persist over years. However, not all influences remain constant since
the C1L/SPS model with a correlation of 1 was not as good as the ARL/SPS

and UCL/SPS model with a smaller correlation. The autoregressive correlation
was better than the uniform correlation. Hypotheses similar to those proposed
by Carvalheira et al. [3] for cow milk production may explain this result: many
events that affect a ram’s capacity for semen production occur during produc-
tive life, and impart a correlation structure between years of production that de-
cays with time. Several authors [4,31] have already used the first order autore-
gressive correlation structure for the analysis of LTE in cow lactations. Similar
to the result obtained when omitting the permanent environmental effect in
the case of repeated measurements [5], assuming independent LTE (C0L/SPS

model) yielded higher genetic variance and heritability (0.43 vs. 0.27, 0.29) es-
timates than considering a correlation between LTE because the genetic com-
ponent picks up the covariance omitted from the environmental component.
The results found concerning the correlation processes for STE and LTE mean
that there may be some uncontrolled factors, which modify over years the so
called “permanent” environmental effect (i.e. change in the location of the pen
in the shed, modification of social behaviour when changing pen. . . ) and other
factors, which induce within year correlations between residuals of the simple
repeatability model (health status, body weight change. . . ). Therefore, one has
to identify and control these factors to improve semen production and increase
heritability and repeatability of semen traits.

4.3. Variance components and genetic parameters estimates

Once the appropriate correlation structures for LTE and STE were selected,
we compared the component sub-models with the classic repeatability model.
The results showed that the ARL/SPS model fitted the data the best. The
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heritabilities of these four models ranged from 0.27 to 0.33 and the corre-
lations between estimated breeding values for semen volume estimated with
these models were high (>0.98). These results may be specific to the data and
the consequence of the high correlations for LTE and STE, indeed the results
obtained for similar comparisons in other studies differed a little [3, 4, 31, 32].
However, the results obtained with the ARL/SPS model vs. the three other mod-
els relaxed the assumptions of permanent environmental effect and indepen-
dent residuals, which are the usual assumptions used in the study of repeated
semen trait [2, 10, 11, 20, 23, 24].

The estimate of heritability with the ARL/SPS model was moderate, higher
than that reported in the literature for ram semen volume (0.07, 0.11 [28], 0.15,
0.20 [10]) and in the middle of the range of heritability reported on all species
(from 0.07 to 0.58 [28, 33]).

5. CONCLUSION

We used a character process model to analyse semen volume in AI rams that
has previously been used by several authors [3,4] for test-day records of cows,
but with a different modelling process. An empirical semi-variogram gives an
informal check for serial correlation. The spatial power correlation and the
first order autoregressive structure gave the best fit to the correlation between
STE and LTE, respectively. Even if variance components were not markedly
affected in this study by the introduction of STE and a first order autoregressive
correlation structure for LTE vs. the classical simple repeatability model, the
proposed model insured an appropriate selection of fixed effects, identified un-
controlled factors and gave more information about the decline of repeatability
with time. The heritability estimate was moderate indicating that selection of
AI rams on their ability to produce semen volume could lead to a substan-
tial improvement in the number of doses produced per animal. However, the
impact of this selection on other traits must be evaluated.
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