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Abstract – With the increasing use of survival models in animal breeding to address the ge-
netic aspects of mainly longevity of livestock but also disease traits, the need for methods to
infer genetic correlations and to do multivariate evaluations of survival traits and other types of
traits has become increasingly important. In this study we derived and implemented a bivariate
quantitative genetic model for a linear Gaussian and a survival trait that are genetically and en-
vironmentally correlated. For the survival trait, we considered the Weibull log-normal animal
frailty model. A Bayesian approach using Gibbs sampling was adopted. Model parameters were
inferred from their marginal posterior distributions. The required fully conditional posterior dis-
tributions were derived and issues on implementation are discussed. The two Weibull baseline
parameters were updated jointly using a Metropolis-Hasting step. The remaining model pa-
rameters with non-normalized fully conditional distributions were updated univariately using
adaptive rejection sampling. Simulation results showed that the estimated marginal posterior
distributions covered well and placed high density to the true parameter values used in the
simulation of data. In conclusion, the proposed method allows inferring additive genetic and
environmental correlations, and doing multivariate genetic evaluation of a linear Gaussian trait
and a survival trait.

survival / Gaussian / bivariate / genetic / Bayesian

1. INTRODUCTION

In recent years, several breeding organizations have implemented a routine
genetic evaluation of sires for longevity of dairy cows. The evaluations are
mainly based on univariate sire frailty models for survival data, as described
in [7], and implemented in the Survival Kit [8]. However, for genetic evaluation
of animals based on several traits, a multivariate analysis is advantageous both
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in increasing the efficiency with which animals are ranked for selection, and in
providing information about the genetic correlation between traits [10,23,25].
The latter measures the extent to which different traits are controlled by the
same genes and provides important information about how selective breeding
is expected to lead to correlated and not necessarily favorable responses in
different traits. Furthermore, the bias introduced by artificial selection for one
or more of the traits considered will be avoided in a multivariate analysis as
opposed to the corresponding univariate analyses.

If the traits considered are multivariate normally distributed, then a mul-
tivariate quantitative genetic analysis using REML is common practise [27].
Recent contributions also include Bayesian methods for drawing inferences in
multivariate quantitative genetic models of linear Gaussian and ordered cate-
gorical traits [18, 32]. So far, no methods exist for analyzing a survival trait
jointly with linear Gaussian traits, which are genetically and environmentally
correlated. Alternatively, the genetic correlation has been approximated by the
product moment correlation between estimated sire effects from two univari-
ate analyses (e.g. [16, 26, 28]). In other cases, and again based on estimated
sire effects obtained from univariate analysis, the genetic correlation has been
approximated by the principles applied in Multiple Trait Across Country Eval-
uations [19, 30]. A central assumption in both approaches is that the residual
effects of the two traits are uncorrelated. Data for joint analysis of several traits
are often based on recordings on the same animal. Therefore, a zero environ-
mental correlation can generally not be assumed.

In this paper, we suggest a bivariate model for a linear Gaussian and a sur-
vival trait, which are genetically and environmentally correlated. We assumed
that the linear Gaussian trait and the unobserved log-frailty of the survival trait
followed a bivariate normal distribution. Model parameters were inferred from
a Bayesian analysis using Gibbs sampling. The bivariate model was illustrated
in two simulation studies. In the first simulation study, data with a relatively
simple covariate structure was simulated according to a half-sib design and
analyzed with a sire model and its equivalent animal model. In the second sim-
ulation study, we extended the simulation of the survival data to also involve
time-dependent covariates.

2. MATERIALS AND METHODS

2.1. Model without missing data

Let Y1i be a random variable of a linear Gaussian trait, and for the survival
trait let Ti and Ci be random variables representing survival time and censoring
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time of animal i for i = 1, ..., n, where n is the total number of animals with
records. In field data, there will often be at least some animals on which records
are available for one of the two traits only. In order to keep notation simple we
define the bivariate model and implement the Gibbs sampler under the assump-
tion that measurements are available for both traits. Later we consider the case
where data on one of the two traits are missing at random. In the case of no
missing observations, data of animal i are given by (y1i, y2i, δ2i), where y1i is
the observed value of Y1i, y2i is the observed value of Y2i = min {Ti,Ci} , and
δ2i is the outcome of the censoring indicator variable, such that δ2i is equal to
1 if Ti ≤ Ci and 0 otherwise. For the survival trait, we considered the Weibull
log-normal animal frailty model including a normally distributed residual ef-
fect on the log-frailty scale [1].

The bivariate model will be represented by the conditional hazard function
of Ti and the joint distribution of Y1 and e2

λi(t|θ, e2) = ρt(ρ−1) exp

x′2i(t)β2 +
∑

j∈Q(2)

z′ j2i(t)u
j
2 +

∑
j∈Q(1,2)

z′ j2iu
j
2 + z′g2ia2 + e2i


Y1

e2

∣∣∣∣∣∣θ ∼ N


X1β1 +

∑
j∈Q(1)∪Q(1,2)

Z j
1u j

1 + Zg1a1

0

 ,Re ⊗ In

 (1)

where e2 with elements (e2i)i=1,...,n is a vector of residual effects of the survival
trait on the log-frailty scale, which is assumed to account for the variation
between individuals not otherwise accounted for by the specification of the
log-frailty. Here λi(t|θ, e2) is the hazard function of Ti conditional on model
parameters (θ′, e2), where θ′ = (ρ, β′1, β

′
2, (u′ j1 ) j∈Q(1)∪Q(1,2), (u′ j2 ) j∈Q(2)∪Q(1,2),

a′1, a
′
2, (σ

2
1 j) j∈Q(1), (σ2

2 j) j∈Q(2), (R j) j∈Q(1,2), G, Re). The set of indices Q(1) de-
fine random environmental effects specific for the linear Gaussian trait, and
Q(2) define the set indices for time-independent and time-dependent random
environmental effects specific for the survival trait. The set of indices Q(1, 2)
defines random environmental effects (possibly time-dependent), that are cor-
related between traits. The Weibull baseline hazard function is generally given
as λρρt(ρ−1) with parameters ρ and λ. Here the term λρ is the first element of the
vector β2 (i.e. β21 = ρ log(λ)). The p1 dimensional vector β1 and the p2 dimen-
sional vector β2 are regression parameters of the linear Gaussian trait and the
survival trait measuring the effect of fitted covariates. The vectors u′ j1 of dimen-

sion q1 j for j ∈ Q(1) and u′ j2 of dimension q2 j for j ∈ Q(2) represent subject
specific environmental effects common to individuals within traits. The vectors
u j

1 and u j
2 of dimension qc j for j ∈ Q(1, 2) represent correlated random envi-

ronmental effects for the two traits. The latter can be used to model common
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environment affecting individuals that are grouped together in, for example,
a pen, cage, stall etc. a1 and a2 of dimension qg are the vectors of additive
genetic effects for the two traits, where qg is the total number of animals in
the pedigree. Vectors x′1i, x′2i(t), (z′ j1i(t)) j∈Q(1), (z′ j2i) j∈Q(2), (z′ j1i, z′ j2i) j∈Q(1,2), z′g1i ,
z′g2i are incidence arrays (possibly time-dependent) relating parameter effects

to observations. Finally, R j =

[
R j11 R j12

R j21 R j22

]
for j ∈ Q(1, 2) are the covariance

matrices of random environmental effects with the exception of residual ef-

fects, G =
[
G11 G12

G21 G22

]
is the genetic covariance matrix, and Re=

[
Re11 Re12

Re21 Re22

]
is

the residual covariance matrix.
The time-dependent covariates of animal i are assumed to be left-continuous

and piecewise constant on the intervals hi(m−1) < t ≤ hi(m) for m = 1, ...,Mi,
where hi(0) = 0 and hi(Mi) = y2i, and hi(m) for m = 1, ..., (Mi−1) are the ordered
time points at which one or more of the time-dependent covariates of animal i
changes. Mi − 1 is the number of different time points with changes in one or
more of the time-dependent covariates associated with animal i.

Prior specification. A priori model parameters (β1b)b=1,...,p1
, (β2b)b=1,...,p2

,

ρ, (u j
1, σ

2
1 j) j∈Q(1), (u j

2, σ
2
2 j) j∈Q(2), (u j

1, u
j
2,R j) j∈Q(1,2), and (a1, a2,G) are as-

sumed to be mutually independent. Improper uniform priors are assigned to
(β1b)b=1,...,p1

, (β2b)b=1,...,p2
and ρ over their range of positive support. A priori

the following multivariate normal distributions are assumed for environmen-
tal effects: u j

1|σ2
1 j ∼ N

(
0, σ2

1 jIq1 j

)
for j ∈ Q(1), u j

2|σ2
2 j ∼ N

(
0, σ2

2 jIq2 j

)
for

j ∈ Q(2), and (u′ j1 , u
′ j
2 )′|R j ∼ N

(
0,R j ⊗ Iqc j

)
for j ∈ Q(1, 2).

The prior distribution of additive genetic effects is by assumption of the
additive genetic infinitesimal model [3] assumed to be multivariate normally
distributed

(
a′1, a

′
2

)′ |G ∼ N
(
0,G ⊗ Aqg

)
, where Aqg is the additive genetic re-

lationship matrix.
The hyperparameters σ2

1 j and σ2
2 j are assumed a priori to be inverse Gamma

distributed according to σ2
1 j ∼ IG(v1 j, f1 j) for j ∈ Q(1) and σ2

2 j ∼ IG(v2 j, f2 j)
for j ∈ Q(2). The covariance matrices (R j) j∈Q(1,2), G and Re are a priori as-
sumed to be inverse Whishart distributed according to R j ∼ IW(F j, f j) for
j ∈ Q(1, 2), G ∼ IW(Fg, fg) and Re ∼ IW(Fe, fe).

2.1.1. Joint posterior distribution

Using Bayes’ theorem, the joint posterior distribution of θ and e2 is obtained
up to proportionality by multiplying the conditional likelihood with the prior



A bivariate genetic model 49

distribution of θ and e2

p(θ, e2|y1, y2, δ2) ∝ p(y1, y2, δ2|θ, e2)p(θ, e2) (2)

= p(y2, δ2|θ, e2)p(y1, θ, e2)p(θ, e2)

= p(y2, δ2|θ, e2)p(y1, e2|θ)p(θ)

where we in the second step use that (Y2, δ2) and Y1 are conditionally indepen-
dent given θ and e2. Conditional on model parameters censoring is assumed
to be independent and non-informative [2] implying that p(y2, δ2|θ, e2) ∝∏

i S i(y2i |θ, e2)
[
λi(y2i |θ, e2)

]δ2i , where S i(y2i |θ, e2) = exp

−
y2i∫
0

λi(s|θ, e2)ds


is the conditional survival function. Under the assumption of a proportional
Weibull log-normal animal frailty model, p(y2, δ2|e2, θ) is up to proportional-
ity given by

ρ

n∑
i=1
δ2i

 n∏
i=1

yδ2i
2i


(ρ−1)

exp


n∑

i=1

δ2i

(
x′2i(y2i)β2 + z′2i(y2i)u2 + z′g2ia2 + e2i

)
× exp

−
n∑

i=1

Mi∑
m=1

exp
(
x′2i(hi(m))β2 + z′2i(hi(m))u2 + z′g2ia2 + e2i

) (
hρi(m) − hρi(m−1)

)
(3)

where z′2i is a row vector with vector elements (z′ j2i) j∈Q(2)∪Q(1,2), and u2 is a

column vector with vector elements (u j
2i) j∈Q(2)∪Q(1,2).

The conditional distribution of Y1, e2|θ is multivariate normally distributed
according to (1).

2.1.2. Conditional posterior distributions

Implementation of a Gibbs sampler involves generating samples from the
fully conditional distributions of each parameter or groups of model parame-
ters depending on whether univariate or joint updating is performed, respec-
tively. These distributions can be obtained up to proportionality by retaining
from the joint posterior distribution (2) the terms depending on the parameter
of interest. The notation, where ∆\ϕ denotes the parameter vector ∆ = (θ, e2)
except the parameter ϕ, will be used. Here it is assumed that matrices being
inverted all have full rank. The elements of R−1

e and G−1 are denoted Ri j
e and

Gi j for i, j = 1, 2.
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The fully conditional posterior distribution of the vector of regression pa-
rameters β1 of the linear Gaussian trait is multivariate normal N

(
µβ1 ,Vβ1

)
,

where

µβ1 = Vβ1

R11
e X′1

y1 −
∑

j∈Q(1)∪Q(1,2)

Z j
1u j

1 − Zg1a1

 + R12
e X′1e2

 (4)

Vβ1 =
(
R11

e X′1X1

)−1
.

The fully conditional posterior distribution of the Weibull baseline parameter
ρ is up to proportionality given by

ρ

n∑
i=1
δ2i

 n∏
i=1

yδ2i
2i


(ρ−1)

×exp

−
n∑

i=1

Mi∑
m=1

exp
(
x′2i(hi(m))β2 + z′2i(hi(m))u2 + z′g2ia2 + e2i

) (
hρi(m) − hρi(m−1)

) .
(5)

The fully conditional posterior distribution of a regression parameter β2b for
b = 1, ..., p2 of the survival trait associated with possibly time-dependent co-
variates is up to proportionality given by

exp


∑

i∈Ψ(β2b)

δ2ix′2i(y2i)β2

 exp

−
∑

i∈Ψ(β2b)

Mi∑
m=1

Ωim


where Ψ(β2b) is the set of animals affected by the bth element of β2 during a
period of their observed lifetime, and

Ωim = exp

(
x2ib(hi(m))β2b

+
∑

k:k�b

x2ik(hi(m))β2k + z′2i(hi(m))u2 + z′g2ia2 + e2i

) (
hρi(m) − hρi(m−1)

)
.

For j ∈ Q(1) the fully conditional posterior distribution of the vector u j
1 of

the linear trait is multivariate normal N
(
µu j

1
,Vu j

1

)
, where

µu j
1
= Vu j

1

R11
e Z′ j1

y1 − X1β1 −
∑

k∈Q(1)∪Q(1,2)\{ j}
Zk

1uk
1 − Zg1a1

 + R12
e Z′ j1 e2


Vu j

1
=
(
R11

e Z′ j1 Z j
1+Iq1 jσ

−2
1 j

)−1
. (6)
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For j ∈ Q(1, 2) the fully conditional posterior distribution of the vector u j
1 of

the linear trait is multivariate normal N
(
µu j

1
,Vu j

1

)
, where

µu j
1
= Vu j

1

R11
e Z′ j1

y1 − X1β1 −
∑

k∈Q(1)∪Q(1,2)\{ j}
Zk

1uk
1 − Zg1a1


+ R12

e Z′ j1 e2 − R12
e u j

2


Vu j

1
=
(
R11

e Z′ j1 Z j
1+R11

j Iqc j

)−1
. (7)

For j ∈ Q(2) the fully conditional posterior distribution of a random effect uj
2w

for w = 1, ..., q2 j of the survival trait associated with possibly time-dependent
incidence arrays is up to proportionality given by

exp
{
uj

2wd
(
uj

2w

)}
exp

−
∑

i∈Ψ(uj
2w)

Mi∑
m=1

Ω
j
im

 exp

−
(
uj

2w

)2
2σ2

2 j

 (8)

where

Ω
j
im = exp

x′2i(hi(m))β2 + z j
2iw(hi(m))u

j
2w +

∑
k:k�w

z j
2ik(hi(m))u

j
2k

+
∑

l∈Q(2)∪Q(1,2)\{ j}
z′l2i(hi(m))ul

2 + z′2gia2 + e2i

 (hρi(m) − hρi(m−1)

)

and d
(
uj

2w

)
is the number of animals that have an observed lifetime, y2i, with

z′2iw(y2i) = 1, and Ψ(uj
2w) is the set of animals affected by the wth element of

u j
2 during a period of their observed lifetime.
For j ∈ Q(1, 2) the fully conditional posterior distribution of a time-

independent random effect uj
2w for w = 1, ..., qc j of the survival trait is up to

proportionality given by

exp
{
uj

2wd
(
uj

2w

)}
exp

−
∑

i∈Ψ(uj
2w)

Mi∑
m=1

Ω
j
im

 exp

{
−1

2

(
R22

j

(
uj

2w

)2
+ 2R12

j u j
1wuj

2w

)}
.

(9)
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The fully conditional posterior distribution of the vector of additive genetic
effects a1 of the linear trait is multivariate normal N

(
µa1 ,Va1

)
, where

µa1 = Va1

(
R11

e Z′1g
(
y1 − X1β1 − Z1u1

)
+ R12

e Z′1ge2 −G12A−1a2

)
Va1 =

(
R11

e Z′g1 Zg1+G11A−1
)−1
. (10)

For w, an animal with records, the fully conditional posterior distribution of an
additive genetic effect a2w of the survival trait is up to proportionality given by

exp
{
a2wδ2g(w)

}
× exp

−
Mg(w)∑
m=1

exp
(
x′2g(w)(hg(w)(m))β2 + z′2g(w)(hg(w)(m))u2 + a2w + e2g(w)

)
×
(
hρ
g(w)(m) − hρ

g(w)(m−1)

)}
× exp

−1
2

G22

a2
2wAww + 2a2w

∑
k:k�w

a2kAwk


 (11)

× exp

−G21

a2w

∑
k

a1kAwk




where g(w) is a function relating an animal effect to its observation.

For w, an animal without records, the fully conditional posterior distribution
of an additive genetic effect a2w of the survival trait is normally distributed

N

− 1
G22Aww

G22
∑

k:k�w

a2kAwk +G21
∑

k

a1kAwk

 , (G22Aww
)−1

 . (12)

The fully conditional posterior distribution of a residual effect e2i for i = 1, ..., n
of the survival trait is up to proportionality given by

exp {e2iδ2i}

× exp

−
Mi∑

m=1

exp
(
x′2i(hi(m))β2 + z′2i(hi(m))u2 + z′g2ia2 + e2i

) (
hρi(m) − hρi(m−1)

)
× exp

{
−1

2

(
R22

e e2
2i + 2R12

e e2i

(
y1i − x′1iβ1 − z′1iu1 − z′g1ia1

))}
. (13)
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The fully conditional posterior distribution of variance components σ2
1 j for

j ∈ Q(1) and of σ2
2 j for j ∈ Q(2) are inverse Gamma distributed, according to.

σ2
1 j|(θ, e2)\σ2

2 j
, data ∼ IG

[
q1 j/2 + v1 j,

(
f −1
1 j + u′ j1 u j

1/2
)−1

]
(14)

σ2
2 j|(θ, e2)\σ2

2 j
, data ∼ IG

[
q2 j/2 + v2 j,

(
f −1
2 j + u′ j2 u j

2/2
)−1

]
.

The fully conditional posterior distribution of covariance matrices (R j) j∈Q(1,2),
G and Re are inverse Whishart distributed, according to

R j|(θ, e2)\R j
, data ∼ IW

[(
F−1

j + S j

)−1
, f j + qc j

]
(15)

G|(θ, e2)\G, data ∼ IW
[(

F−1
g + Sg

)−1
, fg + qg

]
Re|(θ, e2)\Re

, data ∼ IW
[(

F−1
e + Se

)−1
, fe + n

]

where S j =

u′ j1 u j
1 u′ j1 u j

2

u′ j2 u j
1 u′ j2 u j

2

 for j ∈ Q(1, 2),

Sg =

a′1A−1a1 a′1A−1a2

a′2A−1a1 a′2A−1a2

 and Se =

e′1e1 e′1e2

e′2e1 e′2e2

.

2.2. Model for missing observations

Missing observations for one of the two traits are often a fact that must be
dealt with in field data. In what follows, we assume that such missingness is
completely at random [20]. In Bayesian analysis, this type of misingness often
is dealt with by augmenting the joint posterior distribution with the residuals
associated with missing observations (e.g. [31]). The augmented residuals are
treated as unknown parameters, so at each iteration of the Gibbs sampler the
augmented residual effects are generated from their fully conditional posterior
distributions, which are specified below. Note that this is the only additional
step necessary in order to account for missing data. Now, let em1 and em2 be
vectors of size nm1 and nm2 including residual effects associated with missing
observations of the linear Gaussian trait and survival trait, respectively. The
augmented joint posterior distribution is given by

p(θ, e2, em1, em2|y1, y2, δ2) ∝ p(y2, δ2|e2, θ, em2)p(y1, e2, em1, em2|θ)p(θ).
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Combining this joint posterior with the previous model specification, it follows
that the fully conditional posterior distribution of an augmented residual ef-
fect for a missing linear Gaussian record is normally distributed N(µem1 j ,Vem1 j)
for j = 1, ..., nm1, where µem1 j = (Re12/Re22)e2 j and Vem1 j = Re11 − R2

e12
/Re22 .

Similarly, it follows that the fully conditional posterior distribution of an aug-
mented residual effect for a missing survival record is normally distributed
N(µem2 j Vem2 j ) for j = 1, ..., nm2, where µem2 j = (Re12/Re11)(y1 j − x′1iβ1 − z′1iu1 −
z′g1ia1) and Vem2 j = Re22 − R2

e12
/Re11 .

2.3. Implementation of the Gibbs sampler

A Gibbs sampler of the bivariate animal model (1) with no random en-
vironmental effects (i.e. no u′s) was implemented in Fortran 90 for data
without missing observations for any of the two traits. Inferences of model
parameters were based on a single chain in which systematic effects of the
linear Gaussian trait were the only parameters that were jointly updated.
Sampling from closed form fully conditional posterior distributions were
performed using standard methods. The fully conditional posterior distribu-
tions of (ρ, (β2i)i=1,...,p2

, (a2i)i=1,...,n , (e2i)i=1,...,n) did not reduce to well-known
distributions and other sampling procedures were required. In a first imple-
mentation, adaptive rejection sampling (ARS) [13] was used to update all
these parameters univariately. In order to use ARS the distributions from which
one wants to sample must be log-concave. This condition was satisfied for all
these parameters with the exception of a special case for ρ. For ρ, the log-
concavity condition is only satisfied if the time points at which possible time-
dependent covariates change status are greater than one unit of measurement.
ARS was easily implemented applying the subroutine provided by Wild and
Gilks [33]. Unfortunately, slow mixing properties were observed especially
for the two Weibull baseline parameters ρ and β21 and the residual variance
component Re22.

In the final implementation and in order to improve mixing, we changed
from univariate to a joint updating of ρ and β21 by introducing a Metropolis-
Hasting step within the Gibbs sampler [15, 24]. As a proposal distribution, we
used a large sample bivariate normal approximation (see e.g. [31]) given by

N

̂γ,−

∣∣∣∣∣∣∂

2l(γ)
∂γ∂γ′

∣∣∣∣∣∣
γ=γ̂


−1 (16)

where γ = (ρ, β21)′ and γ̂ is the value of the vector at the joint mode of
l(γ) ∝ p(ρ, β21 |∆\(ρ,β21), data). Preliminary simulation studies showed that the
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performance of the proposal distribution could be improved by lowering the
correlation between ρ and β21. For all the analyses performed in this study we
simply multiplied the covariance elements of 16 by a factor of 0.7. The same
studies also showed that the implemented Metropolis-Hasting step generally
worked satisfactorily, except for a few occasions where the chain remained in
the same state for up to about 10 000 iterations. This problem of an occasion-
ally high rejection rate was alleviated by changing to one round of univariate
updating of ρ and β21 using ARS if the chain for ρ and β21 remained in the
same state for 100 iterations. The final implementation led to substantially
better mixing of the three parameters ρ, β21 and R22 compared to the initial
implementation where ρ and β21 were updated univariately based on ARS (up
to a 15 fold increase in the number of effective samples).

3. RESULTS

The bivariate model was illustrated in two simulation studies in which the
models used to simulate and analyze data were the same. Thus, the focus was
on validating the estimation of parameters under conditions where all model
assumptions were satisfied, and not on issues related to the robustness of the
model.

3.1. Simulation study 1

The records of 4000 animals after 100 unrelated sires each having 40 off-
spring were simulated from the bivariate model (1). For both traits, the model
included a systematic effect with two levels (β11, β12) and (β22, β23), an ani-
mal effect, and a residual effect. In addition, the model of the survival trait
included the two Weibull baseline parameters ρ and β21 = ρ log(λ). Lifetimes
higher than or equal to 1510 were right censored, leading to a data set with
approximately 11% right censored records. This simple censoring mechanism
satisfies the independent and non-informative censoring assumption and it is
easy to implement. Data were analyzed with the model that was used to gener-
ate data parameterized both as an animal and as a sire model. Note that given
a half-sib design, the animal model was equivalent to the sire model. The sire
model has not previously been specified in this paper. However, when applying
the notation provided earlier, the sire covariance matrix (Gs) and the residual
covariance matrix (Rẽ) of the sire model are defined by (Gs + Rẽ) = (Re +G)
and Gs = G/4. The remaining model parameters are identical to parameters
of the animal model [1]. Improper uniform priors were used for Gs and Rẽ.
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The model parameters used in the simulation of data and results from the
Bayesian analysis are given in Table I.

Starting values of the Gibbs sampler of the additive genetic covariance ma-
trix, the residual covariance matrix and the two Weibull parameters were set
equal to the true values used in the simulation of data. All of the remaining
model parameters were started at zero. For the regression parameters of the sur-
vival trait, β23 was used as a reference group and was fixed to zero. Although
the Gibbs sampler seemingly converged within the first few iterations, the first
10 000 iterations of the Gibbs sampler were considered as burnin for all model
parameters. Altogether, 4900 samples of model parameters were saved with a
sampling interval of 100; i.e. a total of 500 000 rounds were run. The effective
number of samples (Ne) of each parameter was calculated by the method of
batching based on 30 batches (e.g. [31]). To facilitate comparison between the
animal and sire parameterization, the results obtained from the sire model were
transformed to the equivalent animal model at each saved iteration of the Gibbs
sampler. To perform the 500 000 iterations the program ran for 7 to 8 days on
a IBM POWRE3 4-way 375 nHz. Silver node computer.

Results

The results of simulation study 1 showed that the estimated marginal poste-
rior distributions covered the parameter values used for simulating data well
(Tab. I). All the true values were within the 95% central posterior density
(CPD) regions [12] defined by the 2.5% and 97.5% percentiles. The posterior
summary statistics given for the sire and the animal model were very similar.
The only substantial difference between the two models was the number of
effective samples, which in particular for the elements of the covariance matri-
ces was higher for the sire model. This suggests that the sire parameterization
provides better mixing properties. Even though the posterior uncertainty for
the additive genetic and residual correlations was relatively high, the marginal
posterior densities still assigned relative high probability to values in the neigh-
borhood of the true values used in the simulation of data.

3.2. Simulation study 2

In simulation study 2, the data generated from the bivariate model (1) con-
sisted of records of 5000 animals after 100 unrelated sires each having 50 off-
spring (balanced half-sib design). Again, data were analyzed with the model
that was used to generate data, but in this study we only applied a sire model.
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Table I. Simulation study 1, true value, marginal posterior mode, mean, 2.5% and
97.5% percentiles, and effective sample size (Ne) of fixed effects of the linear Gaussian
trait (β11, β12), of Weibull parameters (ρ, β21), of time-independent fixed effects (β22,
β23 = 0), of additive genetic variance components (G11, G22), and correlation (ρG),
of residual variance components (Re11, Re22), and correlation (ρRe), (*) indicates that
results were obtained from the sire model and thereafter transformed to parameters of
the equivalent animal model.

Parameter True Mode Mean 2.5% 97.5% Ne

β11 860.00 860.80 860.80 858.16 863.34 3618
β∗11 − 860.92 860.78 858.18 863.44 4068
β12 920.00 919.47 919.67 917.11 922.28 4530
β∗12 − 919.83 919.67 917.13 922.22 4042
ρ 1.80 1.79 1.75 1.64 1.87 329
ρ∗ − 1.75 1.74 1.63 1.88 347
β21 −12.00 −11.74 −11.60 −12.44 −10.90 336
β∗21 − −11.42 −11.56 −12.44 −10.84 340
β22 0.20 0.19 0.19 0.090 0.29 2001
β∗22 − 0.19 0.19 0.088 0.28 1825
G11 500 481.50 491.34 344.31 688.82 1584
G∗11 − 477.62 492.87 345.79 691.57 7815
G22 0.80 0.72 0.75 0.49 1.07 1201
G∗22 − 0.77 0.75 0.49 1.11 1369
ρG −0.15 −0.18 −0.15 −0.38 0.090 875
ρ∗G − −0.14 −0.15 −0.39 0.10 13758
Re11 625.00 649.72 633.89 479.40 754.12 1742
R∗e11 − 677.68 633.47 477.68 757.46 8714
Re22 0.4 0.29 0.35 0.098 0.66 201
R∗e22 − 0.34 0.32 0.018 0.67 738
ρRe −0.49 −0.51 −0.60 −0.93 −0.33 223
ρ∗Re

− −0.52 −0.60 −0.93 −0.33 2757

In addition to the model studied in simulation study 1, we included a time-
dependent systematic effect with three levels (β24, β25, β26), where β25 was
used as the reference group and fixed to zero. Also note that in this second
simulation study, data was simulated with a positive additive genetic correla-
tion (0.24) and a negative residual correlation (−0.24) (Tab. II).

The time-dependent covariates changed status according to the following
fixed time points (90, 200, 305, 395, 505, 610, 700, 810, 915, 1005, 1115,
1220, 1310, 1420, 1520). β24 (β25, β26) was the systematic effect associated
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Table II. Simulation study 2, true value, marginal posterior mode, mean, 2.5% and
97.5% percentiles, and effective sample size (Ne) of fixed effects of linear Gaussian
trait (β11, β12), of Weibull parameters (ρ, β21), of time-independent fixed effects (β22,
β23 = 0), of time-dependent fixed effects (β24, β25 = 0, β26), of additive genetic sire
variance components (Gs11, Gs22), and correlation (ρGs ), of residual variance compo-
nents (Rẽ11, Rẽ22), and correlation (ρRẽ).

Parameter True Mode Mean 2.5% 97.5% Ne

β11 860.00 861.20 860.84 858.32 863.37 1358

β12 920.00 919.48 919.23 916.67 921.72 1979

ρ 1.80 1.73 1.80 1.67 1.94 167

β21 −12.00 −11.51 −12.06 −13.00 −11.22 174

β22 0.30 0.26 0.26 0.17 0.36 938

β24 −0.14 −0.14 −0.22 −0.22 −0.058 1140

β26 0.3 0.32 0.32 0.25 0.38 1423

Gs11 100.00 124.98 127.17 89.84 172.08 1827

Gs22 0.10 0.086 0.097 0.058 0.15 1114

ρGs 0.24 0.12 0.16 −0.10 0.43 1232

Rẽ11 1000.00 974.66 971.00 933.77 1010.04 3009

Rẽ22 1.00 0.89 1.01 0.69 1.40 183

ρRẽ −0.24 −0.21 −0.22 −0.27 −0.17 1250

with the 1st (2th, 3th), 4th (5th, 6th), 7th (8th, 9th) and 10th (11th, 12th)
time period. The time-dependent systematic effect may be thought of as a
“stage of lactation effect” applied in many studies addressing longevity of
dairy cows [9]. The true conditional distribution of lifetimes is given in Fig-
ure 1, which shows the hazard function of the first 12 time periods conditional
on a zero value for the time-independent systematic effect, the sire effect and
the residual effect. The empirical distribution of simulated lifetimes is given in
Figure 2. Lifetimes higher than or equal to 1520 were right censored, leading
to a data set with approximately 11% right censored records. The model pa-
rameters used to simulate data and the results from the Bayesian analysis are
given in Table II. The starting values of the Gibbs sampler were as described
in simulation study 1. The interval between saved sampled values was 100,
the length of burnin was 10 000, and the Gibbs sampler was run for a total of
200 000 iterations giving 1900 saved samples of each parameter and functions
thereof. To perform the 200 000 iterations, the program ran for 5 to 6 days on
the same computer as simulation study 1.
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Figure 1. Hazard function based on true values conditional on a zero value for the
systematic time-independent effect, the sire effect and the residual effect.

Results

In agreement with simulation study 1, the results of simulation study 2 also
showed that the estimated marginal posterior distributions covered the param-
eter values used for simulating data well (Tab. II). There was close agreement
between the marginal posterior mode (mean) of the time-dependent systematic
effects and the true values. Note also that the positive additive genetic correla-
tion and the negative residual correlation could be correctly inferred from the
marginal posterior summary statistics.

4. DISCUSSION

In this study we describe a Gibbs sampler for joint Bayesian analysis of a
linear Gaussian trait and a survival trait. The method was tested in two sim-
ulation studies, which both established that the estimated marginal posterior
distributions covered the true values used in the simulation of data well. In
conclusion, model parameters and functions thereof including the genetic cor-
relation can be correctly inferred applying the method proposed.

The bivariate model was derived under the assumption of an additive genetic
infinitesimal model [3,11]. The additive genetic correlation is a measure of the
extent to which the two traits are controlled by the same genes. Therefore, it
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Figure 2. Number of observed lifetimes in the periods defined by the time-dependent
systematic effect.

provides information about how selection for a survival trait simultaneously
may affect a linear Gaussian trait and vice versa [10, 23]. The bivariate model
allows for a more accurate genetic evaluation of animals for a correlated linear
Gaussian trait and a survival trait owing to the shared information between
traits [10, 23].

So far additive genetic correlations have mainly been approximated by
product-moment correlations between estimated sire effects obtained from uni-
variate analyses of the individual traits (e.g. [16,26,28]). In order to investigate
the performance of this simple approach, we applied it to the two simulated
data sets. The univariate analyses were performed using the model proposed in
this study by constraining the additive genetic and residual covariances to zero.
In each saved round of the Gibbs sampler the product-moment correlations be-
tween sire effects and residual effects were calculated to obtain the marginal
posterior distributions of the product-moment correlations.

The results from these analyses indicated clearly that the approximative
method can be very imprecise. For the first simulation study, the 95% CPD re-
gion of the additive genetic product-moment correlation ranged between −0.24
and 0.01 (true value; −0.15), and the residual product-moment correlation
ranged between −0.16 and −0.10 (true value; −0.49). The credibility interval
for the additive genetic correlations included the true value, whereas this was
not the case for the residual correlation. For the second simulation study, the
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95% CPD region of the additive genetic product-moment correlation ranged
between −0.070 and 0.20, and of the residual product-moment correlation
ranged between −0.11 and −0.063. None of these two credibility intervals in-
clude the corresponding true values of 0.24 for the genetic correlation and
−0.24 for the residual correlation.

Gibbs sampling combined with ARS is conceptually straightforward and
easily implemented applying the subroutine provided by Wild and Gilks [33].
A sufficient condition for applying ARS is that the distribution from which one
wants to sample is log-concave. Gilks and Best [14] extended this ARS algo-
rithm to deal with non-log-concave distributions. In this extended version of
ARS, the piecewise exponential envelope function of the ARS algorithm takes
the role of the proposal distribution in the Metropolis-Hastings algorithm from
which generated candidate values are accepted according to the acceptance
probability [15, 24].

The updating strategy chosen here for implementing the Gibbs sampler is
just one out of many possible. In the first implementation in which all param-
eters without closed form fully conditional distributions were updated univari-
ately based on ARS, we observed slow mixing properties of the two Weibull
baseline parameters ρ, β21 and the residual variance component on the log-
frailty scale Re22. A plausible explanation may be that these parameters in the
posterior distribution are highly correlated [22, 29]. On the contrary to uni-
variate updating, joint updating takes advantage of the posterior correlation
structure induced by the model and the data. For a broad class of models, mix-
ing has been improved by changing to joint updating of highly correlated pa-
rameters [21, 22, 29]. However, no general rule exists and Liu et al. [22] and
Roberts and Sahu [29] provide examples for non-hierarchical models where
joint updating actually slowed down mixing. In the final implementation of the
model, we changed to joint updating of ρ, β21 by introducing a Metropolis-
Hastings step within the Gibbs sampler [15, 24]. The joint updating of the two
Weibull parameters was observed to considerably improve mixing properties
of the Gibbs sampler.

The computation time given for the simulation studies analyzed in this study
is most likely not representative of a very efficient implementation of the
model. Therefore, in order to evaluate the potential use of the model in large
scale evaluation, more studies are required. However, unpublished simulation
studies showed that under the assumption of known Weibull parameter rho and
variance components, the mixing of the Gibbs sampler was significantly im-
proved. This suggests that the number of required iterations necessary to obtain
representative samples of genetic effects may be much smaller than 200 000,
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leaving us positive with respect to the application of the model in large scale
genetic evaluation.

In this study, the additive genetic effect of the survival trait was assumed
to be time-independent. It is thereby assumed that an animal is born at a cer-
tain level of the relative genetic effect and stays at this level for all its life-
time. A more reasonable way of modeling the genetic effect would allow for
age-related changes as suggested by Ducrocq [6]. As an example, consider
longevity of dairy cows. Here it seems likely that the risk of culling involves
different genes at different lactations and at different stages within lactation. An
age-related genetic effect can be modeled by assuming that the genetic effect
is a time-dependent random effect. For example, suppose that lactations are
divided into two periods with associated additive genetic effects of the survival
trait given by the two vectors a21, a22. From genetic theory, the three additive
genetic effects associated with the linear Gaussian trait and the survival trait
are multivariate normal distributed

(
a′1, a

′
21, a

′
22

)′ |G ∼ N
(
0,G ⊗ Aqg

)
, where

G is a 3 × 3 genetic covariance matrix. If an inverse Whishart distribution is
used as prior for G then the fully conditional distribution of G will also be
inverse Whishart distributed.

It follows that the framework given in this study still applies for drawing
inferences in the case of time-dependent additive genetic effects, although the
joint posterior distribution would differ slightly as well as the implementation.

In a very similar way the bivariate model can be extended with one or more
dependent random effects including, for example, a maternal additive genetic
effect, which is relevant for studying e.g. postnatal survival. Along the same
line it should be straightforward to fit a QTL effect, which allows searching for
areas on chromosomes with large effect on a survival trait and a linear Gaussian
trait jointly.

A Weibull distributed baseline hazard function restricts the form of the func-
tion to be either monotone increasing, decreasing or constant. An alternative is
to use the more general semi-parametric Cox model [5] in which the baseline
hazard function is left completely arbitrary analogue to the univariate frailty
model proposed by Korsgaard et al. [17]. Finally, the bivariate model can be
extended to a multivariate Bayesian analysis of several traits jointly. One ex-
ample is to extend the bivariate model with an ordered categorical trait by
assuming that the additive genetic and residual effects on the linear liability
scale, on the log-frailty scale, and of the linear Gaussian trait are multivariate
normally distributed. In principle it should be straightforward to generalize the
bivariate model to an arbitrary number of ordered categorical characters, sur-
vival traits and linear Gaussian traits along the framework given in this study.
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