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Abstract – The milking ability of Lacaune ewes was characterised by derived traits of milk
flow patterns, in an INRA experimental farm, from a divergent selection experiment in order to
estimate the correlated effects of selection for protein and fat yields. The analysis of selected
divergent line effects (involving 34 616 data and 1204 ewes) indicated an indirect improvement
of milking traits (+17% for maximum milk flow and –10% for latency time) with a 25% increase
in milk yield. Genetic parameters were estimated by multi-trait analysis with an animal model,
on 751 primiparous ewes. The heritabilities of the traits expressed on an annual basis were
high, especially for maximum flow (0.54) and for latency time (0.55). The heritabilities were
intermediate for average flow (0.30), time at maximum flow (0.42) and phase of increasing flow
(0.43), and low for the phase of decreasing flow (0.16) and the plateau of high flow (0.07).
When considering test-day data, the heritabilities of maximum flow and latency time remained
intermediate and stable throughout the lactation. Genetic correlations between milk yield and
milking traits were all favourable, but latency time was less milk yield dependent (–0.22) than
maximum flow (+0.46). It is concluded that the current dairy ewe selection based on milk solid
yield is not antagonistic to milking ability.

dairy sheep / milk flow /milking ability / milking trait / divergent selection

1. INTRODUCTION

Current selection in the Lacaune dairy sheep is based on a global criterion
of dairy selection “fat and protein yields in milk”. Since 1993, the selection
scheme has yielded substantial genetic gains in milk quantity and milk com-
position [1]. At present, Lacaune breeders wish to include new criteria, in par-
ticular functional traits, in the selection programme. Due to the evolution of
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techniques and equipment for milking (increasing size of milking facilities,
the use of automatic unhooking associated with a higher ratio “number of
ewes/milker”), milking ease of an animal has become a key factor of labour
efficiency. The success of each step of milking requires an optimal milking
speed and the calm behaviour of the animals in the milking parlour. Also, the
improvement of milking ability must not adversely affect udder health, and
in particular, susceptibility to mastitis. In the 1970s, scientists from Mediter-
ranean countries worked on the physiology of milk emission in the ewe [9,13];
however, the estimates of genetic parameters of milking ability are lacking.

The objective of this work was (i) to verify the impact of dairy selection on
the milking ability of ewes under mechanised milking conditions, and (ii) to
analyse the genetic relationships between several components of milking traits
and milk yield. The study was carried out at the INRA experimental station of
La Fage, where milking ability has been automatically recorded since 1996.

2. MATERIALS AND METHODS

2.1. Flock studied

The experimental sheep flock of INRA La Fage consists of 550 Lacaune
lactating females, reared under a system similar to that usually found on com-
mercial farms. A divergent selection on fat and protein yields has been prac-
ticed since 1989: High and Low lines (HL and LL respectively) were selected
according to the official Lacaune index during six generations from 1989 to
2001. Selection was performed on the male side: about 10 top-ranked rams
and 10 bottom-ranked rams having been chosen annually among 700 artificial
insemination rams of the Lacaune dairy breeding programme [3] to produce
4−5 daughters per sire at the INRA experimental flock. As far as possible,
sires were sampled randomly within lines. Since 1995, all ewes belong to the
divergent third generations and more: the attained divergence in milk yield has
remained constant, about 61 L (2 genetic standard deviations), while the es-
timated breeding values remained similar for fat and protein contents in both
lines [2]. In this article, we compared milking traits of both lines in order to
evaluate the indirect influence of milk selection on milking ability.

2.2. Tools for milking ability measurements

The tool for milking ability recording was an automatic milk-recording
device, conceived by the INRA-SAGA (European patent No. 94916284.6)
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according to the precision standards of ICAR (International Committee of
Animal Recording) [20]. This machine consists of a set of 24 jars controlled
by a central processor, which allows recording, at each milking, of the inter-
mediate yields as well as the total quantity of milk produced. The individual
measures for every jar, obtained during the collective milking, corresponded to
the following:

– total yield at milking (YT);
– 12 intermediate measurements of milk yield every 10 s after the first milk

measurement;
– the estimated latency time (TL): the time between the cluster attachment

and the arrival of 160 mL of milk in the jar (needed to obtain a first mea-
surement of milk). Strictly speaking, TL should measure the time of suc-
tion necessary to extract the first drop of milk. The measurements presented
here are an overestimation of the strict latency time, because they included
the additional time necessary to obtain a minimum measurable quantity of
milk in the jar. This extra time was estimated as 15 s at INRA La Fage,
during the testing period of the milk-recording tool.

Figure 1. Schematic milk flow pattern.

The measurements were used to compute derived variables representing milk
flow patterns (Fig. 1):

– the average of the 11 calculated flows (FA) from the 12 intermediate mea-
surements of milk quantity;
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– the maximum milk flow (FM), i.e. the maximum of the 11 calculated flows;
– the time at maximum milk flow (TFM; computed from the latency time);
– the duration of the phase of maximum milk flow (THF) determined as the

time when milk flow was at least 80% of the maximum milk flow;
– the duration of the phase of increasing flow (TIF), previous to the maximum

flow, and determined as the time when flows increased from 0% to 80% of
the maximum milk flow;

– the duration of the phase of decreasing flow (TDF), after the maximum
flow, and determined as the time when flows decreased from 80% to 40%
of the maximum milk flow.

The milking system of La Fage is a high pipeline system in a parallel parlour
with 48 places and 24 clusters, with a 36 kPa vacuum, a milk-rest ratio of
50/50, and a pulsation rate of 174/min. Two milkers are able to milk 550 ewes
in 1.5 to 2.5 h, depending on lactation stage.

2.3. Data

The data included 34 616 milking records collected from 1997 to 2001, cor-
responding to 1204 ewes sired by 299 AI rams, giving an average of 4 ewes
per ram (3.5 ewes per ram for 117 Low Line rams and 4.3 ewes per ram for
182 High Line rams). Repeated data arise from three sources: the ewes were
recorded up to 9 times per lactation (9 annual official test-day records (TD 1
to 9) with a recording interval of 3 weeks), at morning and evening milkings,
and at parities varying from 1 to 5.

Three data sets were studied (Tab. I). Data set A included all data and it
was used for phenotypic analysis, in particular to test the effects of divergent
lines on milking traits. Data set B, a subset of A, included all data of morn-
ing milkings of primiparous ewes. It was used to study genetic parameters in
a multi-trait analysis between test-days. Data set C, a summary of data set B,
included average data per ewe and per lactation, when the ewes have at least
4 test day records per year. It was used for the estimation of genetic parameters
of annual average records in primiparous ewes. In order to estimate genetic pa-
rameters using files B and C, the pedigree data included 3975 records obtained
by tracing back five generations of ancestors (on male and female sides) of
751 primiparous ewes measured in the study.

Whatever the data set, the studied traits were milk yield (YT), latency time
(TL), milk flows (FA, FM) and time variables (TFM, TIF, THF, TDF) describ-
ing the flow pattern.
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Table I. Description of the three data sets.

Data set A B C
N of records 34 616 4455 751
N of ewes 1204 751 751
Milking Morning and evening Morning only Morning only
Parity 1 to 5 1 1
Phenotypes Elementary records Elementary records Annual average records
Purpose Phenotypic analysis Genetic parameters Genetic parameters

2.4. Statistical analysis

2.4.1. Data transformation

In order to normalise the data, a logarithmic transformation was applied to
the traits related to time that presented a very asymmetrical distribution: la-
tency time (TL) and time at maximum milk flow (TFM). Transformed latency
time was log (TL+4) and transformed time at maximum milk flow was log
(TFM). These transformations gave the best coefficients of kurtosis and skew-
ness. However, the variables corresponding to the three phases of milk flow
(TIF, THF and TDF) could not be well normalised by a logarithmic transfor-
mation; thus, the tests of fixed effects for these skewed distributions are to be
considered with caution.

2.4.2. Effects of milk yield selection on milking ability

File A was used to test the effects of several variation factors on milking
traits, in particular the effects of divergent selected lines. Also, phenotypic cor-
relations among milking traits and milk yield were estimated. Computations
were performed with proc Mixed of SAS� [23].

The model included six fixed effects:

Yijklmnpqr = Di + Lj + Tk + Pl + Sm + Nn + Bjp + Eijklmnpq (1)

with Di: date of measurement (43 levels); Lj: selected line (2 levels: High Line
and Low Line); Tk: milking occasion (2 levels: evening or morning milking);
Pl: parity (5 levels: 1st to 4th lactation, 5th lactation and more); Sm: stage of
lactation (5 levels: less than 60 days, between 60 and 90 days, between 90
and 120 days, between 120 and 150 days, more than 150 days); Nn: number
of suckling lambs (2 levels: one suckling lamb, two or more suckling lambs);
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Bjp: random effect of the ewe p within the line j; Eijklmnpq: residual random
effect.

The distributions of random components (ewe within line and residual)
were assumed normal and the levels of random components were assumed
independent.

2.4.3. Estimation of genetic parameters

Estimated genetic parameters were heritabilities and genetic correlations
among seven milking traits and milk yield. Two analyses were conducted on
the morning records of first lactation ewes; this group of ewes is indeed sup-
posed to be unbiased since they are in first lactation and have not previously
been culled for poor milking traits. The first analysis allowed the estimation of
genetic parameters for data on an annual basis (data set C). The second analysis
was based on individual test-day records (data set B) using a multi-trait model
in order to investigate heritabilities within lactation. The estimates of genetic
parameters were computed with the ASReml software [10], in multi-trait anal-
ysis between different milk flow characteristics, according to an animal model
including the following fixed effects:

Yijklmnpq = Ai + Lj + Ck +Ml + Sm + Nn + Bjp + Eijklmnpq (2)

with Ai: year (5 levels: 1997, 1998, 1999, 2000, 2001); Lj: selected line (2 lev-
els: Low Line and High Line); Ck: cycle of lambing (2 levels: first or second
cycle of lambing); Ml: age of the ewe at lambing (4 levels: less than 405 days,
between 405 and 407 days, between 408 and 410 days, more than 410 days);
Sm: time between lambing and the first test-day record (4 levels: less than
41 days, between 41 and 43 days, between 44 and 45 days, more than 45 days);
Nn: number of suckling lambs (2 levels: one suckling lamb, two or more suck-
ling lambs); Bjp: random additive genetic effect of the ewe p within line j;
Eijklmnpq: random residual effect.

3. RESULTS

3.1. Elementary statistics

Milk production at milking (YT) was 829 mL and latency time (TL) lasted
29 s (Tab. II). Thus, as explained in Section 2.2, strict latency time should
be about 14 s. This result was in agreement with the strict TL estimation of
15 s on 50 Lacaune ewes by Marnet et al. [18]. TL measurements also have
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Table II. Means of milking traits.

Traits Unit Mean Minimum Maximum Standard Coefficient
deviation of variation

Milk yield mL 829 100 2880 481 58%
Latency time* s 29 1 296 22 75%
Time at maximum s 30 10 110 23 78%
milk flow
Maximum milk mL·s−1 12.9 1.0 73.0 6.2 48%
flow
Average flow mL·s−1 5.4 0.1 24.7 3.7 69%
Phase of increasing s 17.9 0 100 23.6 132%
flow
Phase of high flow s 16.9 10 100 11.8 70%
Phase of s 14.9 0 100 18.2 122%
decreasing flow

* Lack of 2500 records on TL due to the automatic jar used before March 1997.

been reported in the Sarda breed (15 s [16]) and in dairy goats (45 s [12]),
using the INRA automatic milk recording devices. Other studies on milking
traits in cattle, goats and sheep, never referred to TL as a specific milking
trait [6–8,14,19,22], but they are focused on time to reach the maximum flow.

The maximum milk flow (FM), on average 12.9 mL·s−1, was reached at
30 s after the latency time, or 59 s after the connection of the cluster (Tab. II).
For other breeds, Labussière and Bruckmaier et al. obtained peak values about
10.0 mL·s−1 for PreAlpe ewes [14] and for Ostfriesian ewes [6], respectively.
In other species, FM values were higher than our estimation and very variable:
from 30 mL·s−1 to 58 mL·s−1 in cows [7, 8, 15, 19, 22], and from 15.2 mL·s−1

to 25.9 mL·s−1 in dairy goats [5, 11].
However, a comparison of FM values is difficult since it depends on the lag

time between successive measurements of milk yield. Under our experimental
conditions, the value of FM was about 40% higher when the lag time was
reduced by a half (10.3 mL·s−1 with a lag of 5 s versus 7.3 mL·s−1 with a lag
of 10 s; results obtained during the checking period of the automatic jars).

The average of the 11 calculated flows (FA) of an animal had a rate of
5.4 mL·s−1 (Tab. II). The schematic representation of the milk flow pattern can
thus be decomposed into four phases (Fig. 1): an average latency time of 29 s
followed by a strong increase of milk flow for 18 s leading to a maximum milk
flow lasting for 17 s and finally a phase of decreasing milk flow of 15 s. The
observed milk flow patterns did not reveal “typical profiles” such as the “two
peaks” of milk ejection reported by Labussière et al. [13]. The high milk level
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of our ewes could explain their flow patterns with a plateau of high milk flow.
In fact, these females also have a high proportion of cisternal milk compared
with alveolar milk, and no restrictive oxytocin levels (Marnet et al. [18]), es-
sential for alveolar milk ejection. So, the first peak of milk emission is very
long and the second peak of milk ejection crumpled up with the first one and
may have masked the two peak milk flow profiles often described.

The coefficients of variation (Tab. II) were moderate to high: milk yield
and maximum milk flow presented intermediate values (50%), while average
flow, latency time and the time at maximum milk flow had slightly higher
coefficients of variations (75%). The two phases of increasing and decreasing
flows (TIF and TDF, respectively) had high coefficients of variation (125%),
reflecting a low precision of estimation of these variables.

3.2. Effects of milk yield selection on milking ability

3.2.1. Factors of variation

Almost all factors of variation (model 1) were significant for all studied
traits. The exceptions were the following: a lack of effect of divergent lines
on phase of increasing flow, milking occasion on latency time, and number of
suckling lambs on latency time and phase of high flow. Least squares means of
fixed effects are reported in Table III. For all milking traits, significant factors
of variation (in a decreasing order of level of significance) were the stage of
lactation, morning or evening milking, parity, divergent line and, finally, the
number of suckling lambs. As a general trend, all effects positively affecting
latency time had, an adverse effect on milk yield, maximum milk flow and the
three flow phases.

The milking ability of females decreased with lactation stage and parity: av-
erage flow and maximum milk flow decreased markedly, phases of high flow
and of decreasing flow decreased slightly, while latency time increased signif-
icantly (Tab. III). Bruckmaier et al. [5] and Ilahi [11] also showed evidence of
a negative effect of lactation stage on milk emission in the goat, but Ilahi [11]
observed the best milking ability at the second lactation of goats. The ewes
who suckled two or more lambs had their subsequent milking ability improved
(Tab. III). This is an original result for flow traits, not earlier reported for cows
and goats which are usually studied without a suckling period. It is likely that
the positive effect of the number of suckling lambs on milk yield has a bene-
ficial impact on flow traits (up to 10% on FA). However, the number of lambs
did not affect latency time.
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Table III. Analysis of variance of the milking traits: least squares means of the fixed
effects.

Traits YT TL FM FA TFM TIF THF TDF
N

Unit mL S mL·s−1 mL·s−1 s s s s
Selected lines

Low
High
Diff (%)

11 617
22 999

684
880
+25%

27.7
25.1
−10%

11.0
13.1
+17%

4.2
5.7
+30%

23.0
23.8
+3%

NS 15.2
17.3
+13%

12.6
15.6
+21%

Milking occasion
Morning
Evening
Diff (%)

17 392
17 224

958
606
−45%

NS 13.5
10.6
−24%

6.3
3.6
−55%

25.0
21.8
−14%

18.8
18.0
−4%

18.4
14.0
−27%

18.1
10.1
−57%

Parity
1
2
3
4
5+
Diff (%)

9243
9121
6231
4443
5578

854
786
802
771
695
−20%

23.2
24.6
26.0
28.1
30.5
+27%

13.6
12.4
12.2
11.6
10.5
−26%

5.7
5.1
5.1
4.8
4.1
−33%

22.3
23.1
23.6
23.8
24.0
+7%

15.5
17.1
18.6
19.7
21.0
+30%

17.8
17.0
16.4
15.4
14.4
−21%

15.6
14.2
14.8
14.0
11.8
−28%

Stage of lactation
1
2
3
4
5

Diff (%)

5553
8844
4799
9111
5868

971
894
771
666
608
−46%

24.9
24.7
25.8
27.0
29.7
+18%

13.9
13.5
12.3
10.7
9.8
−35%

6.3
5.8
4.9
4.1
3.7
−52%

26.5
24.7
21.8
21.5
22.7
−21%

20.7
18.8
16.0
17.0
19.4
−26%

19.0
17.7
16.0
14.5
14.0
−30%

16.9
16.3
14.8
12.2
10.3
−49%

Suckling lambs
1
2

Diff (%)

19 658
14 958

748
815
+9%

NS 11.9
12.2
+2%

4.7
5.2
+10%

22.7
24.1
+6%

17.5
19.3
+10%

NS 13.4
14.8
+10%

NS: non significant.
YT: milk yield; TL: latency time; FM: maximum milk flow; FA: average flow; TFM: time
at maximum milk flow; TIF: phase of increasing flow; THF: phase of high flow; TDF:
phase of decreasing flow.

As expected, the difference between divergent lines for milk yield was about
25% (P < 0.001) of the general mean (Tab. III). The High divergent line ex-
hibited a smaller latency time than the Low line (–10%), which suggests that
selection on yield had a beneficial impact on latency time. As a general trend,
traits representing milk flow (FM and FA) were positively affected by selec-
tion for high milk solid yield (+17% and +30% for maximum milk flow and
average flow, respectively). Milking ease would be improved if maximum milk
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flow has a longer duration: this happens when ewes were primiparous and be-
longed to the High selected line (+13% for phase of high flow and +21% for
phase of decreasing flow). As a main conclusion, the divergent selection prac-
ticed at La Fage, led to indirect improvement of milking traits.

3.2.2. Phenotypic correlations

As a whole, milking traits were globally highly correlated with yield at milk-
ing (Tab. IV): milk yield was associated with average flow (+0.99), maximum
milk flow (+0.86), the phase of high flows (+0.93) and the phase of decreas-
ing flows (+0.83), but it was less related to latency time and time at maximum
milk flow (–0.42 and +0.35, respectively). Physically, a high milk quantity in
the udder increased the level of intra-mammary pressure and led to high milk
flow characteristics.

Table IV. Correlations within milking traits corrected by the fixed effects.

YT log (TL+4) log (TFM) FM FA TIF THF
Traits
YT
log (TL+4) –0.42
log (TFM) +0.35 +0.51
FM +0.86 –0.76 –0.05
FA +0.99 –0.42 +0.33 +0.86
TIF –0.13 +0.71 +0.83 –0.46 –0.17
THF +0.93 –0.43 +0.26 +0.82 +0.95 –0.26
TDF +0.83 -0.05 +0.48 +0.51 +0.83 +0.05 +0.76

YT: milk yield; TL: latency time; FM: maximum milk flow; FA: average flow; TFM: time
at maximum milk flow; TIF: phase of increasing flow; THF: phase of high flow; TDF:
phase of decreasing flow.

The phase of increasing flow, independent from milk yield (–0.13), was pos-
itively correlated with latency time (+0.71) and time at maximum milk flow
(+0.83). Besides, maximum milk flow was positively connected to average
flow (+0.86) and phase of high flow (+0.82). Also, note that a long latency
time (TL) was usually followed by a weak maximum milk flow (–0.76); this
result was partly due to the definition of TL used here, depending on the ini-
tial milk flow necessary to reach 0.16 L in the jar (see Sect. 2.2). However,
with the same milk flow recording devices, Ilahi [11] demonstrated in the goat
that maximum milk flow was correlated with an estimated TL and strict TL at
−0.67 and –0.52, respectively. These results suggest the existence of common
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biological mechanisms regulating both the true delay of milk emission and the
maximum flow.

3.3. Genetic parameters

The study of the genetic relationships among milking traits was performed
on first lactations at morning milking. Two approaches were developed: the
analysis of annual traits (data C), and the analyses of the elementary data at
milking (data B) by considering successive milk recordings as different traits.

3.3.1. Annual traits

3.3.2.1. Heritability

The heritability of the milk yield average per year was 0.44 (Tab. V). This
value was higher than the heritability estimated by Barillet et al. [2] on total
lactations of primiparous ewes at La Fage (heritability of 0.35). The heritabil-
ities were also high for milking traits, with standard errors ranging from 0.06
to 0.09.

Table V. Heritabilities (and standard errors) [on diagonal], genetic correlations (and
standard errors) [above the diagonal] among annual milking traits: multi-trait analysis
of primiparous ewes (N = 751).

YT log (TL+4) log (TFM) FM FA TIF THF TDF
Traits
YT 0.44 −0.22 +0.34 +0.46 +1.00 +0.34 +0.87 +0.24

(0.09) (0.13) (0.14) (0.11) (0.01) (0.15) (0.23) (0.22)
log (TL+4) 0.55 +0.75 −0.92 −0.25 +0.78 −0.78 +0.93

(0.08) (0.08) (0.04) (0.15) (0.07) (0.27) (0.15)
log (TFM) 0.42 −0.64 +0.29 +0.99 −0.54 +1.00

(0.08) (0.10) (0.16) (0.02) (0.34) (0.19)
FM 0.54 +0.53 −0.66 +0.79 −0.86

(0.08) (0.12) (0.09) (0.25) (0.19)
FA 0.30 +0.33 +0.82 +0.10

(0.08) (0.17) (0.25) (0.29)
TIF 0.43 −0.56 +1.00

(0.08) (0.33) (0.17)
THF 0.07 +0.22

(0.06) (0.61)
TDF 0.16

(0.07)

YT: milk yield; TL: latency time; FM: maximum milk flow; FA: average flow; TFM: time at
maximum milk flow; TIF: phase of increasing flow; THF: phase of high flow; TDF: phase
of decreasing flow.
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The highest values corresponded to maximum milk flow and latency time
(heritabilities of 0.54 and 0.55, respectively). The phase of increasing flows,
the time at maximum milk flow and the average flow had intermediate her-
itabilities (0.43, 0.42 and 0.30, respectively), whereas the heritability of the
phase of decreasing flows and the phase of high flows was weak (0.16 and
0.07, respectively). In dairy cattle, the heritability of maximum milk flow
was slightly smaller than our estimate, with values varying from 0.21 to
0.48 [7, 8, 19, 22]. High heritability estimates could be explained by two main
reasons: firstly, we used annual average milking traits while other authors com-
puted either elementary data with a test-day model [7, 8] or a single average
between evening and morning data [22]. Secondly, we recorded data in a single
flock, while they recorded milking traits in several herds.

Concerning the three phases of milk flow (TIF, THF and TDF), the heri-
tabilities were in disagreement with the literature: heritability estimates for the
phase of high flows in other studies were higher than ours [7,8,22]. Conversely,
for the phase of decreasing flows, the literature estimates were mainly smaller
than ours [7, 8].

3.3.1.2. Genetic correlations

The genetic correlations between milking traits and milk yield were consis-
tent with the differences between divergent lines (Tab. V): in first lactation, the
more important the genetic level for milk, the higher the average flow (+1.00),
the longer the phase of high flows (+0.87), the higher the maximum milk flow
(+0.46), the later the time at maximum flow (+0.34) and the shorter the la-
tency time (–0.22). The genetic correlations between milk yield and milking
traits were consistent with dairy cattle estimates for maximum milk flow and
phase of decreasing flow [8,19,22]. Nevertheless, genetic correlations between
milk yield and duration of high flow seemed to be zero or weak in cattle [8,22],
while our estimation was high (+0.87).

Maximum milk flow was negatively and very strongly correlated with la-
tency time (–0.92). To a lesser extent, maximum milk flow was negatively
related to both phases of increasing and decreasing flows (–0.66 and –0.86, re-
spectively). Even though there was a marked genetic link between maximum
milk flow and the phase of high flows (+0.79), the relation between maxi-
mum flow and average flow was somewhat weaker (+0.53): the higher the
maximum flow, the longer the phase of high flows, and the shorter the two
phases of increasing and decreasing flows. Conversely, the latency time was
correlated to the time at maximum milk flow (+0.75), the phases of increasing
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and decreasing flows (+0.78 and +0.93). Nevertheless, in cattle, maximum
milk flow was negatively linked with both phases of decreasing flow and high
flow [8, 22], meaning that a high maximum flow is associated with a short
plateau of high flow. Globally, the lack of precision of the measurement of the
three phases (with a lag of 10 s used here) may explain this discrepancy with
the bovine literature where the measures were made every 3 s [7, 8, 22].

Our estimations on primiparous ewes show a symmetric but opposite be-
haviour of latency time and maximum milk flow. The average flow was more
connected to the genetic level of milk production than to the other milking
traits.

3.3.2. Heritability of elementary test-day traits

The heritabilities according to the milk recording number were variable. On
the one hand, milk yield, average flow, and to a lesser extent latency time had
increasing heritabilities with lactation stage. On the other hand, maximum milk
flow exhibited slightly decreasing trends (Fig. 2a).

Figure 2. Heritabilities of milking traits according to the test-day record: multi-trait
analysis for primiparous ewes (N = 751) (Standard errors from 0.07 to 0.10).

The increase of the heritabilities of milk yield and average flow resulted
from a strong reduction of the residual variance (results not shown) coupled
with a moderate decrease of the genetic variance. However, the increase of
the latency time heritability was due to an increase of the genetic variance,
with the residual variance remaining stable. The decrease of the maximum
flow heritability with lactation stage can be explained by a strong decrease of
the genetic variance as compared to the residual variance. The heritabilities of
time at maximum flow and phase of high flow do not show a clear trend along
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lactation stage, and the heritabilities of the phases of increasing and decreasing
flow (TIF and TDF) remained stable but very low (Fig. 2b).

At the beginning of lactation and until the 5th test-day, maximum milk flow
and latency time were the most heritable milking traits. As a general trend
(milk yield apart), heritability estimates at each test-day were lower than the
heritabilities of annual average milking traits. Also, our maximum milk flow
heritability estimates, which vary between 0.29 and 0.50, were more in accor-
dance with the bovine estimates.

4. DISCUSSION

The results presented contribute to the evolution of dairy sheep selection
programmes. Three main points should be stressed: (i) milking ability is a
complex trait which should be correctly described for genetic purposes; (ii) the
present criteria for dairy sheep selection are not antagonistic with milking
traits; and (iii) the parameters calculated in this study can be used to improve
genetic level on such new traits.

4.1. Useful traits to determine milking ability in ewes

In dairy sheep where milking is collective in large groups of ewes (about
48 animals milked simultaneously), milking time is a management character-
istic rather than an animal’s characteristic. Indeed, heritability of milking time
is very low (ranging from 0 and 0.04 [9]), and cannot be integrated into a
selection criterion. The average milk flow (ratio between milk yield and milk-
ing time) usually used to define the milking speed of an animal, also has a
low heritability (from 0.11 to 0.19 [9]) and is poorly informative. Moreover,
bovine appraisal of milking ease (a subjective score from 1 to 5 given by breed-
ers [4, 21]) is unusable in sheep, where the size of the flocks (about 400 ewes)
keeps breeders from remembering the milking ability of each female.

Our automatic milk-recording device [20] allows a new descriptive ap-
proach of milking traits by identifying derived traits such as TL, FM, TFM,
FA, TIF, THF and TDF. Amongst these criteria, latency time (TL) should be
underlined. In fact, TL is an original trait, easier to record directly, and more
accurately than flows. TL shows a high individual variability amongst ani-
mals, is highly genetically correlated with maximum milk flow, and is also the
milking trait the less dependant on milk yield. Moreover, decreasing TL may
provide an opportunity to reduce total milking time and milking labour costs.
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4.2. Improvement of milking ability under current selection

Our experimental design of divergent lines on milk yield clearly demon-
strated that the current selection of dairy Lacaune ewes has an indirect
favourable impact on milking ability. To our knowledge, this is the first re-
port on the effects of experimental selection on milking traits. The attained
divergence, a gap of 10 years of selection, involves a favourable response in
milking ability by increasing maximum milk flow (+17%), by lengthening the
phase of high flows (+13%), and by reducing the latency time (–10%).

This indirect selection was due to the favourable genetic correlations be-
tween milk yield and milking traits reported in this study. These original re-
sults in ewes were in agreement with results in cattle where genetic correlations
between milk yield and milking traits varied from 0.38 to 0.69 [8,19]. Anatom-
ical and physiological studies on the ewes studied here, revealed that selection
on milk solid yield might have also modified the internal teat conformation of
ewes. The preliminary analysis of teat canal cross sections of 16 divergent line
ewes show that the HL ewes had a canal diameter at the teat apex from 30 to
40% higher than the LL ewes (M. Manesse, personal communication). More-
over, the strength of the vacuum needed to extract the first milk drop was 10%
weaker for the HL ewes than for the LL ewes. This indicates that the improve-
ment of milking ability with current selection is partly due to a modification in
the tone of the teat sphincter.

4.3. Selection on milking traits is possible

Among milking traits, latency time and maximum milk flow have higher
heritabilities (0.55 and 0.54, respectively): a selection on these traits would
be feasible, if milk flow recording devices were available to breeders. The in-
termediate and stable heritability values of latency time (TL) and maximum
milk flow throughout lactation (between 0.30 and 0.55) suggest that a single
or few milk flow recordings per year and per ewe might be used for selection
purposes. Moreover, we have previously demonstrated [17] that milking traits
measured in first lactation and second lactation are genetically strongly corre-
lated, with correlation values of 0.90 for latency time and 0.98 for maximum
milk flow. So, selection based on primiparous ewes will have an impact on
the later performance of ewes. However, latency time and maximum milk flow
were strongly genetically connected (–0.92) and thus genetically redundant.
Since the genetic covariance between milk yield and maximum flow is about
55 times higher than the genetic covariance between milk yield and latency
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time (results not shown), the correlated response on milking ability with milk
yield selection, assuming mass selection, would be higher on maximum milk
flow than on latency time. It could, however, be interesting to improve milking
ability, using a criterion combining TL and the present index based on solids in
milk. Alternatively to directionally select on TL, further studies on selection on
the variance of milking traits will be useful in order to evaluate the possibilities
of canalising selection, aimed at the homogeneity of milking ability.

Nevertheless, before starting selection on milking ability, we need to ver-
ify if the increase of milk flow has an unfavourable impact on udder health.
In dairy cattle, several studies indicate that milking ability is genetically and
positively correlated with sub-clinical mastitis [4,7,21]. If such a link exists in
dairy ewes, we almost need to perform selection on both “milking ability” and
“udder health” traits.

5. CONCLUSION

As in dairy cattle, the dairy selection of Lacaune ewes shapes animals with
phenotypically and genetically better milking traits. As a consequence of selec-
tion on milk yield, the latency time was shortened and the maximum milk flow
was increased simultaneously to an increase of the phase of high flows. Thus,
we are in an optimal situation in terms of the improvement of milking abil-
ity, without making direct measurements of these traits due to the favourable
link with the current selection on milk yield. However, if the breeders wanted
to, we could accelerate this improvement of the milking ability by direct se-
lection. In this case, the objective of selection could be the reduction of the
latency time until a minimum lag dependant on the milking installation, and
thus the increase of the phase of milk emission with a higher maximum milk
flow and a longer phase of high flows.

It is, however, necessary to verify the genetic impact of this milking ability
increase on the shape of the udder, and on udder health, since indirect selection
on milking traits seems to increase the diameter of the canal of the teat, which
represents one of the barriers for the entrance of bacteria into the udder. Ac-
cording to these results, we can consider or not a joint selection on milk solid
yield, somatic cell count and milking ability.
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