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Abstract – Survival traits and selective genotyping datasets are typically not normally dis-
tributed, thus common models used to identify QTL may not be statistically appropriate for
their analysis. The objective of the present study was to compare models for identification of
QTL associated with survival traits, in particular when combined with selective genotyping.
Data were simulated to model the survival distribution of a population of chickens challenged
with Marek disease virus. Cox proportional hazards (CPH), linear regression (LR), and Weibull
models were compared for their appropriateness to analyze the data, ability to identify associa-
tions of marker alleles with survival, and estimation of effects when all individuals were geno-
typed (full genotyping) and when selective genotyping was used. Little difference in power was
found between the CPH and the LR model for low censoring cases for both full and selective
genotyping. The simulated data were not transformed to follow a Weibull distribution and, as a
result, the Weibull model generally resulted in less power than the other two models and over-
estimated effects. Effect estimates from LR and CPH were unbiased when all individuals were
genotyped, but overestimated when selective genotyping was used. Thus, LR is preferred for
analyzing survival data when the amount of censoring is low because of ease of implementation
and interpretation. Including phenotypic data of non-genotyped individuals in selective geno-
typing analysis increased power, but resulted in LR having an inflated false positive rate, and
therefore the CPH model is preferred for this scenario, although transformation of the data may
also make the Weibull model appropriate for this case. The results from the research presented
herein are directly applicable to interval mapping analyses.

survival / Cox proportional hazards /Weibull / quantitative trait loci

1. INTRODUCTION

Genetic association analyses are becoming a common approach in animal
breeding to identify genes or genomic regions that affect quantitative traits
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(e.g., [17, 29, 33]). Most analyses utilize statistical models that assume nor-
mality of phenotypes [8, 9, 12, 14, 32]. Many phenotypic traits of interest in
agriculture, however, do not follow a normal distribution (e.g. ordinal traits
such as conformation scores, binary traits such as calving/not calving, or time
to success/failure traits such as survival time).

Many agriculturally important traits follow a survival distribution (e.g. sur-
vival after infection, length of productive life, or days open). To analyze such
traits, the Weibull and Cox proportional hazards models are commonly em-
ployed [1, 2, 4, 6, 7, 11, 16, 23, 25, 27]. The Weibull model, a generalization
of the exponential model, is parametric and is therefore appropriate for only
specific distributions; the Cox model is a rank-based semi-parametric method
and, therefore, should be appropriate for all distributions for which the hazards
between groups are proportional [26]. Both models can appropriately handle
datasets that include data from individuals without a recorded time of death,
i.e., censored data.

Another distributional difficulty that is often encountered in
marker/phenotype association analyses is created by the use of selective
genotyping. Selective genotyping is a method to reduce the costs of an exper-
iment by genotyping only individuals from the extremes of the phenotypic
distribution [14, 15]. Individuals from the phenotypic extremes provide most
of the power for a marker-trait analysis, so power can be maximized for a
limited number of genotypes by selective genotyping. This, however, also
causes the distribution of phenotypes to be non-normal. When the phenotype
of all individuals in the experiment is normally distributed, using linear
regression to analyze selective genotyping data results in the effects being
overestimated [14]. Darvasi and Soller [3] and Ronin et al. [24] derived
an approximation to correct for this bias when the complete phenotypic
data follows a normal distribution. Maximum likelihood can also be used
to appropriately analyze such data [14, 20], if the proper distribution can
be identified. Henshall and Goddard [10] showed that logistic regression
of genotype onto phenotype also resulted in unbiased estimates of effects;
however, the original phenotype must be normally distributed for this method
as well.

Moreno et al. [19] used simulation to compare Cox, Weibull, and Gaussian
models for QTL analysis with a survival phenotype. They found that when the
data are censored at a fixed date, the survival models improved power of QTL
detection and the accuracy of estimates of QTL location and effect. They did
not, however, evaluate the models for analysis of selective genotyping survival
data, which was the objective of the current study.
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McElroy et al. [18] used the Cox proportional hazards model and linear re-
gression to identify markers associated with survival in selectively genotyped
layer chickens infected with Marek disease virus. Using simulation under the
null hypothesis of no QTL, they found that both linear regression and the Cox
proportional hazards model resulted in valid false positive rates for tests of as-
sociation. They did not, however, compare the power of these two models, nor
did they evaluate the use of a Weibull model. Because the Weibull model is
a parametric survival model, it should be more powerful that the Cox model
if the data follow a Weibull distribution. Therefore, the objective of this study
was to compare the validity of false positive rates and the power of employing
the Weibull model, the Cox proportional hazards model, and the linear regres-
sion model to analyze QTL associations under full and selective genotyping of
survival data.

2. MATERIALS AND METHODS

2.1. Data simulation

Survival data were simulated for a backcross under the null hypothesis of no
QTL, or the alternative hypothesis that a QTL affecting survival resides at the
marker under analysis. To mimic real data, the simulated data were generated
to represent actual data from the backcross population of Marek disease virus-
challenged layer chickens described by McElroy et al. [18]. Survival times
in the real experimental population over the recording time ranged from 33
to 140 d (Fig. 1). Survival times followed a right-skewed distribution with a
mean of 65.5 d, a median of 59.0 d, and a standard deviation of 23.9 d. Twenty-
eight individuals (4.3%) survived to the end of the study and were considered
censored in the analyses. A survival function (S (t)KM) was estimated from the
real data using the non-parametric Kaplan-Meier estimator [13]:

Ŝ (t)KM =

k∏

j=1

nj − dj

n j

for t(k) ≤ t < t(k+1), where j is the rank of a particular day (t) among all
chronologically ordered days in which death occurred, k is the rank of the day
in which the survival function is being evaluated, nj is the number of animals
still alive on day j, and dj is the number of animals dying on day j. This
resulted in an estimate of S (t)KM for each time of death (t).

Survival data for 700 backcross animals were simulated following methods
described by Moreno et al. [19] by generating a survival probability, S 0(t)i, for
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Figure 1. Distribution of survival times from the real population of chickens (data
reported in McElroy et al. [18]). Recording terminated at 140 days.

each individual i based on a proportional hazards model:

S (t)i = S 0(t)exp(βsxi)
i

where S (t)i is a draw from a random uniform [0,1], βs is the simulated QTL
allele substitution effect [5], and xi indicates the QTL allele received from the
F1 parent, which was either zero or one and was randomly selected from a
Bernoulli distribution with a 50% chance of getting either allele. The value
of S 0(t)i obtained for an animal was then cross-referenced with the estimated
Kaplan-Meier function obtained from the real data to get the corresponding
time of death. To simulate selective genotyping, only the 20% short (140 an-
imals) and 20% long (140 animals) surviving individuals were considered for
analysis and their genotype for the marker (QTL) was assumed known.

The simulation was performed for each of four allele substitution effect lev-
els of the QTL: βs = 0, 0.1, 0.2, or 0.3. The largest effect was chosen to be 0.3
because all analyses had high power for this effect. It should be noted that a
larger βs results in an increased risk of death and, therefore, corresponds to a
more negative effect on days of survival. Two additional censoring scenarios
(0 and 20%) were also considered, in addition to the 4.3% censoring that was
present in the real data. For the no censoring scenario, the Kaplan-Meier func-
tion from the real data set was extended past day 140 by assuming the same
risk of dying for each day past 140 as the average risk from day 101 and 139.
For 20% censoring, day 77 was considered as the last day of the study.



Selective genotyping survival data analyses 641

2.2. Models of analysis

Simulated data were analyzed for associations of marker and phenotype us-
ing the Weibull, Cox proportional hazards, and linear regression models. The
linear regression model (e.g., [28]) was:

Ti = µi + βLRp(Q)i + εi,

where Ti is the survival time of animal i, in days; βLR is the increase in the
mean survival time associated with inheriting allele 1 versus allele 0; p(Q)i is
the probability of inheriting one versus the other QTL allele for animal i; µi is
the average survival time when p(Q)i = 0; and εi is the residual for animal i.

The Cox model used, following Smith [25], was:

S (t; n)i = [S 0(t)]exp(ηi),

where S (t; n)i is the probability that animal i survived at least until time t,
S 0(t) is the baseline survival, S 0(t) = e−

∫
ho(t)dt, where ho(t) is the baseline

hazard, ηi = βPHp(Q)i, where βPH is the allele substitution effect of the QTL
on the natural log of the hazard ratio for the Cox model, and p(Q)i is as defined
previously.

The Weibull model [30] used was:

S (t)i = exp
{
−θtαe[βWp(Q)i]

}
,

where S (t)i is the probability that animal i survived at least until time t, θ is
the shape parameter of the Weibull distribution, α is the scale parameter of
the Weibull distribution, βW is the allele substitution effect of the QTL on the
natural log of the hazard ratio for the Weibull model, and p(Q)i is as defined
previously. For all models, p(Q)i = 0 or 1 for genotyped individuals, depending
on which QTL allele they inherited.

Selective genotyping data were analyzed in two ways: (i) including only
genotypic and phenotypic data from genotyped individuals (SG) in the analy-
sis, and (ii) also including phenotypic data from the ungenotyped individuals
(SGI) in the analysis. For the SGI scenario, p(Q)i = 0.5 for ungenotyped in-
dividuals because, with unknown genotypes, these individuals were equally
likely to have received either allele. These data were then analyzed with the
three models of interest. For the 4.3 and 20% censoring scenarios, animals dy-
ing on day 140 and 77, respectively, were considered censored for the Weibull
and Cox models, and to have died on day 140 and 77 for the linear regression
model.
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The proper method for including ungenotyped individuals in the survival
models, in which the allele inherited is unknown, is to use the average of the
hazards for the two possible alleles in the partial likelihood. However, standard
statistical packages do not permit modification of the likelihood equations. To
allow implementation of standard methods, p(Q)i = 0.5 was used as the ex-
planatory variable for the survival models as an approximation of the average
of the hazards for the two possible alleles in the partial likelihood. This method
is discussed in detail in the appendix of McElroy et al. [18] for the Cox model.
They found that, under the null hypothesis of no QTL effect, the estimated
effects are slightly biased away from zero when the approximation is used,
but the standard error of the estimated effects is also higher, resulting in an
appropriate type I error rate.

False positive rates (assuming no QTL effect) and power of the analyses
were calculated based on 1000 replicates for each allelic effect level for each
of two significance levels (P < 0.05 and 0.01) for the Full (all individuals
genotyped), SG, and SGI genotyping scenarios. A two-tailed binomial test was
used to determine if false positive rates differed significantly from expected
(i.e. the α level) under the null hypothesis and a two-tailed Fisher exact test was
used to determine if the power of the alternate models differed significantly.

The Weibull model for all genotyping scenarios and the linear regression
model for the SGI scenario resulted in inflated false positive rates. Although
transforming the data to fit a Weibull distribution could have made the Weibull
model appropriate for analysis in the Full genotyping scenario and may have
improved the performance of the Weibull model in the SGI scenario, no trans-
formations of the data were performed for the current study because transfor-
mation would not have addressed the SG scenario, which was the main em-
phasis of the study. Instead, for the Weibull analyses and the linear regression
analyses in the SGI scenario, empirical thresholds with appropriate false posi-
tive levels were derived and used to compute power for each level of censoring.
Empirical thresholds were obtained from 10 000 replicates of data simulated
with no QTL effect.

Average allele substitution effect estimates and their variances across each
set of 1000 replicates were also calculated. Estimated effects from linear re-
gression describe the average difference of survival in days between the two
QTL alleles, and estimates from the Cox and Weibull models describe the al-
lele substitution effect on the natural log of the hazard ratio. To make the effect
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estimates from all three models directly comparable, the mean difference of
survival in days between groups inheriting one versus the other QTL allele was
estimated for the Cox and Weibull models for each replicate. For the Weibull
model, estimates in terms of the hazard ratio can be directly converted into
estimates in days by:

E(T) = Γ(1/α + 1)(θep(Q)iβW)−1/α

where E(T) is the expected mean days of survival, Γ is the gamma function, and
p(Q)i, α, βW, and θ are as described previously. The mean difference in days
was calculated by finding the difference between E(T) for p(Q)i = 0 and 1. To
obtain estimates in days from the Cox proportional hazards model, the differ-
ence in the means of the survival functions for p(Q)i = 0 and 1 was calculated
across all times using the Cox proportional hazards estimates for βPH. For this
estimation, censored individuals were assumed to have died on the last day of
the study. Estimates from the three models were compared based on their cor-
relations, magnitudes, and standard errors. The magnitudes of effect estimates
from the three models were compared by using a t-test assuming unequal vari-
ances. All simulations and analyses were performed using the R [22] statistical
package.

3. RESULTS

3.1. False positive rates

Table I shows the false positive rates for the Weibull, Cox, and linear re-
gression models for α = 0.05. False positive rates for the Cox model were not
significantly (P > 0.05) inflated for any genotyping scenario. False positive
rates for linear regression were not significantly (P > 0.05) inflated in the full
and SG cases, but were significantly (P < 0.05) inflated for every censoring
level when SGI was used. The Weibull model had a significantly (P < 0.05)
higher number of false positives than expected for every censoring and geno-
typing scenario. Significance of differences from the expectations for the three
models with α = 0.01 were similar to those when α = 0.05.

3.2. Power between models

Powers of the Cox, Weibull, and linear regression models for different ef-
fects and censoring for α = 0.05 are shown in Figure 2. Although not always
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Table I. False positive rates for Cox proportional hazards, linear regression, and
Weibull models for different censoring levels and genotypic scenarios at α = 0.05
based on 1000 replicates.

False Positive Rate2

Censoring Genotyping1 CPH3 LR3 WEI3

(%) (%) (%) (%)

0 Full 4.7 4.3 16.9*
4 Full 4.6 4.9 13.9*

20 Full 5.4 5.8 7.9*
0 SG 4.8 4.9 6.8*
4 SG 4.8 5.0 8.1*

20 SG 4.5 5.0 6.8*
0 SGI 4.5 20.7* 26.3*
4 SGI 4.7 18.4* 23.4*

20 SGI 5.0 15.7* 16.3*

1 Full = all individuals genotyped and used in analysis; SG = selective genotyping with ungeno-
typed individuals excluded from the analysis; SGI = selective genotyping with ungenotyped
individuals included in the analysis.
2 * indicates significant difference (P < 0.05) between observed and expected false positive
rates (0.05) based on a two-tailed binomial test.
3 CPH = Cox proportional hazards; LR = linear regression; WEI =Weibull.

significant, for the Full case (α = 0.05), the Cox model was more powerful
than both linear regression and the Weibull model, and the linear regression
model was more powerful than the Weibull model, except with 20% censor-
ing. The linear regression model had lower power when censoring was high
for the Full scenario, but performed similarly to the Cox and Weibull models
for the SG and SGI scenarios with 20% censoring. For the SG low-censoring
(0 and 0.04%) scenarios, linear regression tended to have more power than
the Cox and Weibull models. Power was similar between the Weibull and Cox
models for the SG scenario. For the SGI scenario, the Cox model tended to
have higher power than the Weibull model across different censoring levels,
and slightly lower power than the linear regression model with low censoring.
Linear regression tended to have higher power than the Weibull model with the
SGI scenario and 0 and 0.04% censoring. The results for the power between
models presented in Figure 2 are for α = 0.05, but trends were similar for
α = 0.01.
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Figure 2. Power of Cox proportional hazards, linear regression, and Weibull models
for different censoring levels and genotypic scenarios at α = 0.05 based on 1000 repli-
cates. All powers are in %.

1 CPH = Cox proportional hazards; LR = linear regression; WEI =Weibull.
2 Full = all individuals genotyped and used in the analysis; SG = selective genotyping with
ungenotyped individuals excluded from the analysis; SGI = selective genotyping with ungeno-
typed individuals included in the analysis.
3 P-value levels determined empirically for these analyses.
4 Bars with different letter superscripts (a, b, or ab) within scenario, censoring, and effect are
significantly different at P < 0.05. No letter indicates no significant differences (P > 0.05).

3.3. Power among genotyping scenarios

Although not always significant, definite trends in differences of power were
apparent when comparing genotyping scenarios (Tab. II). For all three models,
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Table II. Differences in power between genotyping scenarios for different censoring
levels and simulated effects using Cox, linear regression, and Weibull models at α =
0.05 based on 1000 replicates.

Difference in Power2

Model1 Censoring QTL Full3-SG Full-SGI SG-SGI
(%) Effect (%) (%) (%)

CPH 0 0.1 5* 3 −1
CPH 0 0.2 11* 6* −5*
CPH 0 0.3 5* 2* −3*
CPH 4 0.1 3 3 −1
CPH 4 0.2 12* 6* −6*
CPH 4 0.3 6* 1 −4*
CPH 20 0.1 4* 4 −1
CPH 20 0.2 13* 8* −5*
CPH 20 0.3 7* 3* −3*
LR4 0 0.1 4* 2 −2
LR 0 0.2 8* 4 −4
LR 0 0.3 4* 2 −2
LR 4 0.1 3 1 −2
LR 4 0.2 8* 3 −5*
LR 4 0.3 3* 2* −1
LR 20 0.1 3 0 −4*
LR 20 0.2 7* 2 −4
LR 20 0.3 5* 2 −3*
WEI4 0 0.1 3 2 −1
WEI 0 0.2 3 2 0
WEI 0 0.3 2* 2 0
WEI 4 0.1 3 2 0
WEI 4 0.2 7* 5* −2
WEI 4 0.3 4* 2* −1
WEI 20 0.1 5* 4* −1
WEI 20 0.2 13* 8* −5*
WEI 20 0.3 7* 5* −2

1 CPH = Cox proportional hazards; LR = linear regression; WEI =Weibull.
2 * indicates significant difference (P < 0.05) between genotyping scenarios from a two-tailed
Fisher exact test.
3Full = all individuals genotyped and used in analysis; SG = selective genotyping with ungeno-
typed individuals excluded from the analysis; SGI = selective genotyping with ungenotyped
individuals included in the analysis.
4 P-values determined empirically for LR SGI and all WEI scenarios.
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across QTL effects and censoring, the Full genotyping scenario had more
power than SG and SGI, and SGI had more power than SG. Table II shows
results for α = 0.05 but trends were similar for α = 0.01.

3.4. Effect estimates

For the Full genotyping scenario, estimates of allele substitution effects
on the ln(hazard ratio) scale from the CPH model were never significantly
(P > 0.2) different from the simulated values (0.1, 0.2, or 0.3) (data not shown).
For the Cox model, the correlation of estimates on the ln(hazard ratio) scale
with converted estimates in days (within censoring level) was less than –0.99
for all scenarios, so the Cox estimates in days were adequate to compare esti-
mates in days from all models with the expected estimates that were in terms
of the ln(hazard ratio) within censoring level. Effect estimates from the Cox
model for the SG and SGI scenarios with non-zero simulated effects were sig-
nificantly (P < 0.05) larger than expected (i.e. 0.1, 0.2, and 0.3), but effects
were less overestimated for the SGI scenario.

Within a censoring and genotyping scenario, mean estimates from all three
models were highly correlated (greater than 0.99). For a given model, corre-
lations of mean effect estimates (in days) from different genotyping scenarios
were also greater than 0.99. The rest of the results will only consider simu-
lated effects >0. For the Full genotyping scenario, mean estimates from the
Cox and linear regression models did not differ significantly (P > 0.05), ex-
cept for the 0.2 censoring, effect = 0.3, case (Tab. III). For the Full scenario,
mean estimates from the Weibull model were significantly (P < 0.05) greater
than mean estimates from the Cox model. For the SG and SGI scenarios, mean
estimates from the linear regression model were significantly (P < 0.05) larger
than mean estimates from the Cox model for all cases. For the Full and SG sce-
narios, mean Weibull estimates were significantly (P < 0.05) larger than mean
estimates from linear regression, with the exception of the SG, no-censoring
scenario. For the SGI scenario with low censoring (0 and 0.04), mean esti-
mates from linear regression were significantly (P < 0.05) larger than Weibull
estimates. However, for the SGI high-censoring (0.2) scenario, mean estimates
from the Weibull model were significantly (P < 0.05) larger than mean esti-
mates from linear regression.

For all three models, standard errors of the means of the effect estimates
were less for the Full scenario than for SG and SGI (Tab. III). For the Cox and
Weibull models, standard errors were greater for the SG scenario than for the
SGI scenario but they did not differ for the linear regression model.
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4. DISCUSSION

4.1. False positive rates

Significance tests under the Cox model were robust to the distribution of
phenotypes that was included in the analysis. The Weibull model had signifi-
cantly (P < 0.05) inflated false positive rates for all scenarios, indicating that
the data did not fit a Weibull distribution. This was confirmed by significance
(P < 0.01) of a lack of fit test of the survival distribution from the real popula-
tion to the Weibull distribution using the Cramer-von Mises W test [21]. Tests
based on linear regression were robust to the lack of normality in the Full
and SG scenarios, but had an inflated false positive rate for the SGI scenario.
Further research is needed to understand why the addition of phenotypes of
the ungenotyped individuals causes linear regression to have an inflated false
positive rate using this particular dataset and to determine if this inflated false
positive rate occurs with datasets having different distributions.

In their comparison of models for the analysis of a non-selectively geno-
typed survival dataset, Moreno et al. [19] first transformed their data to better
fit a Weibull or Gaussian distribution. With the transformed data, Moreno et al.
[19] found that the Weibull and the Cox models had similar performances.
Transformation of our data would likely have resulted in similar results for our
Full scenario but for the SG scenario, the transformed dataset would still be
statistically inappropriate for the Weibull model, unless all phenotypic records
were included in the analysis. The effects of transforming the data on the se-
lective genotyping scenarios are unknown.

4.2. Power differences between models

Differences in power between models varied between genotyping scenarios
and censoring levels. In the Full scenario, the Cox model had higher power
than the linear regression and Weibull models. This is likely because the Cox
model is more appropriate for this distribution. The linear regression model
had less power than the Cox and Weibull models when censoring was 20%.
This was expected because the censored individuals were considered as dying
on the last day of the study in the linear regression model, and therefore the
extreme long-surviving individuals (which are more likely to have the favor-
able genotype) were grouped with less extreme long-surviving individuals that
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would be expected to have a lower frequency of the favorable genotype. This
situation reduces the mean phenotypic difference between individuals with the
favorable allele and individuals with the unfavorable allele, and thereby re-
duces power.

In contrast to Moreno et al. [19], we found significant differences in power
between the Cox and the Weibull models in the Full scenario. The discrepancy
between the two studies is likely due to the fact that the data were transformed
to fit a Weibull distribution in the Moreno et al. [19] study, whereas the data
were not transformed in the present study.

For the linear regression analyses, Moreno et al. [19] either excluded cen-
sored individuals or included them as dying on the last day of the study, as
in our study. They found that differences in power between the survival mod-
els and both linear regression analyses were small when censoring was low
or random, but increased as censoring increased. When censoring was greater
than 20% and at a fixed date, linear regression resulted in much lower power
than the survival models when censored individuals were excluded. Inclusion
of censored individuals as dying on the last day resulted in similar power as
the survival models at 20% censoring, but in substantially lower power at 40%
censoring. The current study included censored individuals in the linear re-
gression analyses and only examined censoring up to 20%. The differences in
power we observed between the linear regression model and the Cox model
would likely have been much larger if the censored individuals were excluded
from the linear regression analyses or at 40% censoring.

4.3. Power differences between genotyping scenarios

For all models and scenarios, power was somewhat (usually less than
10%) lower for the SG and SGI scenarios than for the Full scenario. This
is expected because for a normally distributed phenotype, it has been shown
that, for a fixed number of genotyped individuals, SG is more powerful than
Full [3, 14, 15], but when genotyping is not constrained, Full is more powerful
than SG. This is because the SG scenario excludes some of the information
that is used in the Full scenario, as does the SGI scenario. For the simulated
survival data, SGI had slightly (usually less than 5%) higher power than SG for
all models and scenarios. To determine which individuals are the most extreme
for selective genotyping, phenotypes from the entire population must usually



Selective genotyping survival data analyses 651

be obtained, so phenotypes of ungenotyped individuals should routinely be
available for inclusion in a selective genotyping analysis to increase power.

4.4. Effect estimation

For the Full scenario, estimates of the hazard ratio from the Cox model were
not significantly different from expectations (P > 0.05; data not shown). This
is likely because the survival data were appropriately distributed for the Cox
model. The linear regression model also estimated effects accurately in the Full
scenario when compared to estimates from the Cox model after conversion to
days, indicating the robustness of linear regression to deviations from normal-
ity. Moreno et al. [19] also found little differences between estimates from the
Cox and linear regression models when censored individuals were included in
the linear regression analysis as dying on the last day of the study. The Weibull
model overestimated the effects in the Full scenario by approximately 50%,
likely due to lack of fit of the data to a Weibull distribution.

Even though in the full scenario the estimates of the hazard ratio from the
Cox model were not significantly different from the expected, the estimates
in days were smaller when censoring was 20% for all models (Tab. III). With
censored data, the actual length of survival of the animals is unknown. The
effect in days from linear regression is the difference in the means of the two
allelic groups, and it is only known that censored individuals survived at least
to the date at which they were censored. The difference between the two allelic
groups must get smaller since the length of survival time is reduced for the
long surviving allelic group as a result of increased censoring from shortening
the length of the study.

For the SG scenario, it is well known that linear regression overestimates
effects when the phenotypes are normally distributed, and methods have been
devised to correct for these biases [3, 20, 24]. The upward bias of estimates
from linear regression is due to a positive correlation between QTL effects and
residuals when only extreme phenotypes are included in the analysis [3]. The
Cox and Weibull models also overestimated effects in the SG scenario by ap-
proximately 100%, although the Cox model did so significantly (P < 0.05) less
than the Weibull and linear regression models. For the SGI scenario, linear re-
gression overestimated the true effects slightly more than for the SG scenario,
and the Cox and Weibull models overestimated the true effects slightly less.
Skewness of the distribution may cause estimated effects from linear regression
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to increase when including the ungenotyped individuals with a p(Q)i = 0.5,
since the mean phenotype of these individuals will not fall on the regression
line between the mean phenotypes of the two extremes. With a normally dis-
tributed phenotype, the mean of the ungenotyped individuals, when given the
mean genotypic probability (0.5), is expected to fall on the regression line
between the means of the two phenotypically extreme groups, and therefore
should not change the slope of the regression line. Inclusion of non-genotyped
individuals in a selective genotyping analysis has been examined by several
authors [10, 14, 31] as a way to reduce biases in effect estimates. However, all
of these studies assumed a normal distribution. Further investigation into the
proper statistical models for including non-genotyped individuals in analysis
of non-normal, selectively genotyped data is needed.

4.5. Conclusions

Within the scope of the observed data distribution, the Cox model performed
better than the linear regression and Weibull models across the tested genotyp-
ing scenarios and censoring levels, without the need to derive empirical sig-
nificance thresholds. This was likely because the distribution of the data met
the assumptions of the Cox model better than that of the other two models.
However, survival models are much more computationally demanding than
linear regression and the effect estimates from survival models are much more
difficult to interpret than the effect estimates from linear regression. This, com-
bined with the fact that the linear regression and Cox models had similar power,
suggests that with little censoring and Full or SG genotypic scenarios, linear
regression can be the model of choice, since false positive rates for linear re-
gression were valid for these two scenarios. The Weibull model had an inflated
false positive rate for all scenarios and linear regression had an inflated false
positive rate for the SGI scenario, so significance thresholds had to be deter-
mined empirically, which is also computationally demanding.

In cases where selective genotyping is employed, more power can be ob-
tained by including phenotypes from non-genotyped individuals in the anal-
ysis. These phenotypes should typically be available since they need to be
recorded to determine which individuals are extreme. The Cox model was the
only model that did not require derivation of empirical thresholds for SGI, and,
therefore, may be the best model to use in this situation. Further research is
needed to determine if the Cox model would also be appropriate for normally
distributed traits with the SGI scenario.
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The current study was based on single marker analysis, rather than employ-
ing interval mapping but the genotypic data were entered into the models as
probabilities of marker genotypes. The genotypic data from an interval map-
ping analysis are also used to compute probabilities of genotypes at a specific
locus. The methods explored herein should therefore also apply to interval
mapping analyses but require further validation of model comparisons because
probabilities will be different from 0 and 1 for all individuals.
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