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Abstract – Given that individuals are genetically heterogeneous in their degree of resistance
to infection, a model is proposed to formulate appropriate choices that will limit the spread of
an infectious disease. The model is illustrated with data on S. aureus mastitis and is based on
parameters characterizing the spread of the disease (contact rate, probability of infection after
contact, and rate of recovery after infection), the demography (replacement and culling rates)
and the genetic composition (degree of relationship and heritability of the disease trait) of the
animal population. To decrease infection pressure, it is possible to apply non-genetic procedures
that increase the culling (e.g., culling of chronically infected cows) and recovery (e.g., antibiotic
therapy) rates of infected cows. But the contribution of the paper is to show that genetic man-
agement of infectious disease is also theoretically possible as a control measure complementary
to non-genetic actions. Indeed, the probability for an uninfected individual to become infected
after contact with an infected one is partially related to their degree of kinship: the more closely
they are related, the more likely they are to share identical genes like those associated to the
non-resistance to infection. Different prospective genetic management procedures are proposed
to decrease the contact rate between infected and uninfected relatives and keep the number of
secondary cases generated by one infected animal below 1.

infectious disease resistance / heterogeneous SIS model / genetic management /mastitis

1. INTRODUCTION

The distribution of an infectious disease over an animal population and its
evolution through time are the results of the dynamic interactions of the host
and pathogen systems. To design successful disease-control strategies, it is im-
portant to understand what are the most important processes, and how they
combine to characterize the dynamics of the disease spread. Mathematical
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models are indispensable when infectious disease data arise from observing
complex naturally occurring phenomena. In the mathematical approach, the
main biological interactions between hosts, pathogens, and between hosts and
pathogens are represented in the form of mathematical functions specified by
parameters which quantify the relative strengths of interactions or the rates at
which processes evolve.

Various types of epidemic models have been formulated depending upon the
characteristic of the infection [5,7]. Among others, the SIS model is appropri-
ate for bacterial infections for which no permanent immunity occurs after re-
covery. The initials SIS refer to the movement of a typical animal through the
two states of the disease: susceptible and infectious. An animal in the state S is
uninfected but susceptible to become infected with the disease upon exposure
to the contagious agent. Upon infection, it enters the state I and remains in it
until recovery to the S state. The rate at which I individuals transmit infec-
tion to the S ones is a function of the contact rate between individuals and the
probability that any one contact will transmit infection. Given a constant infec-
tious dose (same infectivity for all I animals), this probability is proportional
to the non-resistance genotype of the S animals. One must also consider that
animals enter and leave the herd independently of their infection status so the
demography of the herd may change across time.

Both, deterministic and stochastic modeling approaches exist. Determinis-
tic SIS models are based on ordinary differential equations and capture the
essential relationships among the different components. The state of the de-
terministic system is exactly predictable in contrast to stochastic models in
which the state of the system can take a range of values, each with a particular
probability of occurring.

Usually, SIS models treat populations as homogeneous in the sense that
any I animal is equally likely to infect any S animal and all S animals are
equally susceptible to infection by any I animal. While this assumption is an
obvious starting point for developing any general theory, it must be recog-
nized that animals are more or less resistant to a same infective dose because
of genetic (e.g., innate resistance or tolerance) and non-genetic (e.g., age, sex,
or immune status) differences. It seems likely that the genetic factor behind
resistance to infectious disease is a combination of a number of genes, each
having a small contribution to the risk of disease. Under this assumption, ge-
netic variances and heritability are familiar measures of the degree of genetic
determination.

Those measures are closely linked to the relative recurrence risk ratio, i.e.,
the ratio of the risk of disease in individuals with an affected relative to the risk
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of disease in the general population [18,24]. Indeed, relatives sharing genes in
common and infected (I) individuals are intrinsically non-resistant. Then, an I
individual shares genes with its relatives, genes that have contributed to its non-
resistance. Several authors have discussed the effects of host heterogeneity on
the ability of an infection to establish itself in a population [4, 21, 30, 32] but
none have considered the role of the genetic relationship between relatives on
the rate of transmission of the infection.

In this paper, homogeneous deterministic and stochastic SIS models were
extended in order to investigate the impact of host genetic heterogeneity on
the spread of a bacterial infectious disease, such as S. aureus bovine masti-
tis. Model parameters were derived from the literature on S. aureus quarter
infection and on culling strategies in dairy cattle.

2. MATERIALS AND METHODS

Let a population of density N be constituted of S susceptible individuals
and I infected ones mixing altogether uniformly, with S + I = N. The dis-
ease is assumed to be transmitted only by contact between hosts. Among all
contact-pairs between infected and susceptible individuals, a proportion pi is
between relatives sharing the same ith degree of additive genetic relationship,
with i = 1, 2, . . . g. The initial conditions (t = 0) are specified by S = S 0 and
I = I0.

2.1. The deterministic model

The deterministic form of the SIS model is:

dS/dt = ∆ − µ S + γ I − Σi λi pi k [SI]

dI/dt = Σi λi pi k [SI] − (γ + µ + ε) I

dN/dt = ∆ − µN − ε I

where ∆ is the constant replacement rate, µ is the per-capita natural culling
rate, γ is the per-capita recovery rate, ε is the per-capita culling rate due to
the infection, k is the per-capita contact rate between individuals, λi is the
probability that any one contact will transmit infection, and [SI] is the number
of contact-pairs between infected and susceptible individuals (Fig. 1).

Contacts relate to all routes by which the disease could be spread from one
animal to another. Individuals are assumed to interact with the same number
of other individuals, chosen uniformly and at random within the population
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Figure 1. Representation of the model for one particular group of relatives: ∆ is the
constant replacement rate, µ is the per-capita natural culling rate, γ is the per-capita
recovery rate, ε is the per-capita culling rate due to the infection, k is the per-capita
contact rate between individuals, λ is the probability that any one contact will transmit
infection, and [SI] is the number of contact-pairs between infected and susceptible
individuals.

(assumption of uniform mixing: [SI] = S I). It is also assumed that the contact
rate increases linearly with the density of individuals (frequency-dependence)
in contrast with the principle of mass action (density-dependence) [3]. The
parameter λi is a measure of the susceptibility of an individual to infection
upon contact with the relative of the ith degree and is a function of the degree of
additive genetic relationship (ai) between individuals sharing the ith degree of
additive genetic relationship, the heritability of the resistance to infection (h2),
and the average population transmission probability (λ0): λi = h2 (1−λ0) ai+λ0

(details in Appendix A).

2.2. The stochastic model

In the stochastic framework, the spread of an SIS infectious disease is mod-
eled as a Markovian continuous-time model [11]. The infinitesimal transition
probabilities in the interval (t, t + dt) are defined by:

Pr[(S , I)t+dt = (s + 1, i)
∣
∣
∣ (S , I)t = (s, i)] ∼ ∆ dt

Pr[(S , I)t+dt = (s − 1, i)
∣
∣
∣ (S , I)t = (s, i)] ∼ µ s dt

Pr[(S , I)t+dt = (s, i − 1)
∣
∣
∣ (S , I)t = (s, i)] ∼ (µ + ε) i dt

Pr[(S , I)t+dt = (s + 1, i − 1)
∣
∣
∣ (S , I)t = (s, i)] ∼ γ i dt

Pr[(S , I)t+dt = (s − 1, i + 1)
∣
∣
∣ (S , I)t = (s, i)] ∼ Σi λi k pi s i dt

where ∆, µ, ε, γ, λ and k have the same meanings as in the deterministic model.
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Table I. Parameters for a model that represents the dynamics of S. aureus infections in
a population of udder quarters. All rates and parameters are expressed as the number
of events per quarter-day at risk.

Symbols Parameter Symbols and values References

λ0 Transmission rate 0.3 to 4.6 × 10−2 Lam et al., 1996

λ0 Transmission rate 0.7 to 4.2 × 10−2 Zadoks et al., 2004

Average duration of
infectiousness

170.8 (SD = 115.7)
days

Lam et al., 1996

γ Cure rate for
untreated infections

0 to 15.7 × 10−3 Zadoks et al., 2004

γ Cure rate for treated
infections

1.3 to 36.5 × 10−3 Zadoks et al., 2004

γ Culling rate for
heifers with mastitis
from 30 days before
calving

to 120 d after calv-
ing: 19.9%
to 300 d after calv-
ing: 33.8%

Heringstad et al.,
2003

Average age at
culling for mastitis

1200 days Van Doormaal and
Brand, 2002

ε Mastitis extra
culling rate

1.2 to 53.5 × 10−3 Zadoks et al., 2004

Average age at
culling in healthy
Holstein

2056 days Van Doormaal and
Brand, 2002

µ Culling rate (non
mastitis related)

0.6 to 1.0 × 10−3 Zadoks et al., 2004

µ Culling rate for
heifers from 30 days
before calving

to 120 d after
calving: 13.6%
to 300 d after
calving: 29.2%

Heringstad et al.,
2003

2.3. Staph. aureus intra-mammary infection

Deterministic and stochastic models were illustrated by modeling bovine
S. aureus mastitis progression in a dairy herd. The sampling unit was
the individual quarter. Among all possible contact-pairs between infected and
susceptible quarters, a proportion pi (i = 0, 1, 2, 3, 4) was between related
individuals with an additive coefficient of relationship ai = 0, 1/2, 1/2 2, 1/2 3,
and 1/2 4, respectively. Default values for the parameters were derived from
the literature on culling strategies in heifers and on S. aureus quarter infec-
tion (Tab. I). The units for rates and parameters are the number of events per
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quarter-day at risk (QDR−1). Some parameters were derived from the available
information (e.g., inverse relation between rate and duration) while others were
provided directly by Lam et al. [17] and Zadoks et al. [38]. The replacement
rate was set at ∆ /µ to insure the initial disease-free equilibrium. Since no in-
formation was found on the average number of contacts made by a quarter per
unit of time, we assumed it was directly proportional to the number of quarters
initially present in each group. There was a control program against S. aureus
mastitis in ‘controlled’ herds (γ = 0.015 QDR−1, ε = 0.025 QDR−1) but not in
‘uncontrolled’ herds (γ = 0.006 QDR−1, ε = 0.001 QDR−1) in.

2.4. Model simulation and interrogation

The system of deterministic equations was analyzed with the MODEL pro-
cedure (SAS©, 1999) and the Gillespie algorithm (first reaction method) was
selected for the stochastic simulation. This discrete-event simulation technique
makes time steps of variable length, based on the transition probabilities and
densities of susceptible and infectious individuals. In each of the 3000 itera-
tions, random numbers are generated to determine the time and the type of the
next transition. Upon the execution of the selected transition, the populations
are altered accordingly and the process is repeated [12].

The prevalence (Pt), i.e. the proportion of infected quarters at different time
interval (t), was computed from both deterministic and stochastic models, for
t ≤ 5000 days. In the stochastic approach, Pt was averaged over the 3000 itera-
tions. The reproductive number (R0), i.e., the average number of new infective
quarters produced by one infective during the mean (death-adjusted) infec-
tive period [16], and the endemic prevalence (P∗) were obtained as results of
the numerical stability analyses (details in Appendix B) of the deterministic
model. The probability (Pepi) that a major epidemic will occur was determined
as the number of stochastic simulations with more than 1 infected quarter for
at least 5000 days over the total number of simulations. The proportion of per-
missible mixtures of relatives (Pcombi) was computed as the number of com-
binations of relatives leading to R0 below 1 divided by the total number of
combinations (n = 981) in herds with ai = 0, 1/2, 1/2 2, 1/2 3, and 1/2 4. It is the
proportion of relatives of any degree for which the epidemic is jugulated.

The models were implemented by introducing a single infected quarter-cow
in the herd, given the default values for the parameters characterizing the in-
fection (γ, ε) and the demographic (∆, µ) and genetic (λ0, h2, ai) makeup of
the population. In the first genetic makeup (Structure 1), pi = 0.2 for i = 0, 1,
2, 3, 4. Under Structure 2, p0 varied from 0 to 100% and pi = (1 − p0)/4 for
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i = 1, 2, 3, 4. Sensitivity analyses were conducted under this structure by as-
signing the lowest and highest values for γ and ε (Tab. I) and by conveying h2

for resistance to infection at 5 and 10%. Finally, in order to compute Pcombi,
pi was set to vary from 0 to 100% by increment of 10% for i = 0, 1, 2, 3, 4
with the restriction that Σ pi = 1 (Structure 3).

3. RESULTS

Given the information collected in Table I, the natural culling and mastitis
transmission rates were set at µ = 7.10−4 QDR−1 and λ0 = 2.10−2 QDR−1,
respectively. Under the genetic Structure 1 and for h2 = 5%, R0 = 3.74 in un-
controlled and R0 = 0.71 in controlled herds. The corresponding deterministic
and stochastic values for Pt are shown in Figure 2 for uncontrolled herds.

The prevalence Pt increased up to 48.53 % and 77.2% in the stochastic
and deterministic methods, respectively. After the peak, the deterministic Pt

decreased to reach an endemic value (P∗) of 50 %, as expected from the
numerical analyses (Appendix B). The stochastic prevalence Pt equilibrated
at P∗ = 32% and the probability of a major epidemic was very high, with
Pepi = 99.97%. In controlled herds, R0 was below 1 and Pt went to 0 (results
not shown).

The results of the sensitivity analyses are shown in Table II for R0 > 1.

The results are not shown for R0 < 1, because Pt = 0 for all t. The lowest
R0 (R0 = 0.22) was obtained when p0 = 1 (Structure 2), with ε = 0.05 QDR−1

and γ = 0.04 QDR−1. The highest R0 (R0 = 15.69) was achieved for mastitis
culling (ε) and recovery (γ) rates of 0.001 QDR−1 and p0 = 0. For fixed values
of γ and ε, R0 decreased twice as fast per percent increase in p0 when h2 = 10%
than h2 = 5% (Fig. 3). The declines in R0 were associated to a decrease in P∗,
Pepi, and in the maximum value for Pt.

In Figure 4, the proportions of mixture of relatives giving R0 below 1
(Pcombi) are shown for controlled herds, h2 = 0 to 100%, and λ0 = 0.005
and 0.02 QDR−1. Although R0 values augmented with increasing h2, they re-
mained below one for several different mixtures of relatives: R0 was below 1
for more than 10% of all possible contact-pairs between relatives as long as
h2 ≤ 0.3. However, no combination of relatives could lower R0 below 1 when
γ = 0.006 QDR−1 and ε = 0.001 QDR−1(uncontrolled herds).
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Figure 2. Typical propor-
tion of infected quarters esti-
mated with deterministic and
stochastic methods in herds
for which the reproductive
ratio R0 = 3.74.

Table II. Estimates of reproductive number (R0), endemic prevalence (P∗), maximum
prevalence under the stochastic (PS

max) and deterministic (PD
max) models, and proba-

bility (Pepi) that a major epidemic will occur. Estimates were computed for different
values for h2, culling rate (ε) for mastitis, mastitis recovery rate (γ), and proportion
of contact-pairs between infected and susceptible quarters that are between unrelated
individuals (p0). Only values for R0 > 1 are reported.

h2 ε p0 γ R0 P∗ (%) PD
max (%) PS

max (%) Pepi (%)

0.10 0.001 0 0.001 15.69 84.00 96.04 86.51 99.97

0.10 0.001 0.5 0.001 11.50 77.86 93.72 79.43 99.97

0.10 0.001 1.0 0.001 7.30 72.19 91.99 75.74 85.70

0.05 0.001 0 0.001 11.50 80.16 94.84 83.01 99.97

0.05 0.001 0.5 0.001 9.40 76.07 93.24 78.09 99.97

0.05 0.001 1.0 0.001 7.30 72.19 91.99 77.04 86.63

0.10 0.001 0 0.04 1.01 4.81 19.51 7.25 36.67

0.10 0.01 0 0.001 3.62 12.45 70.01 32.21 0

0.10 0.01 0.5 0.001 2.65 7.29 45.35 16.67 0

0.10 0.01 1.0 0.001 1.69 4.29 40.75 10.26 0

0.05 0.01 0 0.001 2.65 8.91 60.79 21.74 0

0.05 0.01 0.5 0.001 2.17 6.21 45.59 13.68 0

0.05 0.01 1.0 0.001 1.68 4.29 40.75 9.29 0

4. DISCUSSION

4.1. The reproductive number (R0)

The goals of this paper were to determine under which conditions an infec-
tious disease will spread in a genetically heterogeneous population and how
to incorporate genetic elements into the management of such a disease, both



A heterogeneous epidemio-genetic model 445

Figure 3. Reproductive number (R0) for different recovery (γ) and mastitis culling (ε)
rates when the proportion of contact-pairs between infected and susceptible quarters
that are between unrelated individuals increased from 0 to 100%.

Figure 4. Proportions
of mixtures of relatives
leading to R0 < 1 in
herds under non-genetic
management control
of S. aureus mastitis
when the average trans-
mission rate (λ0) varies
from 0.005 to 0.02 per
quarter-day at risk.

under the assumptions of the SIS model. To reach such goals, it was neces-
sary to compute R0 because, when R0 is higher than 1, each infected individual
is infecting more than one other individual, the disease can go to an endemic
level and control strategies are usually implemented to lower the disease preva-
lence [10]. Conversely, the epidemic dies out when R0 is lower than 1 [1], as
illustrated in our mastitis example, in which R0 < 1 and Pt = 0 for all t when
herds were under management control against Staph. aureus mastitis.

Under the suggested genetically heterogeneous SIS model, the formula
for R0 included genetic (h2, ai) and non-genetic (λ0, γ, µ, ε, k) components,
plus a term [∆/µ] that symbolizes the demographic changes in the population:

R0 = [(Σi λi pi k) (∆/µ) / (γ + µ + ε)]
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for i = 1 to g. In this equation, the term [k λ0/(γ + µ + ε)] represents
the reproductive number for a disease transmitted strictly non-genetically
(h2 = 0) in a closed population (∆ = µ), as shown by Anderson and May [1].
If the transmission of the infectious disease is strictly genetic (λ0 = 0),
R0 = [1/(γ+µ+ε)] (h2 Σi pi ai), which is the relative recurrence risk of disease
(KR as defined by Risch et al. [24] during the mean death-adjusted infective
period 1/(γ + µ + ε).

4.2. Non-genetic management of infectious diseases

To lower R0 below 1, it is possible to apply non-genetic procedures that in-
crease the culling (ε) and recovery (γ) rates of infected cows. Indeed, culling
of chronically infected cows, dry cow therapy and antibiotic treatment are rec-
ommended in the control of S. aureus infection [13, 22]. This was exemplified
with the lower R0 in controlled (R0 = 0.71) than uncontrolled (R0 = 3.74)
herds under the genetic Structure 1. In Figure 3 and Table II, one can also
appreciate the effects of γ and ε on R0 for different proportions of unrelated
contact-pairs. Yet, in this paper, we will focus on genetic management proce-
dures, acknowledging that the impact of genetic procedures on R0 is weighted
by all non-genetic factors characterizing the dynamics of the disease. This de-
pendency may be related to the well-known effects of genotype by environment
interaction on the risk for many complex disease traits. Indeed, particular cows
react differently to particular mastitis pathogens found in various proportions
in their environments [8, 14, 26, 33].

4.3. Genetic management of infectious diseases

A first genetic approach to decrease R0 below 1 is to manage the genetic
structure of the population such that:

Σ pi ai < [µ (γ + µ + ε)] − k∆ λ0]/[k (1 − λ0)∆ h2]

for i = 1 to g. Of course, under the assumptions used in this model, the
probability of an epidemic will be minimized if the population is com-
posed only of unrelated animals, as illustrated in Table II (lowest R0 for
p0 = 1), but this is not an absolute constraint [4]. If, for example, effec-
tive contact-pairs are between unrelated or between relatives of the ith degree
(Σ pi ai = p0 a0 + (1 − p0) ai), the maximum proportion of relatives admissible
to keep R0 below 1 is:

pi = [µ (γ + µ + ε)] − k∆ λ0]/[k (1 − λ0)∆ ai h2]
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with pi = 1 − p0. For example, a closed uncontrolled herd (γ = 0.006 QDR−1,
ε = 0.001 QDR−1) composed exclusively of unrelated and paternal half-sibs
should contain less than 25% of paternal half-sibs to avoid an epidemic if
λ0 = 0.005 QDR−1 and h2 = 5%. This proportion is higher when h2 or λ0

are small. This is illustrated in Figure 4 where the proportion of combinations
of relatives giving a R0 lower than 1 is higher when h2 values are low to mod-
erate, values characteristic of numerous infectious diseases [2]. In Detilleux et
al. [9], h2 for presence/absence of minor and major mammary pathogens were
close to 10% while Schukken et al. [28] found h2 for severity of the infection
(CFU) after experimental challenge with S. aureus essentially null.

A second genetic approach to have R0 < 1 would be to select individuals
with the lowest probability of being infected (λ). So far, current prediction of
breeding values for disease traits such as mastitis is based on linear or threshold
animal models [19] in which the data vector y contains a value of 1 if the
individual is diseased and 0 if it is not. In its simplest form, the model may be
written as:

y = 1µ + a + e

with µ = the fixed population mean, 1 = vector of 1, a and e = vector of ran-
dom effects, a ∼ N(0,Aσ2

a), e ∼ N(0, Iσ2
e), A = matrix of additive genetic

relationship between individuals, σ2
a and σ2

e = additive and error variances,
respectively. Under these assumptions, the breeding values are associated to
the presence of the disease in an individual at a given point in time, not to the
probability that the individual is able to resist to the infection. Therefore, a sus-
ceptible individual may be considered as resistant, not because it has resisted
infection, but because it has not been exposed to the pathogen. The vector of
individual probabilities of being infected ( λ) may be derived from the equation
(Appendix A) used to compute the probability that a susceptible cow becomes
infected after an effective contact with an infected relative and from the ma-
trix A of an additive genetic relationship. Indeed,

λ = [1 − y] ⊗ A y h2(1 − λ0) + [1 − y] λ0.

Then, λ is the vector of λm (m = 1 to N) with λm = 0 if the individual is
already infected and λm = λ0+h2 (1−λ0)Σ j a jm if the individual is susceptible
to becoming infected; ajm is the additive coefficient of relationship between
the mth susceptible animal and the jth infected individual, and ⊗ is the direct
product. Then, R0 is less than 1 when

1′λ < [(γ + µ + ε) µ]/[k ∆].
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A third approach to obtain R0 < 1 would be to allow selective contacts between
animals of different genotypes. So far, the per-capita contact rate between
individuals was assumed constant and identical for all types of relationship
(k). However, contact rates between infected ( j) and susceptible (m) individu-
als (k jm) could vary. Then,

R0 = [∆/µ][1/γ + µ + ε)][Σm Σ j k jm λ jm]

with m = 1, 2, . . . , S and j = 1, 2, . . . , I. An interesting approach would
be to let infected individuals have contact only with susceptible ones that are
the least related to them. Indeed, non-resistant individuals are often highly
productive due to the unfavorable genetic correlation between production po-
tential and resistance to infection. For example, genetic correlation between
mastitis and milk production ranges from 0.2 to 0.5 [6]. By privileging some
contacts between infected (non-resistant) and susceptible (low-producer) indi-
viduals and limiting others, one could decrease the incidence rate in the popu-
lation while keeping the advantages of high productivity.

4.4. Limitations of the S. aureus mastitis model

While modeling the spread of S. aureus mastitis, udder quarters instead of
heifers were treated as individual units because exposed quarters are the units
at risk of infection by S. aureus [25]. Infectivity was assumed constant for all
infected cow-quarters even if doses of infectious material may vary between
quarters and during the course of the disease [37]. Contacts between quarters
were assumed to be density-dependent because Staph. aureus is transmitted
through direct individual contact [29] and the average number of contacts per
quarter and unit of time is not constant. As in Zadoks et al. [38], only 1st
lactating cows were considered to minimize the effect of treatment and pre-
ventive strategies. The model also assumed no difference between primary and
secondary infections nor between clinical and sub-clinical cases although oth-
ers [17, 37] observed different transmission rates for primary and secondary
mammary cases. Influence of host genetics was limited to the susceptibility
genes but genetics may also affect other model parameters. Nath et al. [21]
showed that genes that decrease transmission of infection, increase the latent
period, or decrease the recovery period are critical in controlling disease inci-
dence. Producers may also manage cows differently according to their genetic
potential. For example, they may preferentially treat the best-producing in-
fected cows and culled the least-producing ones, which will also change the
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dynamics of the disease spread. A final limitation of our model was the as-
sumption of a constant and time independent recovery rate despite the fact that
cows differ in their ability to clear an intra-mammary infection [23].

Despite such assumptions, R0 found using the default values for the param-
eters of mastitis were similar to those reported in field studies. Indeed, R0 var-
ied from 1.09 to 7.55 in infected quarters during mastitis outbreak [17] and R0

varied from 0.4 to 0.75 in Zadoks et al. [38] suggesting that the contagious
transmission of Staph. aureus was controlled in those herds. The estimated
prevalences were also within the ranges published for the percentages of quar-
ters in primiparous heifers positive for Staph. aureus [35].

4.5. Deterministic vs. stochastic approaches

The results obtained from the average of the 3000 individual stochastic sim-
ulations can be compared to the deterministic simulation (Fig. 1). The deter-
ministic simulation converged to the steady equilibrium values (P∗) set by the
numerical analyses whereas the stochastic simulation fell substantially short,
reaching a plateau at value < P∗ unless stochastic average values were com-
puted only on major epidemics, in which case they tended towards the de-
terministic results. Such differences between stochastic average values and
dynamic equilibrium quantify the effects of chance events on the size and
the timing of epidemics. Indeed, repeated simulations of a stochastic process
started with identical initial conditions lead to different realizations of the pro-
cess, with some simulation going to zero [20] which indicated no establishment
of infection. On the contrary, homogeneous deterministic SIS models always
predict that the disease will become infinitely persistent in a host population of
constant size (Appendix B). Therefore, it was unsurprising to observe averages
of the stochastic simulation lower than the endemic prevalence of the deter-
ministic approach [31]: the stochastic average values were computed over all
simulations, including those leading to non-establishment of infection or epi-
demics that quickly died out while the deterministic model gives an expected
value of major epidemics.

4.6. Further research

The model has some limitations and further research is required to ex-
plore the economic benefits of genetic and non-genetic procedures and to find
the optimum mix of vaccination, quarantine, treatment and genetic manage-
ment opportunities. Research on components of resistance (host resistance to
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pathogen growth, infectious dose, . . . ) other than the one considered in this
study (i.e., decrease in probability of infection) should also be investigated,
as in Nath et al. [21]. Furthermore, the model could include heterogeneity in
pathogen species, as suggested by White et al. [36]. Long-term effects of the
management strategies on the frequency of resistant genotypes, as in sheep
scrapie [32] could also be explored.
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APPENDIX A

The parameter λi is defined as the probability that a susceptible cow
S i becomes infected after an effective contact with an infected relative Ii

of the ith type. In statistical terms, this susceptibility can be written as
λi = pr(Xi = 1|Yi = 1) with Xi ∼ Bernoulli(Ni, λ0), Yi ∼ Bernoulli(Ni, λ0),
and Ni = number of contact-pairs between S i and Ii. By definition,
and for Bernoulli variables, Cov(Xi, Yi) = E(Xi Yi) − E(Xi) E(Yi), and
E(Xi Yi) = pr(Xi = 1 and Yi = 1). Then, λi = [Cov(Xi, Yi) E(Yi)] + E(Xi).

Under the assumptions of random mating, free recombination, and gametic
phase equilibrium, the covariance between relatives is a function of the additive
coefficient of relationship (ai) between animals, the heritability of the character
(h2) and the phenotypic variance (σ2

p). Ignoring dominance and environmental
sources of covariance, Cov(Xi, Yi) ∼ ai h2 σ2

p for one locus and

λi = λ0 + ai h2 (1 − λ0)

for the ith group of relatives, as found by Risch et al. [24].



A heterogeneous epidemio-genetic model 453

APPENDIX B

For the deterministic form of the SIS model:

dS/dt = ∆ − µ S + γ I − (Σi λi pi k) S I,

dI/dt = (Σi λi pi k) S I − (γ + µ + ε) I,

there are two equilibrium values. The first is obtained by setting dS/dt = 0
with I = 0, i.e., in the absence of infectives. In this case, dS/dt = ∆ − µS = 0,
and S 0 = ∆/µ. The second equilibrium is the endemic equilibrium with S ∗
and I∗. It is computed by setting dI/dt = 0 and dS/dt = 0 with I > 0. From
dI/dt = (Σi λi pi k) IS − (γ + µ + ε) I = 0, one gets:

S ∗ = (γ + µ + ε) (Σi λi pi k).

By setting dS/dt = ∆µ S + γ − (Σi λi pi k) S I to zero, one gets:

I∗ = [∆ (Σi λi pi k) − µ (γ + µ + ε)]/[(µ + ε) (Σi λi pi k)].

The endemic prevalence rate is easily obtained as P∗ = S ∗/I∗.
The reproductive number is determined by the dominant eigenvalue of the

Jacobian matrix at the disease-free equilibrium [16]:

J(S 0, 0) =









−µ γ − (Σi λi pi k) (∆/µ)

0 (Σi λi pi k) (∆/µ) − (γ + µ + ε)








.

Then, the two eigenvalues are −µ and (Σi λi pi k) (∆/µ) − (γ + µ + ε).
The first eigenvalue is clearly negative and the second one is negative if
(Σi λi pi k) (∆/µ) < (γ + µ + ε) or if R0 < 1 with

R0 = [(Σi λi pi k) (∆/µ)/(γ + µ + ε)]

= (∆/µ S ∗).

When both eigenvalues are negative, the equilibrium is asymptotically stable
(Routh-Hurwitz criterion) which implies that a small population of infectives
introduced into the system would not cause a persistent infection; the popu-
lation would return to the disease-free state after some time. Conversely, if
R0 > 1 then the equilibrium is unstable and an introduction of infectives will
result in an epidemic that subsequently leads to an endemic infection.


