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Abstract — A simulation was carried out to investigate the methods of analyzing uncertain bi-
nary responses for success or failure at first insemination. A linear mixed model that included,
herd, year, and month of mating as fixed effects; and unrelated service sire, sire and residual
as random effects was used to generate binary data. Binary responses were assigned using the
difference between days to calving and average gestation length. Females deviating from av-
erage gestation length lead to uncertain binary responses. Thus, the methods investigated were
the following: (1) a threshold model fitted to certain (no uncertainty) binary data (M1); (2) a
threshold model fitted to uncertain binary data ignoring uncertainty (M2); and (3) analysis of
uncertain binary data, accounting for uncertainty from day 16 to 26 (M3) or from day 14 to
28 (M4) after introduction of the bull, using a threshold model with fuzzy logic classification.
There was virtually no difference between point estimates obtained from M1, M3, and M4 with
true values. When uncertain binary data were analyzed ignoring uncertainty (M2), sire variance
and heritability were underestimated by 22 and 24%, respectively. Thus, for noisy binary data,
a threshold model contemplating uncertainty is needed to avoid bias when estimating genetic
parameters.

binary data / fertility / fuzzy logic / simulation / threshold model

1. INTRODUCTION

Until recently, limited resources had been allocated to the research of fer-
tility measures in beef cattle. This was, in part, due to the limited availability
of data and computational requirements for traits of this nature. Two sources
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of information, natural service (NS) and artificial insemination (AI) mating
data are generally associated with fertility traits. Few studies, however, have
looked at the possibility of combining these two sources of information for the
purpose of genetic evaluation. Furthermore, these two sources of information
have not previously been combined due to the absence of a trait that could be
used to describe fertility in both NS and Al mating data. Donoghue et al. [5]
suggested a binary trait, calving to first insemination (CFI), which evaluated
the probability that a calving event occurred as the result of conception at first
insemination. For NS matings, success at first insemination was defined as con-
ceiving during the first 21 days of the breeding season, which corresponded to
the first estrous cycle of the female.

A binary trait such as CFI, for genetic evaluation of combined NS and Al
mating data, as opposed to a continuous trait such as days to calving (DC),
is dictated by the nature of the recording scheme currently used in the beef
cattle industry; DC is defined as the time elapsed between the introduction of
the bull and the subsequent calving date. In an NS mating situation, the date at
which the female is exposed is recorded but the conception date is unknown. In
contrast, Al data provides an accurate insemination date but the first exposure
is uncertain. Yet, Donoghue et al. [5] proposed that NS and Al data could be
combined in one analysis for the trait of CFI due to the high genetic (0.82)
correlation between NS and Al mating data for CFI. Although this result is
encouraging, it does not alleviate the uncertainty of CFI in the NS data.

With Al data, the exact day of insemination is known whereas in NS data,
the number of days to insemination (NDI) resulting in conception is unknown.
In order to derive NDI (the time interval between the introduction of the bull
and insemination resulting in conception), knowledge about DC and the length
of the estrous cycle is used. Since the gestation length (GL) in NS mating data
is unknown, an average GL, obtained from Al mating data is deviated from DC
to give the approximate NDI. This procedure lends itself to the possibility of
uncertainty when females deviate in GL. For example, if a female has an NDI
of 20 days, but has a longer than average GL, she would have been classified as
failing to conceive at first insemination when the opposite (successful concep-
tion at first insemination) was true; thus leading to uncertain binary responses
of success or failure at first insemination.

The current study was motivated by the belief that uncertainty is present in
NS mating data for a trait such as CFI (at an unknown rate) and to date there
have been no studies addressing this particular issue. One proposed way to ac-
count for uncertainty in success or failure at first insemination is via a threshold
model using fuzzy logic classification, where fuzzy logic classification uses
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imprecise propositions based on fuzzy set theory to assign partial member-
ship of a set [2]. Therefore, the objective of the current study was to evaluate
different methods of analyzing uncertain binary responses with application to
success or failure at first insemination in beef cattle.

2. MATERIALS AND METHODS
2.1. Statistical analysis and computations

Threshold models are becoming a standard tool for the analysis of discrete
data in the field of animal breeding and genetics. Extensive literature on its
theoretical basis, implementation and application has been generated in the
last twenty years [6,7, 12]. More recently, Rekaya er al. [10] have proposed a
method for analyzing binary data subject to misclassification using a threshold
model. In the present study, an extension of such a method, based on fuzzy
logic classification, is presented.

2.1.1. Threshold model for analysis of uncertain binary responses

Let m = (my,my,...,m,)" be a sample of uncertain independent binary
responses of non-observed real data y = (y1,yz,...,yn), Where each y; is
Bernoulli with success probability p; that is expressed as a function of some
systematic and random effects. Miscoding occurs if some y; is switched, e.g.,
yi = 0 becomes m; = 1 (i.e., a zero coded as one). Following notation by
Rekaya et al. [10], let @ = (a1, a2, ..., @), where @; is an indicator variable for
observation i such that @; = 1 if y; is switched, a; = 0 otherwise. Suppose each
a; is a Bernoulli with success probability 7, (probability of uncertainty) at time
t such that p(a;|m;) = n?" (1 —7m,)1=%) where 7, is specific for each observation
and will be explained further in Section 2.1.2.

Assuming independence between a and y, their joint distribution, given 0
and m, is

n
ple,y10,7) = [ | pleilm)pil), (1)
i=1
where 0 is the vector of systematic and random effects and ® =
(74, 74y .oy 71y,) . Thus,

pe,y0,m) = [ |71 = m) " [pu@)P 11 - pi @)1, ()
i=1
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where p;(0) = ©;(0), and ®;(-) is the standard normal cumulative distribution
function. Furthermore, the following relationship between y; and m;, given «;,
could be established as

yi = —apm; + a;(1 —m;) 3)

such that y; = m; when there is no miscoding of the binary response.
Using the relationships in equations (2) and (3), the joint probability of
and m, given 0 and m, is

p(a., m|0, ) =

n
[ [ =m0 i@y meomeraiimapy gy} 10 emesani=mol gy
i=1

Finally, prior distributions for @ and  would complete the Bayesian for-
mulation. However, in some situations, & is known or could be inferred from
external information. In the next section, fuzzy logic classification was used to
determine the vector 7.

2.1.2. Application to first insemination success in beef cattle

In beef cattle when natural mating is used, there is no direct recording of
conception within the first 21 days of the breeding season. The first 21 days of
the breeding season correspond to the length of the estrus cycle in the cattle.
Therefore, we are interested in discriminating between cows that conceived in
the first 21 days after introduction of the bull — conception occurring during
the first estrus cycle — and those that did not conceive in the first 21 days. The
only information available from NS matings is DC, which is computed as the
time elapsed between the introduction of the bull and the subsequent calving
date. Success or failure at first insemination (FIS) is based on the difference
between DC and an average GL, where the average GL differed by sex of the
calf. Thus, if the difference between DC and average GL is less than or equal
to 21 days then FIS = 1, otherwise FIS = 0; in other words, a successful FIS
event would be defined as conception occurring during the first 21 days of the
breeding season.

Given the variation in GL between cows, and potentially of the estrus cycle,
it is possible that some cows have uncertain FIS. Furthermore, the variation
in GL, estrus cycle, and the difference between DC and average GL could be
used to assess the probability of miscoding for every FIS record. In this simu-
lation study, given the limited information on the variation of the estrus cycle
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and for the sake of simplicity, only variability in GL was used to assess the
uncertainty of FIS. However, for real data sets and depending on the avail-
able information, sources of variation other than GL can be used within the
framework of the presented method in a straightforward manner.

In the current study, fuzzy logic classification, based on the binary response
of FIS and the difference between DC and average GL, was used to calculate
the probability of miscoding at time #;. The deviation of average GL from DC
gives the approximate NDI (the time interval between the introduction of the
bull and insemination resulting in conception). It was then assumed that if the
absolute value of the deviation of NDI and 21 was smaller (greater) than a
number of days (based on practical and biological knowledge), then the ob-
served FIS response was certain; in other words, if only one standard deviation
(5 days) of GL is used to assess uncertainty, cows having an absolute differ-
ence between DC and average GL of less than 16 days or greater than 26 days,
then there was no uncertainty about the observed FIS response. Otherwise, the
binary record was considered as uncertain.

To assess the uncertainty about FIS, a fuzzy logic approach was used. There
is no analytical method to determine a fuzzy function. However, such functions
have to be derived based on practical and biological knowledge about the data
generating process and good heuristics. Given the subjective nature of fuzzy
classification, three fuzzy functions were used to assess their validity and the
robustness of the method to fuzzy function choice. The following three fuzzy
logic functions were used to compute the miscoding at time #; (see Fig. 1):

0,16 <t
J05-@1-1)/10,16 <1; < 21 50
6= 05+ (21 —1,)/10,21 <1, <26 a
0,1 > 26
0,16 <¢;
Jo5-@1-1)/16,16 <1 <21
T =305+ (21 —1,)/16,21 <1, <26 (5b)
0, > 26
and
0,16 < ¢
7, = —0.022% + 0.841;, — 8.32,16 < 1; <26 . (5¢)
0,t; > 26

The interval in equations (5a—c) was based on one standard deviation of
five days for GL obtained from Al data. Thus, the interval of uncertain FIS
responses ranged from day 16 to 26 after introduction of the bull. In order
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Figure 1. Probability of the observed binary response, given the approximate number
of days to insemination (NDI), was maintained (MBR) or switched (SBR) from day
16 to 26 after introduction of the bull using fuzzy logic classification.

to evaluate the robustness of the procedure, the interval of uncertain binary
responses was increased from 10 to 14 days (nearly 1.5 standard deviation
units) and the fuzzy functions were adjusted accordantly (see Fig. 2):

0,14 <¢
_05-@1-1)/14,14 <1, <21 6a)
TT005+ @21 —1)/14,21 <1, <28
0,1 > 28
0,14 <1
Jos-@1-1)/21,14 < <21
TTY05+ 21 —1)/21,21 <1, <28 (6b)
0,1 > 28
and
0,14 <¢
7, =4 —0.017% + 0421, —3.92, 14 < ; <28 . (6¢)
0, > 28

Although the interval of uncertain FIS could be increased to more than
1.5 standard deviation units (cows with very short or long GL), it is biolog-
ically reasonable to assume that the number of cows with very short (long) GL
is small. Furthermore, increasing the interval of uncertain NDI days to more
than 1.5 standard deviation units will unnecessarily increase the number of
potential uncertain responses and may not be the best approach.
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Figure 2. Probability of the observed binary response, given the approximate number
of days to insemination (NDI), was maintained (MBR) or switched (SBR) from day
14 to 28 after introduction of the bull using fuzzy logic classification.

A mixed linear model was used for the analysis of the underlying liability
of FIS. In matrix notation the model could be written as:

A=XP+Zss +Zyu +e,

where A is a vector of unobserved liabilities, P is the vector of fixed effects,
s is the vector of unrelated random service sire effects, u is the vector of sire
effects, and e is the vector of residual effects. Furthermore, X, Zs, and Z,, are
the corresponding incidence matrices with the appropriate dimensions.

Using the same notation as in the previous section, let m be defined as the
vector of observed uncertain FIS responses and y be defined as the vector of
unobserved true FIS responses. The joint probability of o and m, given 0 =
(B’,s’,u’)" and m, is identical to equation (4) such that

p(a., ml0, ) =

n
l_lﬂgi(l _ ﬂ-ti)(l_ai)[pi(e)](l_ai)mi"'ai(l_mi)[1 _ pi(e)]1_[(1_ai)mi+a/i(1_mi)]’ (7)
i=1

where p;(0) = ®;(x’;f + z/ ;s + z/ u) is the probability of success or failure at
first insemination for record i and X: s z; " and z; ; are the known row vectors
relating the fixed, service sire and additive sire effects to the probability of first

insemination success, respectively.
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To ensure proper posterior distribution, the following priors were assumed
for the parameters in the model:

p(B) ~ N(0,10°), (8)
pslo?) ~ N0, T2, 9)

and
p(ulA, 0?) ~ N(0,Ac>), (10)

where I is the identity matrix and A is a known matrix of relationships between
sires. Uniform bounded priors, U[0, 1], were assumed for 0'? and 0%.

The joint posterior density was obtained by the product of densities in equa-
tions (7) through (10) leading to

(0,072,072, ajm, ) o

n
l_l ﬂ.gi(l _ ﬂ.t’_)(l_a’i)[pi(ﬁ)](l_ai)mi+ai(1_mi)[1 _ pi(ﬁ)]1—[(1—fli)mi+di(1—mi)]
i=1

p(B)p(uIA, o2)p(slos)

defined only within the boundaries of the bounded priors for o2 and o2.
Following Rekaya et al. [10], the conditional posterior distribution of each
a; was given by

_ [pi(®)][1 — p;(0)]™

% (11)

2 2
pla; =110, a_;, 0y, 05, M)

and

(1 = m)[pa(®1"[1 — pi(®)1" ")
K b

2

pla; =00, 7, 0_;,0%,02,m) = (12)

where K = 7, [pi()]1 " [1 = pi(@)]" + (1 — m,)[pi(®)I™[1 = p;(8)]" .
Thus, each «;(i = 1,2,...,n) was sampled from a discrete distribution, with
probabilities as in equations (11) and (12). Once all a;(i = 1,2, ..., n) had been
sampled, the true data, y, was generated using the relationship in equation (3).
The joint posterior density of @, 2, and o2, given the true data, was obtained
as follows:

p®, 07, auly) o [ | pi® 11 = pi@)1" ™ p(B)pulA, oD)p(slod).  (13)
i=1
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Table I. Summary of the parameters used in the general and the field data based
simulation.

Item General Field data
Herds 100 275
Years 13 13
Months of calving 12 12
Service sires 300 1504
Daughter records 10 000 24961
Sires with daughter records 460 1 667
Sires in pedigree file 500 2397

The joint posterior density in equation (13) was augmented with the liabili-
ties for all observations in the data set. All conditional posterior distributions of
model parameters were in closed form as described by Albert and Chib [1] and
Sorensen et al. [12]. These distributions were normal for the location parame-
ters, truncated normal for each of the liabilities and scaled-inverted chi-square
distributions for the dispersion parameters. Liabilities were sampled from their
truncated normal distribution using the inverse cumulative distribution func-
tion technique [4].

For each round of Gibbs sampling, @; was sampled, taking the value of one
or zero. At completion of the sampling process, the probability that observation
i was uncertain could be estimated as the ratio between the number of times
that @; was one and the total number of samples.

2.2. General simulation

A simulation, using a sire model, was carried out to investigate two methods
of analyzing uncertain binary responses for FIS. Five over-lapping generations
were simulated. The base population included forty unrelated sires and subse-
quent generations consisted of 115 sires each. Thus, a total of 500 sires were
generated. The data set consisted of 10 000 daughter records from bulls in
generations 2 through 5. Fixed and random effects were randomly assigned
to each record. In all cases, no extreme case (ECP) classes were allowed. A
more detailed explanation of ECP classes and the effects on variance compo-
nent estimation can be found in Moreno et al. [8]. A summary description of
the simulated data and pedigree is presented in Table 1.

A linear mixed model at the liability scale which included herd, year, and
month of mating as fixed effects; and unrelated service sire, sire and resid-
ual as random effects were used to generate the binary responses. Herd and
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year/month of mating effects were drawn from uniform distributions, U[0.4,
0.9] and U[-0.4, —0.3], respectively. Service sire effects were drawn from a
normal distribution, N(0, I(T?), where I is the identity matrix and 0'% = 0.03.
Transmitting abilities of the base population sires were sampled from a normal
distribution, N(O0, I(T,%), where I is the identity matrix and (T,% = 0.02. The re-
maining sire effects were sampled from a normal distribution with the mean
equal to one half of the grandsire’s transmitting ability and variance equal
to (3 /4)0'5. The residual variance was sampled from a normal distribution,
N(0, Io2), where I is the identity matrix and o2 = 1.0.

The liability for each daughter record was calculated as the sum of all effects
included in the model. Given the liability, the cycle in which the daughter
conceived was assigned. A daughter was randomly assigned to one of five
cycles, where cycle 1 is the first 21 days after introduction of the bull (i.e.,
the first estrous cycle occurring after the bull was introduced), cycle 2, 3, and 4
were the second, third and fourth 21 days, respectively, after the introduction of
the bull, and cycle 5 was non-calvers (failed to calve). The NDI was randomly
sampled for cows conceiving in cycles 1 to 4 using the integer value in the
following formula:

NDI = [21(c - 1) + 21u] + 1 (14)

where c is the cycle and u was drawn from a uniform distribution, U[0, 1].

The NDI obtained in equation (14) was then used to generate two data sets.
The first data set consisted of binary responses (D1) for FIS assigned using
simulated NDI, where the binary responses were set to one if NDI was less
than or equal to 21 days, and zero otherwise (including non-calvers). The sec-
ond data set (D2) consisted of DC values. The DC values were obtained by
generating a GL from a normal distribution with mean (standard deviation) of
280 (5.1) days for bull calves and 279 (5.2) days for heifer calves and adding
the simulated NDI from equation (14). Sex of calf was randomly assigned and
non-calvers (cycle 5) were assigned a subjective DC value equal to 980 days.

To mimic the field data, DC records in D2, assuming that NDI and GL were
unknown, were used to generate the binary trait of FIS. For that purpose, an
average GL specific to each sex (280 and 279 days for male and female calves,
respectively) was subtracted from the DC in D2. If the difference was less than
or equal to 21 days, then FIS = 1, otherwise FIS = 0 (including non-calvers).
This third data set was labeled D3.

Three methods of accounting for uncertainty in success or failure at first in-
semination were investigated: (1) analysis of D1 (certain data — no uncertainty
present) using a threshold model (M1); (2) analysis of D3 (uncertain data),
without consideration of uncertainty, using a threshold model (M2); and (3)
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analysis of D3 (uncertain data), using a threshold model with fuzzy logic clas-
sification (M3 and M4). Three different fuzzy logic functions were used to
account for uncertain FIS responses. For M3, the use of fuzzy function in
equations (5a), (5b), and (5¢) to account for uncertainty will be denoted as
M3-a, M3-b, and M3-c, respectively. Similarly, the use of equations (6a), (6b),
and (6¢), in M4, will be denoted as M4-a, M4-b, and M4-c, respectively. Ten
replicates were simulated for analysis using M1, M2, M3a-c, and M4a-c.

2.3. Field data based simulation

In order to evaluate the validity of the proposed method with field data, a
real data based simulation, using a sire model, was carried out. The structure
of a true available data set after stringent editing was used for the simula-
tion. Editing consisted in removing herds and service sires with less than five
records as well as daughters with unknown sires. The resulting data set con-
sisted of 24 961 daughter records from 1 667 sires. A description of the field
data structure and pedigree is presented in Table I.

A linear mixed model which included herd, year, and month of mating as
fixed effects; and unrelated service sire, sire and residual as random effects
were used to generate the binary responses. Herd, year, and month of mating
effects were drawn from uniform distributions, U[0.10, 0.60], U[-0.35, —-0.25],
and U[-0.40, —0.30], respectively. Service sire, sire, and residual effects were
sampled in the same manner as the original simulation in Section 2.2.

A daughter was randomly assigned to one of five cycles using the sum of
all effects included in the model, where the five cycles were defined as in Sec-
tion 2.2. The NDI was randomly sampled using equation (14) and three data
sets (D1, D2, and D3) were generated as in Section 2.2. The simulated data was
then analyzed using the three methods (M1, M2, and M3) exactly in the same
manner as in Section 2.2. For M3 and given the lack of differences between
the three fuzzy functions used in the first simulation, only one fuzzy function
(5a) was used to account for uncertainty with the real data based simulation
and will be denoted as M3a. Ten replicates were simulated.

2.4. Convergence

Convergence diagnostics were based on the method of Raftery and Lewis [9]
as implemented in the Bayesian Output Analysis (BOA) program [11]. The re-
quired burn-in period was always less than 2000 iterations for all parameters
and all analyses. Thus, a total chain length of 75 000 iterations of the Gibbs
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sampler was run with a conservative burn-in of 25 000 iterations. The remain-
ing 50 000 iterations were retained without thinning for post-Gibbs analysis.
Point estimates of the mean and standard deviation were obtained from the
BOA software [11] for all parameters and analyses. Furthermore, the high pos-
terior density 95% [HPD (95%)] intervals were calculated using the algorithm
described by Chen and Shao [3] as implemented in the BOA program [11].

3. RESULTS
3.1. General simulation
3.1.1. Variance components

The posterior mean, standard deviation and the HPD (95%) interval for ser-
vice sire and sire variance, based on 10 replicates, is presented in Table II. The
point estimates of service sire (0.033) and sire (0.018) variance using M1 were,
as expected, similar to the true values (0.03 and 0.02, respectively) used in the
simulation. For M2, point estimates of the service sire (0.026) and sire variance
(0.014) were underestimated compared to the true values of these parameters
and the point estimates using M1 (0.033 and 0.018, respectively). Furthermore,
the true values were barely included in the HPD (95%) interval of M2 indicat-
ing a potential bias in the estimation of genetic parameters. The point estimate
for sire variance obtained from M3a-c as well as M4a-c (ranging from 0.018
to 0.020) were virtually the same as M1 (0.018), whereas the service sire es-
timates were slightly smaller (ranging from 0.028 to 0.029) when compared
with M1 (0.033). For both parameters, the point estimates were similar to the
true values used in the simulation.

3.1.2. Heritability estimates

The posterior mean, standard deviation and the HPD (95%) interval for
heritability, based on 10 replicates, is presented in Table III. The point esti-
mate of heritability obtained using M1 (0.070) was slightly lower than the true
value (0.076) used in the simulation. The estimate of heritability obtained from
M2 (0.053) was clearly underestimated. The true value of heritability (0.076)
was barely included in the HPD (95%) interval similarly to the variance com-
ponents. Using M3a-c and M4a-c, the point estimates of heritability (ranging
from 0.070 to 0.0740) were virtually the same as the true value used in the
simulation and the point estimate obtained using M1 (0.070).
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Table II. Summary of the posterior mean (PM), standard deviation (PS), and lower
(HL) and upper (HU) bounds of the high posterior density 95% interval for variance
components obtained from the general simulation®.

o2 (0.030)° 02(0.020)
Method® PM PSS HL HU PM PS HL HU
M1 0.033 0.007 0.019 0.047 0.018 0.005 0.009 0.029
M2 0.026 0.006 0.014 0.039 0.014 0.005 0.005 0.023
M3a 0.028 0.007 0.015 0.041 0.019 0.005 0.011 0.028
M3b 0.029 0.007 0.015 0.042 0.019 0.005 0.011 0.029
M3c 0.028 0.007 0.015 0.042 0.018 0.005 0.010 0.027
Mda 0.028 0.007 0.016 0.042 0.019 0.005 0.011 0.029
M4b 0.029 0.007 0.016 0.043 0.020 0.005 0.011 0.029
Mdc 0.029 0.007 0.015 0.043 0.019 0.005 0.010 0.028

4 The values reported are the average of 10 replicates.

bo-f = service sire variance; o2 = sire variance; and the values in parentheses are the

u
true values used in the simulation.
‘M1 = analysis of binary data using a threshold model; M2 = analysis of uncertain
binary data, without consideration for uncertainty, using a threshold model; M3 =
analysis of uncertain binary data, accounting for uncertainty from day 16 to 26 after
introduction of the bull, using a threshold model with one of three fuzzy logic clas-
sification functions (functions a, b or c¢); and M4 = analysis of uncertain binary data,
accounting for uncertainty from day 14 to 28 after introduction of the bull, using a
threshold model with one of three fuzzy logic classification functions (functions a, b
orc).

3.1.3. Pearson correlations

The results of the Pearson correlations for service sire effects and sire breed-
ing values were averaged over the 10 replicates and are presented in Table I'V.
Pearson correlations between true breeding values and predicted breeding val-
ues obtained from M1 and M2 were 0.50 and 0.45, respectively. When the
model contemplated uncertainty using fuzzy logic classification (M3a-c and
M4a-c), Pearson correlations were 0.46 between true and predicted breeding
values. For service sire effects, Pearson correlations between true and esti-
mated service sire effects were 0.61 and 0.58 for M1 and M2, respectively.
Pearson correlations were 0.58 between true and estimated service sire effects
when the model (M3a-c and M4a-c) contemplated uncertainty using fuzzy
logic classification.
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Table III. Summary of the posterior mean (PM), standard deviation (PS), and lower
(HL) and upper (HU) bounds of the high posterior density 95% interval for heritability
obtained from the general simulation®.

72 (0.076)°
Method PM PS HL HU
M1 0.070 0.020 0.033 0.109
M2 0.053 0.017 0.021 0.087
M3a 0.073 0.017 0.041 0.107
M3b 0.073 0.018 0.041 0.108
M3c 0.070 0.017 0.038 0.104
Mda 0.073 0.018 0.041 0.108
M4b 0.074 0.018 0.041 0.109
Mdc 0.071 0.017 0.039 0.105

4 The values reported are the average of 10 replicates.
bp? = heritability, calculated as %
os+oy]
used in the simulation.
‘M1 = analysis of binary data using a threshold model; M2 = analysis of uncertain
binary data, without consideration for uncertainty, using a threshold model; M3 =
analysis of uncertain binary data, accounting for uncertainty from day 16 to 26 after
introduction of the bull, using a threshold model with one of three fuzzy logic clas-
sification functions (functions a, b or c¢); and M4 = analysis of uncertain binary data,
accounting for uncertainty from day 14 to 28 after introduction of the bull, using a
threshold model with one of three fuzzy logic classification functions (functions a,
b or ¢).

; and the value in parentheses is the true value

3.2. Field data based simulation
3.2.1. Variance components

The posterior mean, standard deviation and the HPD (95%) interval for ser-
vice sire and sire variance, based on 10 replicates, is presented in Table IV.
The point estimates of service sire (0.033) and sire (0.018) variance using M1
were, as expected, similar to the true values (0.030 and 0.020, respectively)
used in the simulation. The point estimates for sire and service sire variance
obtained from M3a were 0.017 and 0.030, respectively. The estimates obtained
from M3a were quite similar to the corresponding estimates obtained from M1
(0.018 and 0.033, respectively). For both parameters, the point estimates from
M1 and M3a were similar to the true values used in the field data based sim-
ulation. Similar to the general simulation, point estimates of the service sire
(0.023) and sire variance (0.013) obtained from M2 were underestimated com-
pared to the true values of these parameters and the point estimates using M1
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Table IV. Summary of the posterior mean (PM), standard deviation (PS), and lower
(HL) and upper (HU) bounds of the high posterior density 95% interval for variance
components obtained using the field data based simulation®.

o2 (0.030)° o2 (0.020)
Method® PM PSS HL HU PM PS HL HU
M1 0.033 0.005 0.023 0.044 0.018 0.004 0011 0.025
M2 0.023 0.005 0.014 0.033 0.013 0.003 0.007 0.020
M3a 0.030 0.006 0.019 0.041 0.017 0.004 0.009 0.025

4 The values reported are the average of 10 replicates.

bo-f = service sire variance; o2 = sire variance; and the values in parentheses are the

u
true values used in the simulation.
‘M1 = analysis of binary data using a threshold model; M2 = analysis of uncer-
tain binary data, without consideration for uncertainty, using a threshold model; and
M3a = analysis of uncertain binary data, accounting for uncertainty from day 16 to 26
after introduction of the bull, using a threshold model with fuzzy logic classification
function a.

(0.033 and 0.018, respectively). Furthermore, the true value of service sire and
sire variance were barely included in their respective HPD (95%) intervals us-
ing M2 indicating a potential bias estimating these parameters.

3.2.2. Heritability estimates

The posterior mean, standard deviation and the HPD (95%) interval for her-
itability, based on 10 replicates, is presented in Table V. Similar to the general
simulation, the point estimate of heritability obtained using M1 (0.069) was
slightly lower than the true value (0.076) used in the simulation. The estimate
of heritability obtained from M2 (0.051) was clearly underestimated. In fact,
the true value of heritability (0.076) was similar to the upper bound of the
HPD (95%) interval. Using M3a, the point estimate of heritability (0.065) was
slightly smaller than the true value used in the simulation, but similar to the
point estimate obtained using M1 (0.069).

3.2.3. Pearson correlations

The results of the Pearson correlations for service sire effects and sire breed-
ing values were averaged over the 10 replicates and are presented in Table VI
for the simulation using a field data structure. Pearson correlations between
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Table V. Summary of the posterior mean (PM), standard deviation (PS), and
lower (HL) and upper (HU) bounds of the high posterior density 95% interval for
heritability obtained using the field data based simulation®.

h* (0.076)°
Method®  PM PS HL HU
Ml 0.069 0.014 0.042 0.096
M2 0.051 0.013 0.028 0.076
M3a 0.065 0.015 0.036 0.096

4 The values reported are the average of 10 replicates.

g 2 . .
@7) _. and the value in parentheses is the true value

b 2 _ . oqe
h- = heritability, calculated as TroZiol]

used in the simulation.

‘M1 = analysis of binary data using a threshold model; M2 = analysis of uncer-
tain binary data, without consideration for uncertainty, using a threshold model; and
M3a = analysis of uncertain binary data, accounting for uncertainty from day 16 to 26
after introduction of the bull, using a threshold model with fuzzy logic classification
function a.

true and predicted breeding values obtained from M1, M2, and M3 were 0.40,
0.36, and 0.37, respectively. The Pearson correlations between true and esti-
mated service sire effects were slightly higher than the correlations between
breeding values. The correlations between true and estimated service sire ef-
fects obtained from M1, M2, and M3 were 0.46, 0.40, and 0.41, respectively.

4. DISCUSSION
4.1. Parameter estimation

The results of this study indicate that a statistical model that contemplates
uncertainty of binary responses (M3a-c and M4a-c) resulted in more accu-
rate estimation of variance components and heritability when compared with a
standard threshold model (M2). There was virtually no difference between the
point estimates obtained from M3a-c and M4a-c with the true values of the pa-
rameters (Tabs. II and III). Furthermore, point estimates of genetic parameters
using the correct binary data (M1) and the uncertain data analyzed with fuzzy
logic classification (M3a-c and M4a-c) were practically the same.

When uncertain binary data were analyzed with a standard threshold model
with no consideration for uncertainty (M2), sire variance, service sire vari-
ance, and heritability were underestimated by 22, 21, and 24%, respectively,
when compared with M1. The service sire variance using M2 was slightly less
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affected by the uncertainty of the binary responses. This result was expected
because of the large number of records per service sire (on average, 33 records
per service sire). In fact, the true value for service sire variance (0.030) was
well centered within the HPD (95%) interval for M2. The true values for sire
variance (0.020), and heritability (0.076), however, were closer to the upper
bound of the corresponding HPD (95%) interval using M2. Based on the nor-
mal like shape of the posterior distributions of these parameters, this result
indicates that the estimates of sire variance and heritability using model M2
are less likely to be equal to the true values. Thus, point estimates of these
parameters will underestimate the true values and could be biased. Conversely,
the true value of sire variance, service sire variance, and heritability were well
centered within the HPD (95%) interval using M1, M3a-c, and M4a-c; fur-
thermore indicating that a threshold model contemplating uncertain binary re-
sponses resulted in a more accurate estimation of genetic parameters.

Similar results were obtained when the simulation was conducted follow-
ing the structure of an existing field data set. In fact, the statistical model
that contemplated uncertainty of binary responses (M3a) resulted in a more
accurate estimation of variance components and heritability when compared
with a standard threshold model (M2). There was very little difference be-
tween the point estimates obtained from M3a with the true values of the pa-
rameters (Tabs. IV and V). Furthermore, point estimates of genetic parameters
using the correct binary data (M1) and the uncertain data analyzed with fuzzy
logic classification (M3a) were practically the same. However, when uncertain
binary data were analyzed with a standard threshold model with no consider-
ation for uncertainty (M2), sire variance, service sire variance, and heritability
were underestimated by 28, 30, and 26%, respectively, when compared with
M1. Sire and service sire variances using M2 were affected by the uncertainty
of the binary responses. The underestimation of the genetic parameters was
more pronounced in the field data case in part due to the smaller number of
records per service sire and sire (on average, 16.6 records per service sire and
15 records per sire) when compared with the general simulation (on average,
33 records per service sire and 21.7 records per sire). Furthermore, the true
value for service sire variance (0.030) was barely contained within the HPD
(95%) interval for M2. The true value for sire variance (0.020), and heritabil-
ity (0.076), however, were similar to the upper bound of the corresponding
HPD (95%) interval using M2. These results suggest that the estimates of the
genetic parameters using model M2 are likely to be biased.

The results of this study suggest that when analyzing binary data with uncer-
tainty, a standard threshold model could lead to biased inferences. The problem
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could be avoided, or at least attenuated, by a statistical model that contemplates
uncertainty. Moreover, for field data with low heritability, the use of external
information is helpful in discriminating between uncertain, which is coded cor-
rectly or incorrectly, and miscoded data. In this study, the mean and standard
deviation of the GL were used to assess the probability of miscoding of suc-
cess or failure at first insemination via fuzzy logic classification. There did not
appear to be large differences between the intervals (14 to 28 days vs. 16 to
26 days) or fuzzy logic functions (two linear and one non-linear) used to ac-
count for uncertainty of success or failure at first insemination. Furthermore, if
extra information is available on potential other sources of uncertainty of FIS,
such information should be included in the fuzzy function.

4.2. Pearson correlations

Although there were no observable differences in the Pearson correlations
(Tab. VI) between true and estimated effects using M1, M2, and M3 in the
current study, we would expect differences to be more noticeable in field data
when the numbers of records per service sire or sire is limited. In such a case, a
change in the status of one observation could have a major impact on the esti-
mated effects. In NS mating data for small herds, it would not be unreasonable
to expect service sires and sires to have fewer numbers of records per sire than
those observed in the current study.

Although there were very small differences in the Pearson correlations
(Tab. VI) between true and estimated effects using M2 and M3a using a field
data structure in the simulation, the correlations were smaller than those ob-
tained from the general simulation. As with the parameter estimation, this
could be due to the fact that the number of records per service sire or sire
is limited. Thus, a change in the status of one observation could have a more
important impact on the estimated effects.
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