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Abstract – Internal nematode resistance in sheep has a large impact on the economy of sheep
industries. Selection for nematode resistance in sheep breeding schemes would help to reduce
the direct and indirect cost of parasitism to these industries. However, this is not widely prac-
ticed because of the difficulty of measuring parasite resistance or correlated indirect selection
criteria. The identification of genes or linked markers that have a significant association with the
variance of indicator traits of internal nematode resistance in sheep would facilitate the inclusion
of nematode resistance in sheep breeding operations. This review summarises findings reported
in the literature of quantitative trait loci for internal nematode resistance in sheep. Issues relating
to the analytical and phenotypic complexity of nematode resistance are discussed in the context
of the findings of quantitative trait loci for nematode resistance published to date.

sheep / internal nematode resistance / quantitative trait loci

1. INTRODUCTION

The search for quantitative trait loci (QTL) that significantly contribute to
the variance of trait expressions in livestock has been increasingly a focus in
the field of livestock genetics. QTL for traits of economical importance and
traits that are complicated or expensive to measure and therefore difficult to
include in breeding programmes are of primary interest for livestock industries.
Internal nematode resistance in sheep is one such trait. It has a large economic
impact on the sheep industry and is rather cumbersome and costly to measure.

The economic impact of internal nematodes on the sheep industry has two
components. The first component is the direct annual cost of anthelmintic treat-
ment and increased labour for sheep and pasture management, and the second,
an indirect cost to the industry that is incurred through production losses in live
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weight, wool, decreased fertility and survival. One of the few estimates of the
total annual cost of parasitism was published in 1995 at an estimated cost of
$222 million Australian Dollars to the Australian sheep industry [19]. With the
increasing problem of anthelmintic resistance this estimate can be expected to
be considerably higher today [15].

Breeding sheep for increased nematode resistance would reduce the cost of
anthelmintics and reduce the effect of internal nematodes on production. The
difficulty of including nematode resistance in breeding programmes is mainly
due to the difficulty of measuring nematode resistance itself. Thus, nematode
resistance is recorded and included in breeding programmes through correlated
traits; the most widely used being faecal egg count (FEC). This trait is costly to
measure and it is necessary to artificially challenge selection candidates with
worm larvae to ensure a standardised exposure to internal nematodes across
individuals. This technique raises criticism with seed stock producers, because
the parasite burden can have negative effects on other production characteris-
tics and the visual appearance of valuable rams can be compromised as a result
of the nematode infestation. In addition, the infected animals spread worm
eggs, which requires additional attention to paddock management strategies.

The inclusion of resistance to internal nematodes in breeding pro-
grammes for sheep would find wider acceptance if QTL or closely linked
markers could be identified that are associated with a significant propor-
tion of the variance of nematode resistance traits. If nematode resistance
traits were more frequently included in breeding programmes the economic
impact of internal nematodes could be reduced as a consequence and
the sheep industries would benefit greatly.

The purpose of this paper is to review published research findings on genetic
variation and QTL for internal nematode resistance in sheep and to discuss
the phenotypic and analytical complexity that has to be considered in current
genomic approaches in the experimental set up, analysis and interpretation of
the results.

2. GENETIC VARIATION IN INTERNAL PARASITE
RESISTANCE

The polygenic background of internal nematode resistance has been investi-
gated to determine if genetic progress is feasible in breeding programmes that
focus on nematode resistance [7,15,32,33]. It has been established that genetic
variation in nematode resistance exists between and within sheep breeds.
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2.1. Between breed variation

Several studies [2, 16, 22, 23, 30] have compared different breeds for their
ability to resist internal nematode infections and as a result variation between
breeds has been observed. In a comparison of four breeds, the Red Maasai
breed showed higher resistance to H. contortus than Blackheaded Somali and
Dorper sheep [22] and all three breeds were substantially more resistant than
the Romney Marsh breed. A study by Baker et al. [2] found significantly
different FEC between Dorper and Red Maasai sheep with the Red Maa-
sai breed showing lower FEC following a field infection with H. contortus.
However, surprisingly no significant differences were established following an
artificial challenge with the same nematode species. On the contrary, a different
study [30] fully confirmed the results of Mugambi et al. [22] in a comparison of
the Red Maasai and the Dorper breed. Wanyangu et al. [30] found that the Red
Massai sheep were more resistant to H. contortus than Dorpers, by producing
lower FEC and higher immunological parameters after artificial infection with
the parasite. A comparison between Barbados Black Belly sheep and INRA401
composites demonstrated that Barbados Black Belly have a higher resistance
to H. contortus and T. colubriformis than the INRA401 [16]. In another study,
the Garole breed was recommended for inclusion in composite breeding in a
humid region of India rather than the Deccani or the Bannur breed due to its
significantly higher internal nematode resistance [23]. However, lambs from
Garole sires had lower live weight and lower growth rates.

If QTL or markers that are closely linked to increased resistance can be
identified in exotic breeds there is the potential to introgress the favourable
gene/s into more profitable breeds to result in an increased nematode resistance
without compromising production in the long term [29].

2.2. Within breed variation

It has been shown that sufficient genetic variation can be found within
flocks of the same breed to make genetic progress through selection for
internal nematodes resistance [7, 32, 33]. It was demonstrated that Rom-
neys can be selected divergently for nematode resistance [7] and the same
was shown in Merino flocks that were successfully selected for high
and low immune response to Haemonchus contortus and Trichostrongylus
colubriformis [32, 33]. Based on moderate heritability estimates for FEC,
Gray [15] pointed out the possibility of breeding Merino sheep for increased
internal nematode resistance. In later studies it was confirmed that nematode
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resistance, as measured by faecal egg count (FEC) and packed cell volume
(PCV), is moderately heritable. Heritabilities range between 0.23 [32] and
0.41 [33] for FEC and for PCV around 0.20 as indicative phenotypes of re-
sistance [32].

3. COMPLEXITY OF PARASITE RESISTANCE

3.1. Phenotypic complexity

For several reasons, resistance to internal nematodes is a physiologically
complex trait and therefore difficult to measure. Firstly, a large number of
physiological pathways are involved in the prevention of the establishment
of worms and the development of resistance as a result [6]. Secondly, the
pathways that activate immune responses are different depending on the
parasite naivety status of the sheep. Due to the physiological complexity,
indicator traits might also fail to represent all of the pathways involved in
internal nematode resistance.

The key processes of an immune response to internal nematodes con-
trol the establishment of cell populations and implementation of mecha-
nisms that lead to the prevention of the establishment of worms. The two
main processes are the humoral response, involved in the recognition and
processing of nematode antigens entering the system of an individual and
the cellular response, which influences the recruitment of cells that actively
destroy parasites [21]. Other feedback mechanisms lead to increased peristal-
sis of the gut, mucus entrapment and local inflammation, all of which actively
aid the expulsion of worms [14].

Upon primary exposure to internal nematodes, memory cells are developed
that facilitate faster immune reactions in secondary infections with worms of
the same species. It is unclear if the genes that control key processes and mech-
anisms preventing the establishment of worms in primary infections of sheep
with internal nematodes are different to those involved in subsequent infec-
tions. When parasite larvae reach their tissue niche in a naïve organism an
immune response is triggered resulting in an increased recruitment of lympho-
cytes, eosinophils, T and B cells, with a concomitant delay in worm expul-
sion [3]. In comparison, in sheep that have been previously exposed to internal
nematodes the larvae do not reach the tissue because an immediate immune
response leading to expulsion is triggered with very little change to the cell
populations [3]. Therefore it appears that different pathways are involved that
may underlie the control of different genes. However, as Windon et al. [31]
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Table I. Phenotypic indicators for internal nematode resistance ([5, 9]; Windon, pers.
comm., 2004).

Parasitological Immunological indicator Pathological indicator
indicator
Faecal egg count Serum antibodies (IgG1, Plasma pepsinogen
Number of adult larvae IgA and IgE) concentration

ELISA Plasma albumin
Western blotting concentration
Peripheral eosinophilia Fructosamin concentration
Mediator concentrations Packed cell volume
Histology (mast cells / Dag score
globule leukocytes, Faecal consistency
eosinophils, goblet cells)

have shown, sheep can be successfully bred for overall increased or decreased
resistance, based on selection criteria that are correlated with acquired immu-
nity. This would support the hypothesis that innate and acquired resistance
underlie similar genetic control mechanisms.

Resistance to internal nematodes is clearly a complex physiological char-
acteristic and the activation of certain pathways depends on the previous ex-
posure of the individuals to worm larvae. One hypothesis claims that any
physiological or immunological indicator trait can only describe parts of the
mechanisms involved [1] and therefore traits for internal nematode resistance
measured after primary infection might not be useful in the measurement of
resistance after secondary infection or vice versa. However, evidence from se-
lection experiments [31, 32] where overall resistance was achieved through
selection for acquired resistance rather than resistance to primary exposure to
worms, challenges this hypothesis.

Another level of complexity of nematode resistance is that indicator traits
can be nematode specific, e.g. packed cell volume is a pathological indicator
of anaemia, a trait which is suggestive of H. contortus, a blood sucking internal
parasite, but not by other gastrointestinal nematodes. Therefore, in identifying
QTL for parasite resistance it can be expected that the results will vary de-
pending on the nematode species, the challenging regime and the indicator
trait measured.

However, a number of phenotypic indicators have been shown to be useful
in measuring internal nematode resistance in sheep. The main indicator traits
are listed in Table I and are classified into three groups: parasitological, im-
munological and pathological traits [9].
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3.2. Analytical complexity

The phenotypic assessment of internal nematode resistance generally fol-
lows artificial infection with nematode larvae to ensure a standardised expo-
sure of individuals to the parasite. However, such challenge regimes do not
guarantee equal infection of all animals. This can lead to inconsistencies in
measurements, which can cause problems in the statistical analysis and may
influence the results.

In particular, zero scores for indicator traits for nematode resistance pose
difficulties in the statistical analysis of internal nematode resistance. Zero
scores can occur for a variety of reasons and it is highly probable that these
values will be misinterpreted. In order to define the risk of interpretation
Tilquin [27] classified zero scores into four categories:

(1) True zero scores, where infected individuals cleared the infection through
an effective immune response.

(2) True zero scores, as a result of the peak of infection being missed and due
to the wrong timing of phenotype recording.

(3) False zero scores, due to non-detectable egg counts.
(4) False zero scores, due to missed infection as a result of the sheep not

ingesting the larvae at the time of artificial infection.

In general zero scores cannot be avoided, but the challenge is to reduce
the number of occurrences of false zero scores as defined previously,
under (3) and (4).

Internal nematode resistance, measured as FEC, is generally a non-normally
distributed trait. This characteristic can be compounded by a large number of
zero scores leading to a distinct peak in the phenotypic distribution, causing it
to be heavily skewed with a long tail. Tilquin et al. [28] described nematode
resistance as a categorical trait with large numbers of categories.

The assumptions for QTL analyses include normality of the distribution of
the trait analysed. Tilquin et al. [28] investigated the sensitivity of parametric
and non-parametric QTL analysis approaches and concluded that loss in power
of QTL detection is due to the non-normality of data and the occurrence of
zero records. They also described that maximum likelihood and least-squares
methods can lose up to 54% of power in detecting QTL, if non-transformed
data is analysed, concluding that the non-parametric method is the most robust
analysis approach. Tilquin et al. [28] recommend that data like those obtained
for FEC should be analysed with a non-parametric method or if parametric
approaches are used the data are appropriately transformed to conform to the
normality assumptions.
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Broman et al. [8] considered a spike in phenotypic distribution of the zero
value with a two level analysis called “two-part model". The first part anal-
yses non-zero records on a continuous scale to establish whether a QTL has
an effect on the conditional mean. The second part treats the data as a binary
trait (phenotype or no phenotype) and gives an indication of a QTL having an
effect on the probability of individuals having a phenotype different from zero.
Broman et al. [8] compared in their study four analytical approaches over eight
simulated scenarios: the parametric two-part model, its individual component
analysis, maximum likelihood and binary, and a nonparametric approach. The
results showed that the component analyses have the greatest power in situa-
tions where a QTL influences either the conditional mean or the probability of
having a phenotype. If there is an effect on both, the nonparametric test has
greater power. However, the two-part model always performed second best
and the overall average power over the eight scenarios was the highest. There-
fore, Broman et al. [8] concluded that the two-part model is the most useful
approach for the analysis of data with a spike in the phenotypic distribution, in
particular if multiple QTL are considered.

4. QTL FOR PARASITE RESISTANCE IN SHEEP

The previous paragraphs illustrate some of the issues that make internal
nematode resistance a complex and therefore difficult characteristic to mea-
sure and analyse. The complexity of the physiological processes suggests that
a large number of genes are involved in the mechanisms that lead to nema-
tode resistance. A large part of the research into nematode resistance has been
undertaken in mice and they have served as a valuable model for internal
nematode resistance in sheep [6]. The literature published on QTL in inter-
nal nematode resistance in sheep is limited in volume and has been based on
diverse analysis approaches, sheep breeds and nematode species (Tab. II). Po-
sitions of markers reported in the following paragraphs were taken from the sex
average ovine marker map published by Maddox et al. [18] on the Australian
Sheep Gene Mapping web site.

Research conducted at Sydney University [25] and the University of New
England [20] in Australia, has involved segregation analysis to investigate
evidence for the segregation of a major gene for nematode resistance. Raadsma
et al. [25] found evidence that a QTL for resistance to H. contortus was seg-
regating within a flock of Indonesian Thin Tail ×Merino cross animals based
on FEC after primary artificial challenge. The findings were confirmed in a
linkage analysis [25]. The Golden Ram project [20] found evidence for a QTL
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Table II. QTL for nematode resistance in sheep ordered by chromosome (Chr.).

Chr. Location LOD Trait Nematode species Sheep breed Ref.

score

1 Proximal end FEC T. colubriformis New Zealand [13]

EPCDV010 (22.7 cM) – Nr. adult larvae Romney

ILSTS044 (67.7 cM) selection lines

McM130 (253.5 cM) – McM357 2.8 Mean FEC T. colubriformis Merino divergent [4]

(331.2 cM) (three counts) selection lines

3 IFNG region BL4 (205.8 cM) – FEC Multi-species Romney [24]

BMS1617 (212.2 cM) challenge divergent

selection lines

First intron of the IFNG region IgA level Te. circumcincta Soay sheep [11]

TGLA67 (90.4 cM) – OarVH130 3.9 FEC after secondary T. colubriformis Merino divergent [4]

(216.1 cM) challenge selection lines

6 McMA22 (112.4 cM) – McM214 4.2 FEC after primary T. colubriformis Merino divergent [4]

(140 cM) challenge selection lines

20 DRB1 FEC after natural Te. circumcincta Scottish [26]

infection Blackface

OarCP73 (18.1 cM) Haematocrit level H. contortus Roehnschaf [17]

DYMS1 (position unknown) IgL level

BM1815 (26.8 cM) FEC after artificial

challenge



QTL for internal nematode resistance in sheep S91

in the experimental flock using cube root transformed FEC collected four and
five weeks after infection and for the mean of the two after secondary artifi-
cial challenge with H. contortus. The effect appeared to be large and explained
one third of the variance in these traits. These results confirmed the hypothe-
sis established by Gray [15] that parasite resistance is under the control of a
major gene. Currently, the findings in the Golden Ram flock are being investi-
gated further in a linkage analysis based on a full genome scan (Marshall, pers.
comm., 2004)

As a result of linkage analyses two authors found evidence for QTL for
internal nematode resistance traits on chromosome 1 [4, 13]. Diez-Tascon
et al. [13] examined several phenotypic indicators for nematode resistance in
New Zealand Romney selection lines. Eighteen microsatellite markers were
spaced at an average distance of 20 cM across chromosome 1. A significant
relationship between the level of FEC of T. colubriformis and the number of
adult larvae in the abomasum and a region at the proximal end of chromo-
some 1 (EPCDV010 (22.7 cM) – ILSTS044 (67.7 cM)) was found. This sig-
nificant association was established in one sire group using a within family
analysis. However, the significant chromosomal region was of low informa-
tion content and the authors suggested more markers in the region of interest
were required to confirm the result.

An experiment undertaken by Beh et al. [4] identified a region at the dis-
tal end of chromosome 1 (McM130 (253.5 cM) – McM357 (331.2 cM)) with
chromosome wide significance (LOD = 2.8) for mean FEC of three counts
after secondary artificial challenge with T. colubriformis. Merino selection
lines with high and low immune responses to T. colubriformis were used in
the study and the top and bottom 25% of the distribution for FEC were geno-
typed for 133 markers spaced across the whole sheep genome.

Other studies have found significant associations between pheno-
typic indicator traits of nematode resistance and regions on chromo-
some 3, [4, 11, 24]. In a fine mapping study using Romney lines divergent
for nematode resistance, Paterson et al. [24] found five significant markers
in the Interferon gamma region (BL4 (205.8 cM) – BMS1617 (212.2 cM))
linked to FEC measured after artificial multi species challenge. The results
could not be confirmed in the Perendale breed, but the hypothesis was es-
tablished that the allele was fixed in this breed. However, despite being in
a different linkage phase, the hypothesis could be confirmed in the Romney
breed using industry data. A study on IgA level in Soay sheep measured af-
ter an artificial challenge with Te. circumcincta established a significant as-
sociation with the first intron of the IFNG region on chromosome 3 [11].
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Two flanking markers were established in a 10 cM distance of that region as
a control, however no significant association was shown with these markers.
Beh et al. [4] found an interval (TGLA67 (90.4 cM) – OarVH130 (216.1 cM))
on chromosome 3 of 100 cM with chromosome wide significance (LOD = 3.9)
for FEC after secondary challenge with T. colubriformis.

Chromosome 6 showed a significant association at the genome wide signifi-
cance level (LOD = 4.2) between the region (McMA22 (112.4 cM) – McM214
(140 cM)) and FEC after primary challenge with T. colubriformis [4]. The
same region was confirmed at chromosome wide significance (LOD = 2.8)
for the same indicator trait following a secondary challenge. The major histo-
compatibility complex (MHC) is believed to be involved in the mechanisms of
immune response that will eventually lead to resistance to internal nematodes.
The MHC is located in the sheep genome on chromosome 20 [12]. Several
studies have shown significant associations between regions on ovine chromo-
some 20 and indicator traits for internal nematode resistance [10, 26].

The DRB1 locus [26] within the ovine MHC has been associated with resis-
tance to Te. circumcincta in Scottish Blackface. However, in a different analy-
sis of the data, the results were not confirmed and a microsatellite for the DY
locus (DYA 13.5 cM) was found to be significant [10].

Janssen et al. [17] found the markers OarCP73 (18.1 cM), DYMS1 (position
unknown) and BM1815 (26.8 cM) to have a significant association with haema-
tocrit level, IgL (L3 stage larvae specific immunoglobulin) level and log trans-
formed FEC respectively following an artificial challenge with H. contortus.

The literature summarised in the previous paragraphs and in Table II out-
lines the diversity of approaches taken in QTL mapping experiments in sheep
and the wide range of results reported. This might point at the involvement of
different chromosomal regions in different pathways of nematode resistance
depending on the indicator traits and challenging regime chosen in the studies.

5. DISCUSSION

Internal nematode resistance is an economically important trait for the sheep
industries. It is a characteristic that is difficult to measure and therefore not eas-
ily included in breeding programmes. New technologies could be applied for
breeding purposes if the genes involved in parasite resistance or markers that
are closely linked to these genes can be identified. Marker or gene assisted
selection or introgression of genes involved in the mechanisms of nematode
resistance into highly productive, but parasite susceptible breeds, would accel-
erate the genetic improvement of resistance to internal nematodes.
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A number of studies have investigated QTL for internal nematode resistance
in sheep [4, 10, 11, 13, 17, 24, 26]. However, the results of the studies differed
in the chromosomal regions of interest that were identified to have significant
associations with nematode resistance. This could be due to differences in ex-
perimental protocols and materials, differences in the analytical approaches or
a combination of both. The studies differed in the sheep breeds and nematode
species used in the experiments, the indicator traits for internal nematode re-
sistance measured and the challenge regimes. Considering the complexity of
the physiological processes of nematode resistance, it is not surprising that the
studies did not yield the same results.

Most of the regions that have been identified as being significantly associ-
ated with indicator traits for nematode resistance in the different experiments
vary between studies, with the INFG region on chromosome 3 being the ex-
ception. The region was identified to influence a significant proportion in the
variance for nematode resistance traits by Beh et al. [4], Coltman et al. [11]
and Paterson et al. [24].

The analytical approaches were different across studies. Most of them fo-
cused on single chromosomes [10,11,17,24,26], whereas Beh et al. [4] under-
took a full genome scan and looked for significant associations between chro-
mosomal regions and indicator traits of internal nematode resistance across the
whole ovine genome. The authors of the different studies do not mention if the
phenotypic data were tested for normality and how this data characteristic was
dealt with. Potentially different approaches have been taken, which could have
impacted on the power of detection of QTL and therefore on the results.

It can be concluded that the investigation of QTL for internal nematode re-
sistance in sheep has been shown to be a difficult area of research, mainly
due to a large number of problems associated with the phenotypic and an-
alytical complexity of this characteristic. More consistency in protocols, ex-
perimental materials and analysis approaches would facilitate the genera-
tion of comparable results and the identification of genes or markers closely
linked to genes that are associated with resistance to internal nematodes. How-
ever, the combination of mapping and candidate gene approaches and the
advances in comparative genomics will assist in enhancing the progress in
the detection of the genetic changes that influence the pathways of internal
nematode resistance in sheep.
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catholique de Louvain, 2003, pp. 83–106.

[28] Tilquin P., Coppieters W., Elsen J.M., Lantier F., Moreno C., Baret P.V.,
Statistical power of QTL mapping methods applied to bacteria counts, Genet.
Res. 78 (2001) 303–316.

[29] Van der Waaij E.H., van Arendonk J.A.M., Introgression of genes responsible
for disease resistance in a cattle population selected for production: genetic and
economic consequences, Anim. Sci. 70 (1999) 207–220.

[30] Wanyangu S.W., Mugambi J.M., Bain R.K.D.J.L., Murray M., Stear M.J.,
Response to artificial and subsequent natural infestation with Haemonchus con-
tortus in Red Maasai and Dorper ewes, Vet. Parasitol. 69 (1997) 275–282.

[31] Windon R.G., Dineen J.K., Wagland B.M., Genetic control of immunological
responsiveness against the intestinal nematode Trichostrongylus colubriformis
in lambs, in: McGuirk B.J. (Ed.), Merino improvement programs in Australia,
Australian Wool Corporation, Melbourne, 1987, pp. 371–375.

[32] Woolaston R.R., Piper L.R., Selection of Merino sheep for resistance to
Haemonchus contortus: genetic variation, Anim. Sci. 62 (1996) 451–460.

[33] Woolaston R.R., Windon R.G., Gray G.D., Genetic variation in resistance to
internal parasites in Armidale experimental flocks, in: Gray G.D., Woolaston
R.R. (Eds.), Breeding for disease resistance in sheep, Australian Wool
Corporation, Melbourne, 1991, pp. 1–9.

To access this journal online:
www.edpsciences.org


