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Abstract – QTL detection experiments in livestock species commonly use the half-sib design.
Each male is mated to a number of females, each female producing a limited number of progeny.
Analysis consists of attempting to detect associations between phenotype and genotype mea-
sured on the progeny. When family sizes are limiting experimenters may wish to incorporate
as much information as possible into a single analysis. However, combining information across
sires is problematic because of incomplete linkage disequilibrium between the markers and the
QTL in the population. This study describes formulæ for obtaining MLEs via the expectation
maximization (EM) algorithm for use in a multiple-trait, multiple-family analysis. A model
specifying a QTL with only two alleles, and a common within sire error variance is assumed.
Compared to single-family analyses, power can be improved up to fourfold with multi-family
analyses. The accuracy and precision of QTL location estimates are also substantially improved.
With small family sizes, the multi-family, multi-trait analyses reduce substantially, but not to-
tally remove, biases in QTL effect estimates. In situations where multiple QTL alleles are seg-
regating the multi-family analysis will average out the effects of the different QTL alleles.

QTL / EM algorithm / interval mapping / half-sib families

1. INTRODUCTION

The paternal half-sib design remains a popular design for the mapping of
quantitative trait loci (QTL) in livestock. Families can be easily generated from
existing out-crossed populations and the results of the mapping experiment
are likely to be more applicable to commercial populations. Designs that use
crosses between divergent lines or breeds offer greater chance of detecting
QTL. However there is the risk that favourable alleles are already at a high
frequency in the target population.
∗ Corresponding author: richard.kerr@mmigenomics.com
Current address: MMI Genomics, 1756 Picasso Ave, Davis, CA 95616, USA.
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Figure 1. Region of chromosome pair (maternally and paternally inherited) with QTL
and marker for 3 sires. (a) Different QTL alleles are assumed linked to different marker
alleles in each sire family. (b) Biallelic QTL is assumed and marker alleles are now
labelled as being of maternal (1) or paternal (2) origin.

The basis for using a half-sib design can be summarised in Figure 1a, which
shows the same region of a chromosome pair in three sires. The region contains
a QTL and a genetic marker and represents only a small section of the genome
that is to be scanned. A genetic map of moderate resolution is assumed, for
example, a 10–20 cM map. Polymorphic markers such as microsatellites span
each chromosome of interest. Markers are screened for their informativeness,
i.e., there is a high fraction of progeny for which the allele inherited from the
sire can be deemed as having derived from one paternal grandparent as op-
posed to the other. Up to six or more alleles can segregate in a population
for a typical microsatellite, hence the marker in Figure 1a is denoted Mi with
i = 1 . . . 6. A difference between the phenotypic means of the two offspring
groups inheriting the alternative marker alleles indicates that the marker al-
leles are linked to QTL alleles, and one QTL allele has an effect on pheno-
type clearly distinquishable from the effect of the other. QTL genotypes are
unknown and the exact number of alleles cannot be ascertained. Hence in Fig-
ure 1a we have the situation of different QTL alleles linked to different marker
alleles in each family. This presents no problem if QTL analyses are completed
separately within each half-sib family.
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For a fixed experimental resource, it is often preferable to test more small
half-sib families than fewer large half-sib families. One reason is that there is
greater chance of detecting a rare allele. In the case of a validation study sig-
nificance tests should not be as stringent as for the initial genome scan. Hence
smaller sample sizes suffice, allowing many more families to be screened.
However because within sire analysis of small half-sib families provides lim-
ited power to detect QTL, experimenters may desire to incorporate informa-
tion from all sires. Many statistical techniques are available to perform a joint
analysis of multiple half-sib families. Linear regression described by Knott
et al. [12] uses a model that fits a separate QTL effect for each sire, and a com-
mon error variance. This model allows multiple QTL alleles to be segregating
in the population. Knott et al. [12] compared linear regression with maximum
likelihood. The likelihood function assumed a biallelic QTL and two possi-
ble linkage phases in the population. Numerical methods were used to obtain
maximum likelihood estimates (MLEs) of the QTL parameters. They found
the two approaches gave similar power and estimates for QTL location. While
linear regression [11] and maximum likelihood [9] have been extended to the
analysis of multiple traits, there has been no extension of these techniques to
the analysis of both multiple traits and multiple half-sib families.

Recently maximum likelihood (ML) has been extended to the analysis of
more complex models. For example, Jansen et al. [8] describe a ML approach
with the potential to analyse complex pedigrees such as multiple half-sib fami-
lies with genetic ties among families. Likelihoods are optimised using a Monte
Carlo expectation-maximization algorithm. Farnir et al. [3] describe likelihood
functions for analysis of multiple half-sib families assuming linkage disequi-
librium between markers and QTL at the population level. Likelihoods are op-
timised using quasi-Newton techniques. It is unknown how these optimisation
techniques are equipped to handle the addition of multiple-traits to the models.

In this paper we describe an exact expectation-maximisation (EM) algo-
rithm suitable for the maximum likelihood analysis of multiple-traits and
multiple-families. Further, the benefits of a multi-trait, multi-family analysis,
relative to simpler types of analyses are illustrated using computer simulation.

2. MODELS AND ASSUMPTIONS

This algorithm was designed for use in initial genome scans and follow up
validation studies. In these situations genetic maps of sparse to moderate res-
olution are the norm and often mothers are not genotyped. Hence we do not
consider likelihood functions that model linkage disequilibrium between the
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markers and the QTL at the population level. Such likelihood functions are
more applicable in fine mapping studies. The half-sib families are assumed
independent. To provide a workable model a biallelic QTL and two possible
linkage phases are assumed. Given a fixed map position, markers are used to
provide prior probabilities that offspring inherit one of two alternative QTL
alleles, labelled Q1 and Q2. Under these assumptions it becomes simpler to
consider meiosis switches or inheritance states of the marker loci, rather than
work with the marker genotypes. The meiosis switch states that the allele trans-
mitted to the offspring due to a meoisis in the sire is either the sire’s maternal
or paternal allele. Ascertaining the meiosis switches in offspring for all marker
loci on the paternal chromosome can be achieved using an algorithm such
as the Lander-Green algorithm [13]. In two generational pedigrees such as
the half-sib design, the actual phase of the alleles in progeny chromosomes
(grandpaternal or grandmaternal origin) remain unknown. However, paternal
haplotypes with phase choice having the highest likelihood can still be com-
puted using the Lander-Green algorithm, which is limited to small pedigrees
such as independent half-sib families. The chromosomal region in Figure 1b
is now represented using different nomenclature to that in Figure 1a. Meio-
sis switches on marker alleles are represented by 1 (2) for maternal (paternal)
origin. The three sires represent three of four possible scenarios: the linkage
phase between the QTL and the marker in sire 1 is of the first type, arbitrarily
denoted phase 1; the linkage phase in sire 2 is the reverse of that in sire 1 (phase
2); sire 3 is homozygous for the Q1 allele. A sire can also be homozygous for
the Q2 allele, but this is not shown.

For the development of the following algorithm we will assume two flanking
markers rather than a single marker. Flanking markers allow location along a
chromosome to be inferred. In half-sib designs it is almost certain that for every
individual not every marker can be scored for the allele inherited from the sire.
If the flanking marker scores are incomplete for a given individual the typical
approach is to use “offsets”. That is, the nearest informative marker in one or
both directions is taken.

3. MAXIMUM LIKELIHOOD VIA THE EM ALGORITHM

The following linear model is used to test for a QTL affecting nt traits, and
located on an interval of markers m and m + 1

yi j1 = µi1 + (z111,i j + z122,i j)b1 − (z112,i j + z121,i j)b1 + ei j1, (1)
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yi j2 = µi2 + (z111,i j + z122,i j)b2 − (z112,i j + z121,i j)b2 + ei j2, (2)
...

yi jnt = µint + (z111,i j + z122,i j)bnt − (z112,i j + z121,i j)bnt + ei jnt (3)

where yi jk is the observation for the kth trait on the jth progeny of the ith sire,
µik is the mean of the i half-sib family for trait k and bk is the magnitude of the
effect of the QTL on trait k. The bk are parameterised using the restriction

bk = 0.5
(
b∗k1 − b∗k2

)

where b∗kl is the additive effect of allele l (l = 1,2) on the kth trait. The random
error terms (ei jk) include environmental variance and a genetic component due
to the different polygenic contributions. With a half-sib design there is gener-
ally insufficient data to estimate the effects of the QTL allele inherited from the
dam, hence this effect is also contained in the random error term. Random error
terms are multivariate, normally distributed with a mean that is zero and are
uncorrelated between individuals if full-sibs are not included, and correlated
between traits recorded on the same individual. A common error variance-
covariance matrix, Σ, is assumed for all half-sib groups and is defined as

Σ =



σ2
1 σ12 · · · σ1nt

σ21 σ
2
2 · · · σ2nt

...
...
. . .

...

σnt1 σnt2 · · · σ2
nt


.

The variables z111,i j, z112,i j, etc., are indicator variables taking the value zero
or one, where:

z111,i j = 1, if the ith sire is heterozygous, has phase 1 and its jth

progeny has inherited the Q1 allele;

z112,i j = 1, if the ith sire is heterozygous, has phase 1 and its jth

progeny has inherited the Q2 allele;

z121,i j = 1, if the ith sire is heterozygous, has phase 2 and its jth

progeny has inherited the Q1 allele;

z122,i j = 1, if the ith sire is heterozygous, has phase 2 and its jth

progeny has inherited the Q2 allele.

The variables z111,i j, z121,i j, z112,i j and z122,i j all have 1 as the first sub-index,
indicating the sire is heterozygous. It takes the value 2 when the sire is ho-
mozygous and is necessary in the development of the algorithm in the next



88 R.J. Kerr et al.

section. The probabilities that the variables z111,i j, z121,i j, z112,i j and z122,i j are
zero or one depend on: the unknown prior probability h that the sire is het-
erozygous; the probability that the sire is one of two equally likely possible
linkage phases; and the pi j denoting the specified prior probabilities that the
progeny has inherited the Q1 allele, conditional on the genotypes of markers
m and m + 1 and the position being tested (1 − pi j is the prior probability the
progeny has inherited the Q2 allele). For example, the prior probability that
z111,i j = 1 is equal to .5hpi j.

Denoting the number of sires by ns, the number of progeny within in each
half-sib group by ni, the observations for the ith half-sib group by a ni × nt

matrix Yi, all µik within the ith half-sib group by the vector µi, and finally all
bk by the vector b, the likelihood function is then given by

L(h,µ1,µ2, . . . ,µns , b,Σ) =

ns∏

i=1



.5h
∏ni

j=1

(
pi j φ(yi j;µi + b,Σ) + (1 − pi j) φ(yi j;µi − b,Σ)

)

+ .5h
∏ni

j=1

(
pi j φ(yi j;µi − b,Σ) + (1 − pi j) φ(yi j;µi + b,Σ)

)

+ (1 − h)
∏ni

j=1 φ(yi j;µi,Σ)


(4)

where φ(yi j;µi + b,Σ), φ(yi j;µi − b,Σ) and φ(yi j;µi,Σ) represent the multi-
variate normal density functions of the vector variable yi j (the jth row of the
matrix Yi) with means µi + b, µi − b and µi, respectively, and covariance ma-
trix Σ.

The univariate representation of this likelihood function has been compared
to more complicated likelihood functions by Goffinet et al. [5]. Other like-
lihood functions that were considered modeled different QTL substitution ef-
fects and/or different residual variances for each sire. Generally they found that
in terms of power there were no appreciable differences between the alternative
formulations.

General formulæ for obtaining the MLEs

The maximum likelihood estimate (MLE) of the vector θ′ = (h,µ, b,Σ) of
unknown parameters is obtained as an appropriate solution of the likelihood
equation

∂ log L(h,µ1,µ2, . . . ,µns , b,Σ)
/
∂θ = 0. (5)

Rather than working with (5) directly, we shall apply the EM algorithm, which
is a general method of finding MLEs from a given data set when the data is
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incomplete or missing: see, for example, McLachlan and Krishnan [14]. The
incomplete data are declared to be the unobservable indicator variables, z111,i j,
z112,i j, z121,i j, and z122,i j as defined above. The following indicator variables are
also declared to be incomplete data:

z1,i = 1, if the ith sire is heterozygous;

z2,i = 1, if the ith sire is homozygous;

z11,i = 1, if the ith sire is heterozygous and has phase 1;

z12,i = 1, if the ith sire is heterozygous and has phase 2.

Assuming these indicator variables to be incomplete data is equivalent to as-
suming QTL transmission probabilities, heterozygosity and phase of sires to
be missing.

In this framework, the complete-data log likelihood that can be formed on
the basis of the observable data and these incomplete data is

log Lc(θ) =
ns∑

i=1

ni∑

j=1

[
z111,i j log φ(yi j; µi + b, Σ)

+ z112,i j log φ(yi j; µi − b, Σ)

+ z121,i j log φ(yi j; µi + b, Σ)

+ z122,i j log φ(yi j; µi − b, Σ)

+ (1 − z111,i j − z112,i j − z121,i j − z122,i j) log φ(yi j; µi, Σ)
]

+

ns∑

i=1

ni∑

j=1

[
(z111,i j + z112,i j + z121,i j + z122,i j) log h

+ (1 − z111,i j − z112,i j − z121,i j − z122,i j) log(1 − h)
]

+ terms involving pi j which are known.

The events [z111,i j = 1], [z121,i j = 1], [z112,i j = 1], [z122,i j = 1] and
[1 − z111,i j − z112,i j − z121,i j − z122,i j] (the sire is homozygous) are mutually
exclusive, therefore you have that the logarithm of the sum is the sum of the
logarithms, when passing from the log likelihood of (4) to the complete-data
log likelihood. This point illustrates an important difference between standard
parametric models and finite mixture distributions. A parametric model is iden-
tifiable if distinct values of the parameters determine distinct members of the
parametric family. Identifiability for mixture distributions is defined slightly
different in that distinct values of the parameters determine distinct members
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of the mixture family, allowing permutations of the component labels, i.e. the
indicator variables; see, for example, McLachlan and Peel [15].

The algorithm proceeds by completing the maximization step or M-step
first. At the tth iteration the estimate of the vector θ of unknown parameters
is updated by the global maximizer of Q(θ; θ(t−1)), which is the conditional
expectation of the complete-data log likelihood function given the observed
data, using θ(t−1) for θ. The updated estimates of the unknown parameters b,
µi (i = 1,. . .,nt) and Σ so obtained can be given in closed form. Concerning the
updating of the estimates of b, we have that

b(t)
k = A(t)

k


ns∑

i=1

ni∑

j=1

{
τ(t−1)

111,i j + τ
(t−1)
112,i j + τ

(t−1)
121,i j + τ

(t−1)
122,i j

}


−1

(6)

for all k and where

A(t)
k =

ns∑

i=1

ni∑

j=1

[
τ(t−1)

111,i j

(
yi jk − µ(t−1)

ik

)
− τ(t−1)

112,i jk

(
yi jk − µ(t−1)

ik

)

−τ(t−1)
121,i j

(
yi jk − µ(t−1)

ik

)
+ τ(t−1)

122,i j

(
yi jk − µ(t−1)

ik

)]
.

In the first iteration the following starting values can be used:

τ(0)
111,i j = .25pi j;

τ(0)
112,i j = .25(1 − pi j);

τ(0)
121,i j = .25(1 − pi j);

τ(0)
122,i j = .25pi j.

To test for the existence of a QTL it will be necessary use a model with no
QTL fitted. If this model is completed prior to completing a model with a QTL
fitted the resulting half-sib family means can be conveniently used for µ(0)

ik . At
the tth iteration the means of each half-sib family are found using

µ(t)
ik = n−1

i

ni∑

j=1

[
τ(t−1)

111,i j(yi jk − b(t)
k )

+ τ(t−1)
112,i j

(
yi jk + b(t)

k

)

+ τ(t−1)
121,i j

(
yi jk + b(t)

k

)

+ τ(t−1)
122,i j

(
yi jk − b(t)

k

)

+
(
1 − τ(t−1)

112,i j − τ(t−1)
121,i j − τ(t−1)

122,i j

)
yi jk

]
.
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Next a solution is found for the common variance-covariance matrix in all half-
sib families. If an element in the kth row and lth column of Σ is represented as
σkl then

σ(t)
kl = N−1

ns∑

i=1

ni∑

j=1

[
τ(t−1)

111,i j(yi jk − µ(t)
ik − b(t)

k )(yi jk − µ(t)
il − b(t)

l )

+ τ(t−1)
112,i j(yi jk − µ(t)

ik + b(t)
k )(yi jk − µ(t)

il + b(t)
l )

+ τ(t−1)
121,i j(yi jk − µ(t)

ik + b(t)
k )(yi jk − µ(t)

il + b(t)
l )

+ τ(t−1)
122,i j(yi jk − µ(t)

ik − b(t)
k )(yi jk − µ(t)

il − b(t)
l )

+ (1 − τ(t−1)
112,i j − τ(t−1)

121,i j − τ(t−1)
122,i j)(yi jk − µ(t)

ik )(yi jk − µ(t)
il )

]

where N =
∑ns

i=1 ni.

The expectation or E-step requires taking the conditional expectation of the
complete-data log likelihood log Lc(θ) given the observed data, using the cur-
rent fit for the vector of unknown parameters. As log Lc(θ) is linear in the
unobservable indicator variables, the E-step is simply effected by replacing
them by their conditional expectations given the observed data. As these in-
dicator variables are zero-one variables, their conditional expectations are the
posterior probabilities that they are equal to one; that is at the tth iteration

τ(t)111,i j = pr{z111,i j = 1 | yi j, θ
(t)};

τ(t)112,i j = pr{z112,i j = 1 | yi j, θ
(t)};

τ(t)121,i j = pr{z121,i j = 1 | yi j, θ
(t)};

τ(t)122,i j = pr{z122,i j = 1 | yi j, θ
(t)}.

The first step in computing the above posterior probabilities is to compute the
posterior probability the ith sire is heterozygous at the QTL, which is denoted
τ(t)1,i. To compute τ(t)1,i we require the probability that the ith sire is heterozygous,

f (t)
1,i and the probability that the ith sire is homozygous, f (t)

2,i , at the tth iteration.
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That is,

f (t)
1,i =

1
2

h(t−1)
ni∏

j=1

[
pi j φ(yi j; µ

(t)
i + b(t), Σ(t))

+ (1 − pi j) φ(yi j; µ
(t)
i − b(t), Σ(t))

]

+
1
2

h(t−1)
ni∏

j=1

[
pi j φ(yi j; µ

(t)
i − b(t), Σ(t))

+ (1 − pi j) φ(yi j; µ
(t)
i + b(t), Σ(t))

]

f (t)
2,i =(1 − h(t−1))

ni∏

j=1

φ(yi j; µ
(t)
i , Σ

(t)).

In the first iteration a convenient starting value for h(0) is 0.5. A value for τ(t)1,i
is then found by normalizing. That is,

τ(t)1,i =
f (t)
1,i

f (t)
1,i + f (t)

2,i

·

The posterior probability at the tth iteration that the ith sire is homozygous at
the QTL is

τ(t)2,i = 1 − τ(t)1,i.

Once the τ(t)1,i, for i = 1, . . . , ns, have been computed, the MLE of h at the tth
iteration can be found at this point:

h(t) =
1
ns

ns∑

i=1

τ(t)1,i.

The next step is to compute the posterior probabilities the ith sire is heterozy-
gous, and either phase 1 or phase 2:

τ(t)11,i =

1
2

∏ni
j=1

[
pi j φ(yi j; µ

(t)
i + b(t), Σ(t)) + (1 − pi j) φ(yi j; µ

(t)
i − b(t), Σ(t))

]

f (t)
1,i

τ(t)12,i = 1 − τ(t)11,i.
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Finally, the posterior probabilities that the jth progeny received either Q1 or
Q2 from the ith sire, who in turn is heterozygous and of phase 1, are then

τ(t)111,i j =

τ(t)1,i · τ(t)11,i ·


pi j φ(yi j; µ
(t)
i + b(t), Σ(t))

pi j φ(yi j; µ
(t)
i + b(t), Σ(t)) + (1 − pi j) φ(yi j; µ

(t)
i − b(t), Σ(t))



τ(t)112,i j =

τ(t)1,i · τ(t)11,i ·


(1 − pi j) φ(yi j; µ
(t)
i − b(t), Σ(t))

pi j φ(yi j; µ
(t)
i + b(t), Σ(t)) + (1 − pi j) φ(yi j; µ

(t)
i − b(t), Σ(t))

 ·

Likewise, the posterior probabilities that the jth progeny received either Q1 or
Q2 from the ith sire, who in turn is heterozygous and of phase 2, are then

τ(t)121,i j =

τ(t)1,i · τ(t)12,i ·


pi j φ(yi j; µ
(t)
i − b(t), Σ(t))

pi j φ(yi j; µ
(t)
i − b(t), Σ(t)) + (1 − pi j) φ(yi j; µ

(t)
i + b(t), Σ(t))



τ(t)122,i j =

τ(t)1,i · τ(t)12,i ·


(1 − pi j) φ(yi j; µ
(t)
i + b(t), Σ(t))

pi j φ(yi j; µ
(t)
i − b(t), Σ(t)) + (1 − pi j) φ(yi j; µ

(t)
i + b(t), Σ(t))

 ·

This completes the E-step and a new iteration begins. Convergence is reached
when the value of the difference in the log likelihood (4) between successive
iterations is below a set threshold.

The EM equations have been described elsewhere for the single-trait, single-
family maximum likelihood analysis [16] and the multiple-trait, single familiy
maximum likelihood analysis [9]. The EM equations for the single-trait,
multiple-family maximum likelihood analysis are simply the univariate rep-
resentations of the formulae outlined above.
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4. COMPARING ANALYSIS METHODS USING SIMULATED
DATA

Two QTL detection experiments, denoted experiment A and experiment B
were simulated in order to compare the multiple-trait, multiple-family analysis
method with simpler methods. Experiment A was run under ideal conditions,
in order to eliminate almost all sources of bias, thus demonstrating that the EM
algorithm yields unbiased estimates under such conditions. Experiment B was
run under less favourable, but more realistic conditions.

In both experiments six half-sib families were simulated with the same num-
ber of offspring. In experiments A and B the values of ni used were 200 and
25, respectively, for i = 1, . . . , 6. A single chromosome with six equally spaced
markers and a single QTL was considered. The recombination fraction be-
tween each marker was 0.2. In experiment A, the single QTL was positioned
in the middle of the third interval, in the middle of the chromosome. In ex-
periment B, the single QTL was located in the last interval, and closest to the
last marker. Using the Haldane mapping function these positions translated to
distances of 63.9 and 122 cM from the first marker, for experiments A and B,
respectively. Paternal allele statuses (1 or 2) for all markers and the QTL were
assigned to each progeny. The status of the allele at the first marker was ran-
domly assigned and the status of the allele at the second marker was the same
as for the allele of the first marker with probability 1−r, with r = 0.2. The pro-
cess was repeated for each successive marker. However r was equal to 0.1127
when sampling the allele at the QTL and the fourth marker in experiment A
and was equal to 0.167 and 0.05 when sampling the allele at the QTL and sixth
marker, respectively, in experiment B.

In experiment A all progeny were informative at each marker. That is, the
paternal allele statuses (1 or 2) of the marker alleles were revealed to the anal-
ysis. In actual half-sib experiments the determination of paternal allele status
is rarely possible for all progeny, for any one marker. Often, one or more sires
are homozygous for a particular marker, or, if a sire is heterozygous, the dam
is also segregating for the same two alleles. Thus in experiment B paternal
allele statuses (1 and 2) for 75% of the progeny were revealed to the analy-
sis. These progeny were selected at random. The paternal allele statuses of the
remaining 25% of the progeny were assumed unknown in the analysis. For
each marker a different subset of progeny was selected to have their paternal
allele statuses assumed known. The nearest informative markers were used to
infer prior probability of inheriting the Q1 allele in cases when a marker was
non-informative.
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Table I. Values used in each sire family for the size of the QTL effect (b), within sire
variance (Σ). The linkage phase in each sire family is also shown.

Sire

A B C D E F

b [1.58,–1.58]1 [1.58,–1.58] [1.58,–1.58] [1.1,–1.1] [1.58,–1.58] [1.58,–1.58]

phase 1 2 1 1 2 not segregating

Σ [10,5,10]1 [10,5,10] [10,5,10] [10,5,10] [22.5,11.25,22.5] [10,5,10]

1 First and second values are the effects of the QTL on traits 1 and 2, respectively.
2 First value is the within sire error variance for trait 1, the second value is the covari-
ance between traits and the third value is the variance for trait 2.

Two within sire error terms (ei j1 and ei j2), for traits 1 and 2, were assigned
to each progeny of each sire and were drawn at random from a bivariate nor-
mal distribution with zero means and variances and correlation equal to the
values in Table I. Sires A, B, C, D and E were segregating for the QTL. Sire
F was not segregating. Sire families segregating for the QTL were assigned a
phase of 1 or 2 as shown in Table I. For example, sire A has a phase of 1 which
implies z11,A = 1 and z12,A = 0, whereas sire B has a phase of 2 which implies
z11,B = 0 and z12,B = 1. Sires B and E had opposite linkage phase to sires A,
C and D. Paternal allele status at the QTL for the jth progeny of the ith sire
implies that only one of four possible indicator variables (z111,i j, z112,i j, z121,i j,
z122,i j) is non-zero and trait phenotypes for all progeny can be constructed us-
ing equations (1) and (2). The values for b1 and b2 are shown in Table I. The
values are the same for each sire except sire D, which implies a third QTL
allele is segregating in this particular sire. The proportion of the within sire
variance due to the QTL was 20% for both traits, except for sire D where it
was 10%. One hundred replicate populations containing six half-sib families
as described in Table I were generated and analysed with the following interval
mapping analysis methods:

– single-family, single trait analyses for each half-sib family;
– single-family, multi-trait analyses for each half-sib family;
– multi-family, single trait analyses for the following combinations of fami-

lies: ABC (one family has opposite phase); ABD (three alleles are actually
segregating); ABE (one family has a larger variance); ABF (one family is
not segregating for the QTL);

– multi-family, multi-trait analyses for the above combinations of families.
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Chromosomes transmitted to progeny from sires were tested at 22 analysis po-
sitions, spaced approximately 6 cM apart. Standard hypotheses were used for
testing the existence of a QTL at each tested position. For single-trait analyses
the hypotheses tested are

HO : b = 0 (there is no QTL at that position)

HA : b � 0 (there is a QTL at that position).

For multiple-trait analyses the hypotheses tested are the same as that outlined
in Jiang and Zeng [9], that is

HO : b = 0 (there is no QTL at that position)

HA : at least one element of the vector b is not zero.

To reject the null hypothesis a likelihood ratio test (LRT) statistic
−2 log

[
supΘO

L(θ)
/

supΘ L(θ)
]

was calculated, where ΘO and Θ are the re-
stricted and unrestricted parameter spaces, respectively. Because classical dis-
tribution theory of the LRT statistic does not hold for testing homogeneity
against mixture alternatives, the threshold value to reject the null hypothesis
cannot be chosen from a χ2 distribution. Instead empirical threshold values
were obtained by permutation testing. Permutation testing was carried out us-
ing a variation on the method of Churchill and Doerge [2]. Rather than shuffle
phenotypes between progeny, the approach used in the present study changed
the identity of a progeny’s paternally inherited QTL allele to its alternative, for
a random selection of the progeny. For example, if pi j is the probability that
progeny j inherited sire i’s Q1 allele, and mi j is a permuted value of pi j, then
in each permutation, mi j = pi j with 50% probability, and mi j = 1 − pi j with
50% probability. In previous testing this method produced similar significance
levels to the method of Churchill and Doerge [2].

A chromosome wide significance threshold value was obtained for each
analysed chromosome by storing the maximum LRT statistic across all the
analysis points, for each of 1000 permutations. Once the chromosome is com-
pleted, the statistics can then be ranked across permutations to derive an ap-
propriate chromosome wide significance threshold.

In every replicate the maximum LRT statistic on the chromosome was re-
tained for each analysis method. The parameter estimates (position, effects of
the QTL, the within-sire variance and the probability of sires being heterozy-
gous) associated with the maximum LRT statistic was also retained. In the
results section the means and standard errors of the parameter estimates com-
puted over 100 replicates are presented. This is because means and standard
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errors should be reported for estimates computed over the entire parameter
space. However, the power of each analysis method was defined as the per-
centage of replicates in which the maximum LRT statistic exceeded the chro-
mosome wide significance threshold at the 5% level.

5. RESULTS

The results are presented in separate tables for each analysis method: single-
trait, single-family (Tab. II); multi-trait, single-family (Tab. III); single-trait,
multi-family (Tab. IV); and multi-trait, multi-family (Tab. V). With large half-
sib family sizes (ni = 200) all analysis methods resulted in unbiased esti-
mates for all parameters. The power to detect QTL is 100% in all methods. In
the single-trait, single-family analysis method, the power is slightly less than
100% only for sires D and E. When analysing sire F, which does not segregate
for the QTL, there were no significant results, which is not consistent with the
expected false positive rate (5%) under the null hypothesis of no QTL. It is
possible that 100 replicates are too few to assess empirically the false positive
rate associated with our chromosome wide test. Hence a further 900 replicates
were run for this particular sire, using the single-trait, single-family analysis
method. Out of 1000 replicates the power to detect QTL was estimated as 5%.
The mean position of the maximum LRT statistic when analysing sire F was
62 cM. This is expected when no QTL exists on a chromosome because peaks
in the LRT statistic profile should be uniformly distributed across the length of
the chromosome. The mean of a uniform distribution which is bounded by 0
and 127.7 is 63.9.

The results when ni = 200 verify the correctness of the maximum likelihood
techniques outlined in the methods section. However, it is not realistic to expect
family sizes of this magnitude in actual planned experiments. The comparison
of analysis methods when ni = 25, and when markers are not completely in-
formative, is of more practical value. Under these conditions the single-trait,
single-family analyses have low power to detect QTL. In addition, parameter
estimates are biased. Generally, the effect of QTL allele substitution is overes-
timated and the within sire variance is underestimated. The use of additional
information, such as information on correlated traits, and/or by combining in-
formation from different sires, will increase power to detect QTL and decrease
bias in estimation of QTL parameters. For example, the power of single-trait,
single-family analyses to detect QTL ranges from 11 to 34%. The power of
multi-trait, multi-family analyses ranges from 92 to 100%. In addition, the es-
timates of QTL parameters from the multi-trait, multi-family analyses appear
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Table II. Results of single-trait, single-family analyses: percentage of replicates in
which chromosome wide significance level of 5% was achieved (Power), mean es-
timated position measured in cM (Position); mean estimated QTL allele effect on
trait 1 (b̂1); mean estimated within sire variance for trait 1 (σ̂2

1); and for two values
of half-sib family size (ni). Standard error of means in parentheses. IC is information
content.

Sire Power Position b̂†1 σ̂2
1

‡

ni = 200; true position = 63.9 cM; IC content of markers = 100%

A 100 64 (7) 1.51 (0.19) 10.07 (0.80)

B 100 61 (10) 1.43 (0.27) 9.90 (0.84)

C 100 62 (13) 1.51 (0.31) 10.02 (0.86)

D 97 65 (16) 1.11 (0.24) 10.01 (0.85)

E 95 62 (12) 1.67 (0.26) 22.80 (2.28)

F 0 62 (39) 0.57 (0.22) 9.83 (0.75)

ni = 25; true position = 122 cM; IC of markers = 75%

A 34 100 (33) 1.88 (0.74) 7.77 (2.54)

B 16 93 (44) 1.84 (0.56) 8.50 (2.74)

C 29 92 (45) 1.87 (0.65) 8.26 (2.44)

D 4 85 (45) 1.49 (0.54) 7.67 (2.65)

E 11 80 (45) 2.22 (0.79) 18.93 (6.11)

F 4 56 (49) 1.81 (0.98) 7.21 (2.38)

† True effect: sires A, B, C and E b1 = 1.58; sire D b1 = 1.1.
‡ True variance: sires A, B, C and D σ2

1 = 10; sire E σ2
1 = 22.5.

to have only slight bias. Importantly, the precision of estimating QTL posi-
tion has also been vastly improved. Using single-trait, single-family analyses
the standard error of mean estimated position ranges from 33 to 49 cM. Using
multi-trait, multi-family analyses the standard error ranges from 5 to 12 cM.

The use of additional information on correlated traits alone helps sub-
stantially when progeny size is limiting. The power of single-family, multi-
trait analyses ranges from 22 to 72%. This represents a 100% improvement
in power over single-family, single-trait analyses. Similar improvement over
single-trait methods was found in the study of Gilbert and Le Roy [4].

The results show that when analysing a combination of sires, when in truth
the sires have different QTL alleles segregating, or, there are different within
sire error variances, the bi-allelic, common variance model will tend to aver-
age out the effects. For example in the single-trait, multi-family analysis of the
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Table III. Results of multi-trait, single-family analyses: percentage of replicates in
which chromosome wide significance level of 5% was achieved (Power), mean esti-
mated position measured in cM (Position); mean estimated QTL allele effect on traits
1 and 2 (b̂1, b̂2); mean estimated within sire variances for traits 1 and 2 (σ̂2

1, σ̂2
2); and

for two values of half-sib family size (ni). Standard error of means in parentheses. IC
is information content.

Sire Power Position b̂†1 σ̂2
1

‡
b̂†2 σ̂2

2

‡

ni = 200; true position 63.9 cM; IC content of markers = 100%

A 100 64 (2) 1.55 (0.17) 9.95 (0.73) 1.59 (0.26) 9.76 (0.95)

B 100 63 (3) 1.43 (0.26) 9.90 (0.87) 1.71 (0.36) 9.99 (0.91)

C 100 65 (3) 1.56 (0.25) 9.99 (0.85) 1.58 (0.27) 9.63 (1.01)

D 100 63 (5) 1.08 (0.26) 10.05 (1.06) 1.07 (0.25) 9.75 (1.05)

E 100 63 (5) 1.60 (0.33) 22.97 (2.20) 1.59 (0.28) 22.57 (2.70)

F 0 60 (39) 0.50 (0.29) 9.43 (2.04) 0.44 (0.29) 9.70 (1.12)

ni = 25; true position 122 cM; IC of markers = 75%

A 72 118 (19) 1.67 (0.74) 8.50 (2.99) 1.54 (0.77) 9.84 (3.00)

B 64 116 (22) 1.64 (0.63) 9.08 (2.73) 1.54 (0.71) 9.85 (3.36)

C 70 118 (22) 1.64 (0.70) 8.97 (2.78) 1.45 (0.71) 9.43 (3.19)

D 29 112 (28) 1.29 (0.63) 8.13 (3.02) 1.21 (0.66) 9.05 (2.69)

E 22 99 (36) 1.79 (1.08) 20.10 (6.84) 1.95 (1.08) 18.89 (6.50)

F 5 67 (45) 1.55 (1.02) 7.53 (2.74) 1.33 (0.85) 7.66 (2.16)

† True effect: sires A, B, C and E b1, b2 = 1.58; sire D b1, b2 = 1.1.
† True variance: sires A to D σ2

1, σ2
2 = 10; sire E σ2

1, σ2
2 = 22.5.

sire combination A, B and D, the estimated QTL effect in the larger experiment
(ni = 200) is 1.36. The average of the true QTL effects is (1.58+1.1)/2 = 1.34.
In the analysis of sire combination A, B and E, the estimated within sire er-
ror variance is 14.34. The average of the true within sire error variances is
(10 + 22.2)/2 = 16.1. This averaging of effect estimates seems only a mi-
nor disadvantage when considering the substantial improvement in power, and
accuracy and precision of QTL location estimates.

Computing time

Table VI presents the computing times for the various types of analyses.
Computing time appears to increase linearly with the number of families in the
analysis. By far the largest effect on computing time is the number of half-sibs
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Table IV. Results of single-trait, multiple-family analyses: percentage of replicates in
which chromosome wide significance level of 5% was achieved (Power); mean esti-
mated position measured in cM (Position); mean estimated QTL allele effect on trait
1 (b̂1); mean estimated within sire variance for trait 1 (σ̂2

1); mean estimated heterozy-
gosity parameter (h); and for two values of half-sib family size (ni). Standard errors of
means in parentheses. IC is information content.

Sire Power Position b̂†1 σ̂2
1

‡
h

ni = 200; true position 63.9 cM; IC content of markers = 100%

ABC 100 64 (3) 1.50 (0.15) 10.03 (0.47) 1.00 (0.00)

ABD 100 64 (4) 1.36 (0.15) 10.08 (0.37) 0.99 (0.04)

ABE 100 63 (7) 1.53 (0.19) 14.34 (0.87) 1.00 (0.02)

ABF 100 63 (6) 1.46 (0.17) 10.02 (0.49) 0.67 (0.04)

ni = 25; true position 122 cM; IC of markers = 75%

ABC 56 120 (13) 1.77 (0.47) 9.00 (1.69) 0.94 (0.16)

ABD 39 113 (27) 1.73 (0.62) 8.91 (1.70) 0.87 (0.24)

ABE 42 104 (39) 1.94 (0.76) 12.71 (2.29) 0.88 (0.21)

ABF 29 112 (25) 1.85 (0.48) 8.73 (1.85) 0.80 (0.25)

† True effect: sires A, B, C and E b1 = 1.58; sire D b1 = 1.1.
‡ True variance: sires A to D σ2

1 = 10; sire E σ2
1 = 22.5.

per sire. The longest analysis (a multi-trait, six-family analysis with large half-
sib family sizes) took just under 3 h to complete. The same analysis with the
smaller family size took only 17 min to complete.

6. DISCUSSION AND CONCLUSIONS

The analysis of small half-sib families is not uncommon in many Australian
QTL studies. A series of DNA marker validation experiments have been per-
formed in the Australian Beef Quality Cooperative Research Centre program
to confirm the locations of QTL for beef tenderness, marbling and yield. These
are confirmations of linkages initially detected in a large experimental pedi-
gree, known as the CBX cattle [6]. The validations were performed on 45 sires
of tropical and temperate origin. The progeny number per sire ranged from 28
to 78. In swine, a QTL mapping project has been directed at providing a re-
source for evaluating QTL, either discovered in a previous linkage experiment
or reported in the literature (Moran, personal communication). The resource
consisted of eight sire families comprised of 38 to 65 progeny. In all these
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Table V. Results of multi-trait, multiple-family analyses: percentage of replicates in
which chromosome wide significance level of 5% was achieved (Power); mean esti-
mated position measured in cM (Position); mean estimated QTL allele effect on traits
1 and 2 (b̂1, b̂2); mean estimated within sire variances for traits 1 and 2 (σ̂2

1, σ̂2
2); mean

estimated heterozygosity parameter (h); and for two values of half-sib family size (ni).
Standard errors of means in parentheses. IC is information content.

Sire Power Position b̂†1 σ̂2
1

‡
b̂†2 σ̂2

2

‡
h

ni = 200; true position 63.9 cM; IC content of markers = 100%

ABC 100 64 (0) 1.51 (0.16) 9.97 (0.45) 1.63 (0.19) 9.83 (0.62) 1.00 (0.00)

ABD 100 64 (1) 1.35 (0.13) 10.05 (0.39) 1.46 (0.19) 9.95 (0.51) 1.00 (0.00)

ABE 100 64 (1) 1.54 (0.14) 14.29 (0.83) 1.65 (0.17) 14.11 (1.11) 1.00 (0.00)

ABF 100 64 (1) 1.49 (0.17) 9.97 (0.46) 1.65 (0.24) 9.90 (0.50) 0.67 (0.00)

ni = 25; true position 122 cM; IC of markers = 75%

ABC 100 123 (4) 1.57 (0.40) 9.40 (1.68) 1.52 (0.42) 10.05 (1.77) 0.99 (0.05)

ABD 97 124 (5) 1.46 (0.45) 9.18 (1.68) 1.40 (0.45) 10.09 (1.48) 0.95 (0.12)

ABE 92 121 (12) 1.68 (0.54) 13.16 (2.41) 1.60 (0.58) 13.63 (2.27) 0.97 (0.10)

ABF 97 122 (8) 1.60 (0.50) 9.09 (1.78) 1.45 (0.54) 9.83 (1.52) 0.75 (0.15)
† True effect: sires A, B, C and E b1, b2 = 1.58; sire D b1, b2 = 1.1.
‡ True variance: sires A to D σ2

1, σ2
2 = 10; sire E σ2

1, σ2
2 = 22.5.

Table VI. Computing times depending on number of families for both single- and
multiple-trait analyses. Time is elapsed time in hours:minutes:seconds. Twenty-two
positions across the chromosome were tested, with 1000 permutations at each position.

Number of families 1 2 3 4 5 6
analysed jointly
ni = 200
Single-trait 0:0:45 0:7:30 0:13:42 0:23:15 0:29:40 0:34:11
Multi-trait (2 traits) 0:2:21 0:28:21 0:58:13 1:35:53 2:05:53 2:44:23
ni = 25
Single-trait 0:0:8 0:0:53 0:1:47 0:2:42 0:3:27 0:3:36
Multi-trait (2 traits) 0:0:26 0:3:17 0:6:42 0:11:10 0:14:02 0:17:34

studies the EM algorithm was used to estimate the effects of a bi-allelic QTL
in an across half-sib family analysis. The use of this particular model in ac-
tual datasets has demonstrated several practical advantages over simpler meth-
ods of analysis. The increase in power, as demonstrated by the simulations, is
apparent. Often QTL are detected in multi-family analyses, but not in single-
family analyses. Conversely, there are significant single-family results that are
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not significant in multi-family analyses. There is a real chance that the signif-
icant single-family results may be false positives due to multiple-testing. The
multi-family analysis is one way to partly reduce the number of tests performed
on the data. The goal of these validation studies is to demonstrate a consistent
QTL effect across a wide cross-section of the population. It is also important
to ascertain the effects of the QTL on as many traits as possible. If the model
fitted a separate QTL effect for each sire, it becomes increasingly difficult to
interprete and summarise the results. The simulations have shown that the bi-
allelic QTL model will average out the effects of the different alleles in cases
where multiple alleles are segregating.

There have been numerous publications that address the EM algorithm in the
context of QTL mapping [1,7,10]. While MLEs have been derived for a variety
of genetic models and for a variety of population structures, no publication has
yet dealt with the type of finite mixture problem discussed in this study. Other
publications have used similar likelihood functions, but used quasi-Newton
methods to derive MLEs [3, 11]. We have compared the EM algorithm to the
quasi-Newton routine (E04JAF) from the NAG library (Numerical Algorithms
Group 1990) and found the NAG routine to have less accuracy and power.
Warnings of local maxima found were often given and the routine was espe-
cially unstable when used in a multi-family, multi-trait analysis. The advantage
of the EM algorithm, apart from its numerical stability and greater accuracy,
is the facility to provide the posterior probabilities that the ith sire is heterozy-
gous, and either phase 1 or phase 2, which are the τ11,i and τ12,i described
earlier. These indicators will aid any subsequent marker assisted selection of
progeny.

In conclusion the EM algorithm described in this study provides the exper-
imenter with a stable and reliable method for combining information across
sires and traits in QTL mapping. The strategy of combining information is
more critical when faced with small family sizes.
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