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Abstract – Many works demonstrate the benefits of using highly polymorphic markers such as
microsatellites in order to measure the genetic diversity between closely related breeds. But it
is sometimes difficult to decide which genetic distance should be used. In this paper we review
the behaviour of the main distances encountered in the literature in various divergence models.
In the first part, we consider that breeds are populations in which the assumption of equilibrium
between drift and mutation is verified. In this case some interesting distances can be expressed
as a function of divergence time, t, and therefore can be used to construct phylogenies. Distances
based on allele size distribution (such as (δµ)2 and derived distances), taking a mutation model
of microsatellites, the Stepwise Mutation Model, specifically into account, exhibit large variance
and therefore should not be used to accurately infer phylogeny of closely related breeds. In
the last section, we will consider that breeds are small populations and that the divergence
times between them are too small to consider that the observed diversity is due to mutations:
divergence is mainly due to genetic drift. Expectation and variance of distances were calculated
as a function of the Wright-Malécot inbreeding coefficient, F. Computer simulations performed
under this divergence model show that the Reynolds distance [57] is the best method for very
closely related breeds.

microsatellites / breeds / divergence / mutation / genetic drift

1. INTRODUCTION

Assuming a species-like evolution pattern (evolution scheme as a dicho-
tomy), the time scale that separates breeds is rather low with regards to the
hundreds of thousands of years separating species. In order to measure the
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genetic distances between closely related populations like breeds, it is desirable
to use highly polymorphic markers such as microsatellites [3,4,9,15,18,24,37,
40,53,59,60,70].

The high number of microsatellites distributed over whole genomes coupled
with their very rapid evolution rates make them particularly useful for working
out relationships among very closely related populations [14,21,22,62,64,66].
Microsatellite markers are a class of tandem repeat loci exhibiting a high
mutation rate. Therefore, a high level of polymorphism can be maintained
within relatively small samples. The within breed average heterozygosity is
generally higher than 0.5 [37,40,54] with extreme values above 0.8 observed
for several loci [33]. For a large proportion of microsatellites, the number of
alleles observed across mammalian populations can vary between less than 10
to 20 and can be even higher across natural populations of fish [56].

In this paper, we study the behaviour of the genetic distances between two
isolated populations, denoted X and Y , diverging from a founder population
P0 for a small number of non-overlapping generations (Short term evolution
models). The founder and derived populations are characterised by their allele
frequencies p0,i, pX,i and pY,i (for i = 1..k) respectively at the `th loci (the
indices ` varying from 1 to L were omitted).

For the sake of simplicity, the formulae of distances presented in the first
section of the present paper are given assuming that the true allele frequencies
are known. In practice, pX,i and pY,i are estimated from a limited number of
individuals: xi = mX,i

mX,• and yi = mY,i
mY,• , where mX,i (resp. mX,i) is the number

of alleles i and mX,• (resp. mY,•) the total number of genes in sample X
(resp. Y).

In the second section we will review the behaviour of genetic distances under
the classical model of evolution of neutral markers assuming combined effects
of mutation and genetic drift [28,29,38,41,52].

The negligible effect of mutations in a rather low divergence time allows
us to consider in the third section the relationship between expectation and
variance of distances and the Wright-Malécot inbreeding coefficient F [39]
assuming genetic drift only. In order to guide the choice of distances, we will
check their efficiency by computer simulations.

2. PRESENTATION OF DISTANCES

The apparent diversity of genetic distances may be structured into two or
three main groups: the distances based on allele distributions of frequencies
– Euclidean and angular distances – and the distances based on allele size
distributions.
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2.1. Distances based on allele frequency distributions

2.1.1. Euclidean and related distances

Denote by X = (pX,1, . . . , pX,k) and Y = (pY,1, . . . , pY,k) the vectors of
allele frequencies of populations X and Y . The basis of distances overlooked
in this paragraph is a norm ||X− Y||. Gregorius [26] uses ||X− Y||1 the sum
of absolute allele frequency differences to define the absolute distance DG

DG = ||X− Y||1 =
∑

i

|pX,i − pY,i|. (1)

The sum of the squares of allele frequency differences, ||X−Y||2, usually called
the Euclidean distance, has been directly used by Gower [25] and Goodman [23]

DE = ||X− Y||2 =
√∑

i

(pX,i − pY,i)2. (2)

Dividing (2) by
√

2, defines DRog, the Roger distance [58], and taking the
square provides the minimum distance [46]

Dm = 1

2
||X− Y||22 =

1

2

∑

i

(pX,i − pY,i)
2. (3)

According to the Nei notations [46] of gene identity j, jX =∑
i p2

X,i, jY =∑
i p2

Y,i
(or expected homozygosity) and jXY =∑

i pX,ipY,i and diversity (d = 1− j or
expected heterozygosity), Dm may be rewritten as the between populations
gene diversity reduced by the average of the within population gene diversity

Dm = 1

2
(jX + jY)− jXY

= dXY − 1

2
(dX + dY). (4)

Between two populations, GST [47] is generally expressed with the heterozy-
gosity of the total population HT = 1−∑

i p̄i
2 (with p̄i = (pX,i + pY,i)/2) and

the average of the expected heterozygosity within populations H̄ = 1
2(HX+HY)

(HX = 1− jX = dX and HY = 1− jY = dY)

GST = HT − H̄

HT
· (5)

It can be rewritten as

GST = 1

4

∑
i (pX,i − pY,i)

2

(
1−∑

i p̄2
i

) = 1

2

Dm(
1−∑

i p̄2
i

) (6)
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which is also called the distance of Morton [42].
Other variations of the minimum distance, γL and DR, were used by Lat-

ter [31,32] and Reynolds [57] respectively

γL =
∑

i (pX,i − pY,i)
2

(∑
i p2

X,i +
∑

i p2
Y,i

) = 2Dm

(jX + jY)
(7)

DR = 1

2

∑
i (pX,i − pY,i)

2

1−∑
i (pX,ipY,i)

= Dm

1− jXY
· (8)

In parallel, Balakrishnan and Sanghvi [1], and Barker [2] defined respectively

χ2 = 1

2

∑

i

(pX,i − pY,i)
2

p̄i

(9)

and

DB = 1

2

∑

i

(pX,i − pY,i)
2

p̄i(1− p̄i)
· (10)

2.1.2. Angular distances

These distances are defined on the basis of the cosine of the angle θ between
the two vectors X and Y.

Nei [46,47,49] reformulated cos θ as the normalised identity I between the
two populations and derived its standard genetic distance from the logarithm
of cos θ

DS = − log
jXY√
jXjY
= − log I. (11)

It is noteworthy that Dm is turned into DS after a logarithm transformation of
the gene identity in (4).

With the square root of allele frequencies, which then have a unity norm,
the cosine of θ can be rewritten as cos θEC = ∑

i
√

pX,ipY,i. Edwards and
Cavalli-Sforza [5,6,12,13] defined Dc, the chord distance, and fθ respectively
as:

Dc = Cste
√

1− cosEC θ (12)

fθ = 4
1−∑

i
√

pX,ipY,i

k − 1
· (13)

The values of Cste set the function support of chord distances (when Cste = 1,
Dc varies from 0 to 1).

Since the number of rare alleles increases with the number of sampled
individuals, fθ underestimates the expected genetic differentiation that would
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be obtained with an increased sample size [51]. For this reason, Nei advises
using a corrected distance DA (equal to the square of Dc for Cste = 1):

DA =
(

1−
∑

i

√
pX,ipY,i

)
= k − 1

4
fθ· (14)

2.2. Distances based on allele size distributions

We also consider genetic distances expressed with respect to the moments
of allelic size distributions of markers exhibiting length polymorphism.

Denote by i and j the repeat numbers of alleles i and j respectively. Gold-
stein [20], derived a distance from the Average Square Difference between
populations, D1

D1 =
∑

i,j

pX,ipY,j(i− j)2 = (µX − µY)
2 + VX + VY (15)

with µX, µY , VX and VY , the means and variances in allelic sizes within
populations.

Denote by ϕi,j a function of the difference i − j (null when i = j and > 0
otherwise). Introducing ϕi,j in Dm (4) gives

∑

i,j

pX,ipY,jϕi,j − 1

2


∑

i,j

pX,ipX,jϕi,j +
∑

i,j

pY,ipY,jϕi,j


 . (16)

The within population Average Square Difference D0,X is defined by∑
i,j pX,ipX,j(i − j)2 (idem for population Y) and is equal to 2VX . Then,

equation (16) in which ϕij is set to (i − j)2 may be rewritten as the squared
difference between the allele size means (µX −µY)

2, usually called (δµ)2, the
distance of Goldstein [21].

The DSW distance of Shriver [62] may be computed with (16) setting ϕij

equal to |i− j|.
Slatkin [63,64] argues to use D1, D0,X and D0,Y in order to extend the GST

calculation to length polymorphism

RST = D1 − D̄0

D1 + D̄0
(17)

with D̄0 = 1
2 (D0,X + D0,Y) [44].

2.3. Multiple loci

In practice, the estimation of distances is performed using the arithmetic
mean over L loci.
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Nevertheless, when at least one locus is fixed for the same allele in X
and Y , DR is undefined. So Latter [30] advises to use DL computed as follows
(PHYLIP package, [17])

DL =
∑

`

∑
i (pX,`,i − pY,`,i)

2

∑
` (1−

∑
i pX,`,ipY,`,i)

· (18)

When at least one locus exhibits no allele shared between populations, the
logarithm transformation log I is undefined (I = 0). So Nei advises rather to
compute DS with the arithmetic mean of gene identities

DS =
∑

` jXY,`√∑
` jX,`

∑
` jY,`

· (19)

It is noteworthy that after removing loci with no shared alleles, taking the
arithmetic mean of (11) (which is equivalent to using the geometric mean
1
L

∏
` j

1
L
` ) gives the maximum distance DM of Nei [46]. Due to rare alleles

within samples, the arithmetic mean of (11) is generally higher than (19).
Unbiased estimates of Dm called D̂m (and derived distances), DS called D̂S,

(expectation of D̂S is shown in Appendix A) and distances taking allelic sizes
into account are computable with sampled allele frequencies xi and yi using an
unbiased estimation of the within and between population gene identity [49].
The bias correction of χ̂2 given in [19] is also relevant for D̂B. So for the
sake of simplicity, the expectations of distances under divergence models were
computed assuming that true frequencies were known.

3. GENETIC DISTANCES UNDER GENETIC DRIFT
AND MUTATION

The standard assumption that both derived populations, as well as the
founder population, are in a mutation-drift equilibrium, implies that population
divergence is due to the appearance of new mutants within populations. So
distances can be used from a phylogenetic point of view, as estimators of
divergence time.

3.1. Infinite allele mutation model

Due to the large number of variations a gene may theoretically exhibit,
the number of possible new mutants is expected to be very large. The most
appropriate mutation model for such markers is the infinite allele mutation
model, IAM [28,38,65].

In this model, DS is turned into a linear function of divergence time t and
mutation rate β of markers:

E[DS(t)] = 2βt. (20)
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Nei [45,46,49] advises to use DS in order to construct phylogeny for closely
related as well as for largely diverged populations. In contrast, the IAM
expectation of Dm, exhibiting a finite maximal value, given the founder gene
identity j(0) [51] is:

E(Dm) ≈ j(0)(1− e−2βt). (21)

Derived distances (equations 5 to 10) as well as fθ, Dc and DA are not linear for
all t values. Their behaviour (underestimation of divergence when t increases)
disturbs their ability to distinguish a branching pattern between largely diverged
populations. But for small divergence (βt � 1) they can be considered as
quasi-linear functions of t. In addition γL, being independent of founder
allele distributions, has the desirable advantage of being directly linked to the
divergence time (expectation close to 2βt [31]).

Nevertheless, Takesaki and Nei [66] by simulations showed that DS, exhib-
iting a larger variance than the non-linear distances, Dc or DA, provides few
correct tree topologies between populations within species.

Divergence is governed by βt implying that for a small divergence time,
differences between populations measured with gene polymorphism and their
confirmed low mutability (mutation rate of the α and β chains of insulin is
estimated to be 10−7/codon/generation, [48]) are expected to be small. The
values of DS are generally less than 0.01 or 0.02 between local breeds or
subspecies [48]. So from a phylogenetic point of view assuming divergence
by mutation, markers with a high mutability should enhance the precision of
distance estimations for closely related populations. It was shown by Takesaki
and Nei [66], via computer simulations, that markers with microsatellite char-
acteristics give as many correct phylogeny when t = 400 as markers with low
mutability when t = 40 000.

3.2. Stepwise mutation model

Using microsatellites implies considering the Stepwise Mutation Model,
SMM, [7,10,15,20,21,29,41,52,61,62,68] in which an allele carrying i repe-
titions can mutate to an allele carrying j = i ± 1 repetitions. Due to reverse
mutations yielding homoplasy phenomena [14], the expectation of DS shows a
great deviation from linearity [20,35], and therefore disturbs the phylogenetic
reconstruction especially for large t values.

Shriver [62], Goldstein [20,21], Slatkin [64] and many others have developed
linear statistics assuming infinite numbers of possible allelic scores. As D1 and
RST depend on the effective founder size, they are sensitive to bottlenecks and
are not suited to deriving phylogenies [20,44].

Since under the assumption of an equilibrium between drift and mutation,
the variance of allelic size converges [20,41,64], the growth of D1 is only due
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to the linear growth of the squared difference between the means (15) [21]:

E[(δµ)2t ] = 2βt. (22)

Although there is no explicit formulae, Shriver [62] and Takesaki and Nei [66]
showed by simulations that DSW increases almost linearly (until 10 000 gener-
ations with β = 0.0003) with a slope different from 2β.

It is noteworthy that assuming alleles can mutate for more than 1 repeat, a
generalised equation can be easily obtained substituting β by w̄ = 1

L

∑
` w` [74]

with w` = β`σ
2
` , when σ2

` is the variance of the change in the number of
repeats [64].

Between very closely related populations, Takesaki and Nei [66] by simula-
tions showed that (δµ)2 and DSW provide tree topologies of lower accuracy than
non-linear distances (Dc or DA). The dramatically bad results obtained with
these statistics specifically developed for microsatellite evolution applications
are due to their large variance. The coefficient of variation CV of (δµ)2, taking
both biases and variance into account, is almost constant (distances exhibit
linear standard deviation, [36,55,74]) and 5 times higher than those of non-
linear distances. The CV of DSW dramatically increases when t decreases with
the consequence that these distances are the least appropriate for the estimation
of phylogeny between breeds.

When the level of divergence increases, the efficiency of non-linear distances
decreases (as predicted by theory) but they remain, however, the best methods
to use with highly polymorphic markers [66].

3.3. Range constraints for microsatellites

Due to their high mutability, microsatellites are less convenient for the
study of largely diverged groups. Takesaki and Nei [66] demonstrate that
microsatellites perform better for t = 400 than for t = 4 000. In [3], the tree
between four species of primate (human, gorilla, chimpanzee and orang-utan)
does not show any structure. The number of possible repeat scores converge
to a maximum, denoted by R [3,20], with the consequence that (δµ)2 tends to
a maximal value

lim
t→∞(δµ)

2 = R2 − 1

6
− 4(2N − 1)β

(
1− 1

R

)
·

“As a consequence, mutation may be viewed as a homogenising factor” [44].
Feldman [16] and Pollock [55] propose linear corrections of (δµ)2 and more
recently, Zhivotovsky [74] defines another linear statistics.

These distances introduced in order to improve estimation of large diver-
gence times will not be described in more detail. Between closely related
populations, they keep the same large variance suggesting that they are as
inappropriate as DSW and (δµ)2.
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4. GENETIC DISTANCES UNDER GENETIC DRIFT

Focusing on the very early stages of evolution of populations allows us to
consider that mutations can be neglected. As a consequence, fluctuations of
allele frequencies are only due to genetic drift. Within populations, the genetic
drift tends to reduce the genetic variability whereas differential loss of genes
generates genetic diversity between populations.

In a diversity study of endangered breeds it is desirable to use distances
which can be expressed as a function of the loss of the within population
diversity. We will introduce the Wright-Malécot inbreeding coefficient in the
calculus of drift expectation and variance of distances according to:

E(pX,i) = p0,i

E(p2
X,i) = ∆Fp0,i + (1−∆F)p2

0,i.

For the sake of simplicity, ∆F, the variation during t generations of the inbreed-
ing coefficient from the founder population, which is equal to 1− (1− 1/2N)t,
will be noted F with a subscript giving the name of the population, (FX and FY

for populations X and Y respectively) and called the inbreeding coefficient.
The drift expectation of the minimum distance of Nei,

E(Dm) = F̄(1−
∑

i

p2
0,i) = F̄(1− h0), (23)

depends on F̄ = (FX + FY)/2, the average inbreeding coefficient (between
populations) and on h0, the homozygosity of the founder population. For a
small divergence, the drift expectation of DS calculated with a Taylor expansion,
in which F2

X , F2
Y and FXFY can be neglected is:

E(DS) ≈ − log




1√
(1− 2F̄)+ 2F̄

h0



+

(∑

i

p3
0,i − (h0)

2

)

×
[

F̄

(h0)2
− FX(

h0 + FX(1− h0)
)2 −

FY(
h0 + FY(1− h0)

)2

]
· (24)

In parallel, taking the limit of the general solution of recurrence of (δµ)2 when
the mutation rate tends to 0, allows this distance to be equal to

lim
β→0

E[(δµ)2t ] =
[

1−
(

1− 1

2NX

)t]
V0 +

[
1−

(
1− 1

2NY

)t]
V0

= 2F̄V0 (25)

with V0 the variance of allelic size in the founder population.
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4.1. Estimation of the average inbreeding coefficient F̄

For phylogeny purposes, the authors wish to use distances depending on
divergence time only. In the present section, we focus on the distances allowing
us to estimate the level of genetic diversity by way of the average inbreeding
coefficient F̄. In Section 3.3, we will test their accuracy by way of computer
simulations.

Distances like Dm, DS or (δµ)2 depend on the founder population parameters,
and therefore cannot be directly linked to F̄. A strategy to obtain an estimate
of the average inbreeding coefficient considering S populations was developed
by Wright [72] and Nei [47,51]. The mean and variance of the frequency of
allele i between subpopulations are denoted by p̄i = 1

S

∑
s ps,i and Vars(ps,i)

respectively. FST, initially defined for dimorphic loci as the sum of the between
population variance of alleles 1 and 2 weighted by HT = 2p̄1p̄2, an estimation
of the founder heterozygosity H0 [72], was extended to polymorphic loci by
Nei [47] as the weighted variance GST given by:

GST =
∑

i Vars(ps,i)∑
i p̄i(1− p̄i)

·

The drift expectations of the numerator and denominator expressed with respect
to the inbreeding coefficient of every sub-population, Fs, are

∑

i

Var(ps,i) =
(

1−
∑

i

p2
0,i

)(
S− 1

S2

∑

s

Fs

)

E

[∑

i

p̄i(1− p̄i)

]
=

(
1−

∑

i

p2
0,i

)(
1− 1

S2

∑

s

Fs

)

with p0,i the allele frequency of the founder population common to the s
subpopulations. Assuming, as in Nei and Chakravarty [50], that the ratio of
expectations is within the same order as the expectation of the ratio, gives

E[GST] ≈ S− 1

S2

∑
s Fs

1− 1

S
F̄
· (26)

When S is large, E[GST] is approximately equal to the average inbreeding
coefficient F̄ = 1

S

∑
s Fs.

4.1.1. Euclidean distances

Considering two populations and taking 2GST gives

E[2GST] ≈ F̄ + F̄
2

2− F̄
· (27)
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Unfortunately, because of the biased estimation of H0 provided by∑
i p̄i(1− p̄i), the estimation of F̄ is positively biased, especially when diver-

gence increases.
This strategy was extended to other distances by Reynolds [57], Balakrishnan

and Sangvhi [1] and Barker [2]. Given that E(1−∑
i pX,ipY,i) = 1−∑

i p2
0,i,

the Reynold’s distance,
E(DR) ≈ F̄ (28)

is unbiased whatever the level of inbreeding.
Dividing each square allele differences (pX,i − pY,i)

2 by p̄i(1 − p̄i) and k
in Barker’s method and p̄i and (k − 1) in Sanghvi’s method [19] allows a
rather long and fastidious computation of their expectations for polymorphic
loci. However for dimorphic loci, these distances together with 2GST can be
rewritten as

(pX,1 − pY,2)
2

p̄1p̄2
(29)

and have the same expectation as in (27). For polymorphic loci with uniformly
distributed founder frequencies p0,i ≈ 1/k, approximate calculus (expectation
of a ratio is approximated by the ratio of expectations) giving

E

(
1

k
DB

)
≈ F̄ + F̄

2

2− F̄
(30)

E

(
1

k − 1
χ2

)
≈ F̄ (31)

shows that these distances might be used as estimators of F̄.

4.1.2. Angular distances

Given that neglecting F2
X , F2

Y , FXFY and assuming uniformly distributed
founder frequencies p0,i ≈ 1/k

E
[√

pX,ipY,i

] ≈ p0,i − 1

4
F̄(1− p0,i), (32)

the drift expectation of fθ calculated with the Taylor expansion is

E[ fθ] ≈ F̄
1

k − 1

∑

i

(1− p0,i). (33)

Rearranging (33) gives
E[ fθ] ≈ F̄. (34)
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The distance fθ, considered as nearly unbiased for small F̄, will be biased when
the number of alleles and the population divergence increases (for example
when F̄ is large, a term depending on FXFY , which is equal to− 1

16 FXFY(k−1),
cannot be neglected longer).

In the present work we focused on fθ rather than DA which was no longer
directly linked to the inbreeding coefficient (its expectation can be directly
deduced from (33) ignoring 4/(k− 1)). As a consequence, the chord distances
equal to the square root of DA were not kept for further analysis.

4.2. Variance of unbiased estimates of DR

Variance of ĜST was given in Nei and Chakravarty [50]. Foulley and
Hill [19], compute the variance of χ̂2, assuming Gaussian distribution of true
allele frequencies and equal sample sizes, mX,• = mY,• = m.

In this paper, approximate standard deviation of D̂m and D̂R corrected for
sample size were computed under drift divergence assuming FX 6= FY and
mX,• 6= mY,• (Appendix B). In order to provide understandable formulas,
approximated standard deviations may be easily rewritten assuming L inde-
pendent loci, each one exhibiting k0 uniformly distributed founder frequencies
(p0,`,i = 1/k0,` and k0,1 = k0,` = k0,L = k0 ):

σ(D̂m) ≈
√

2

L

(k0 − 1)

k2
0

(
F̄ +

(
1

2mX,•
+ 1

2mY,•

))
(35)

σ(D̂R) ≈
√

2

L(k0 − 1)

(
F̄ +

(
1

2mX,•
+ 1

2mY,•

))
· (36)

In the following section the validity of the approximated formulae (36) will be
checked by way of computer simulations.

4.3. Comparison of several estimators of F̄

The accuracy of distances estimating F̄ was compared by computer simula-
tions performed under pure genetic drift divergence of two isolated populations
X and Y .

4.3.1. Simulation procedure

The change in allele frequencies between two generations was simulated
as a Multinomial sampling scheme according to the Wright-Ficher model of
population evolution. Twenty genetically independent loci were considered, a
number frequently found in diversity studies [33,37,40].
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The founder frequencies of the founder population of X and Y were gen-
erated as follows. An initial simulated population of size N = 500 was first
considered, with allele frequencies p00,i (for i = 1, . . . , k), was submitted 1 000
times to a genetic drift process during five generations. This process generates
1 000 quasi-independent populations used as starting points of simulation runs.
Each one of these 1 000 populations, described by its founder frequencies, p0,
was submitted to a pure genetic drift divergence generating the populations
X and Y , which have constant diploid effective sizes equal to N = 100 and
N = 400 respectively during 22 non-overlapping generations.

In order to provide estimations of increasing values of F̄ (ranging from 0.025
to 0.3), gene samplings (mX,• = mY,• = 50 genes) were computed every five
generations from the divergence.

4.3.2. Results

The performances of the F-estimates established using the following statist-
ics averaged over 1 000 replications, the relative bias Br (expressed in percent
of the true value of F̄), the standard error SE and the squared root of the
mean square error

√
MSE = √bias2 + SE2 are presented in Figures 1, 2 and 3

respectively.

Uniform founder frequencies

Two sets of 1 000 simulations, in which allele frequencies of the initial
population were set to p00,i = 1/k, were performed with k = 2 and k = 8
alleles. Estimations of ĜST, D̂R, D̂B and χ̂2 – corrected for sample sizes –
were performed using the arithmetic mean across loci. We also introduce the
distance of Latter D̂L [30], equation (18), and f̂ θ.

Relative bias (Fig. 1): As expected, with two (Fig. 1a) or eight (Fig. 1b)
alleles per locus, ĜST exhibits a positive bias, this increases with the level
of divergence (this bias is well predicted by equation (27)). By contrast, χ̂2

expected to be unbiased (31) and D̂B expected to be of the order of magnitude of
ĜST (30), are negatively biased as f̂ θ. In parallel D̂L and D̂R are the least biased
distances (constant bias whatever the divergence level) for diallelic or more
polymorphic loci. It is noteworthy that estimations given by D̂L (weighted
by estimates of founder heterozygosity computed with all loci) provide lower
bias than estimations given by D̂R (weighted for each locus by an estimate of
founder heterozygosity).

Standard deviation (Fig. 2): With two alleles per locus (Fig. 2a), the Reyn-
olds distance exhibits the smallest standard error when F̄ increases. Otherwise,
with eight alleles per loci (Fig. 2b) f̂ θ, D̂B and χ̂2 show the smallest standard
errors. The strait line computed from (36) shows the validity of the approxim-
ated standard error neglecting power of F higher than 2 (as expected, formula
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Figure 1. Relative biases of distances as a function of the increase of the average
inbreeding coefficient F̄.
The estimations of F̄ were computed over 20 loci and 1000 replications performed
with two populations with effective sizes N = 100 and N = 400 respectively evolving
during 22 non-overlapping generations. The sample sizes, drawn every two genera-
tions, are set to 25 individuals. The distances DB, χ2 and GST are plotted with black
circles, squares and lozenges respectively. The distances DR and DL are plotted with
crosses and stars respectively. The distance fθ is plotted with plus symbols. Part (a)
shows the results obtained with the diallelic markers. In this case the distances DB

and χ2 give identical numerical results. Part (b) shows the results obtained with the
markers exhibiting eight alleles.
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Figure 2. Standard errors of distances as a function of the increase of the average
inbreeding coefficient F̄.
In this figure we kept the same symbols as in Figure 1. The strait line was computed
with the expected value of standard deviations (equation (36)). Part (a) shows the
results obtained with the diallelic markers. In this case the distances DB and χ2

give identical numerical results. Part (b) shows the results obtained with the markers
exhibiting eight alleles.

(36) is a better approximation for small F̄, lower than 0.15, than for large F̄).
The deviation from the expected value of the standard errors of D̂B and χ̂2 (for
small and large F̄) is certainly due to their large negative biases allowing the
variance of estimation to be decreased.
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Figure 3. Square root of the mean square errors of distances as a function of the
increase of the average inbreeding coefficient F̄.
In this figure we kept the same symbols as in Figure 1. Part (a) shows the results
obtained with the markers exhibiting two alleles. In this case the distances DB and χ2

gave identical numerical results. Part (b) shows the results obtained with the markers
exhibiting eight alleles.

Mean square error (Fig. 3): When the bias is rather small with respect to
the standard error,

√
MSE is expected to be close to the standard error. With

two alleles per loci the method with the smallest standard error D̂R and D̂L

give the smallest
√

MSE whatever the value of the inbreeding coefficient. With
eight alleles per locus and when the level of divergence increases, methods



Measuring genetic distances between breeds 497

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35
')(�*�+,'�-
*/.

 

DL DB 

DR χ ²  

fθ 

GST D*R 

Figure 4. Square root of the mean square errors of distances computed with microsatel-
lites exhibiting different allele numbers.
The estimations of F̄ were computed over 20 microsatellites and 1000 replications
performed with two populations with effective sizes N = 100 and N = 400 respectively
evolving during 22 non-overlapping generations. The sample sizes, drawn every two
generations, are set to 25 individuals. In this figure we kept the same symbols as in
Figure 1. The distance D∗R (equation (37)) is plotted with dotted lines.

with the smallest biases (D̂R and D̂L) give the smallest
√

MSE although they do
not exhibit the smallest standard errors. On the basis of an accuracy criterion
combining the bias and the standard error of estimations, D̂R and D̂L are the
most accurate distances whatever the polymorphism of the marker used.

Microsatellite founder frequencies

One set of 1 000 simulations was performed, in which allele frequencies p00,i

in the initial populations were set to microsatellite marker frequencies published
in [33]. The number of alleles varied between loci (the mean number of alleles
is close to 6). In this case the distances DL and DR were still the most accurate
methods considering the

√
MSE criterion (Fig. 4, [34]).

On the basis of
√

MSE we also compared the distance DL and the distance
DR computed using the arithmetic mean over loci with another estimate of the
distance DR computed using the following formula [34]

D̂
∗
R =

∑
` (nXY,` − 1)D̂`∑
` (nXY,` − 1)

· (37)

This formula takes the heterogeneity of the marker polymorphism into account
with nXY,` which is the number of alleles present both in the sample of X and Y .
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In this case, the standard error of the weighted Reynolds distance is equal to

σ(D̂
∗
R) ≈

√
2∑

` (k0,` − 1)

(
F̄ +

(
1

mX,•
+ 1

mY,•

))
· (38)

Using the weighted estimate did not yield a significant gain of accuracy. The√
MSE of D∗R was nearly identical to the

√
MSE of DL (Fig. 4).

5. DISCUSSION AND CONCLUSION

Under the assumption of equilibrium between drift and mutation, the power
of different distance estimation methods for constructing phylogenetic trees
is well discussed in Takesaki and Nei [66]. Their work points out that the
quest for linearity at the cost of variance is not an efficient strategy. Increasing
functions of time (non-necessarily linear but with a slope large enough to
discriminate closely related populations) with small variances provide correct
phylogeny with higher levels of confidence than linear distances do. It is
clear that with such distances the length of branches is not representative of
divergence time. However, this question seems of minor importance with
regards to that of a correct branching pattern. Perez-Lezaun [54] compared
human populations using 20 microsatellite loci on the basis of DR, RST, DSW

and (δµ)2. As expected, DR gives trees with the highest bootstrap values and
the best topology with regards to our knowledge of human history.

Goldstein and Pollock [22] argued that the misunderstanding of mutation
processes also explains the poor efficiency of these distances. DSW and (δµ)2

were defined assuming equal probabilities of insertion and deletion of repeats
whereas observed microsatellite distributions clearly show evidence in favour
of asymmetric mutation processes [27,73]. Taking the mutation process of
microsatellites into account should be more efficient when using methods with
a small variance such as likelihood based approaches, rather than for distances
based on a simple difference between allele size means.

In the second section of the present work we assumed that for very closely
related breeds the number of mutations cannot explain the observed genetic
variation even when highly mutable DNA sequences are used. For populations
of small size, N = 50, and a mutation rate of β = 10−3, mutations can
be neglected during 200 generations: the difference between the values of
inbreeding coefficients computed assuming or neglecting mutation is small,
being less than 7 percent of the true value [34].

The genetic drift allows genetic distances computed with allele frequencies
to be strongly dependent on the number of generations since divergence, t,
and on the value of the effective sizes of breeds, NX and NY [43]. The values
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of distances increases with the parameters 1 − (1 − 1/2NX)
t ≈ t/2NX and

1 − (1 − 1/2NY)
t ≈ t/2NY which represent the increase of the inbreeding

coefficients during t generations. Since t/2NX can be viewed as the evolution
rate in population X, no phylogeny can be inferred from the tree in cases of very
closely related breeds exhibiting different effective sizes. Indeed the location
on the tree of the most recent common ancestor cannot be exactly determined
when evolution rates vary between lineages (e.g. when a bottleneck does occur
within a breed). In order to infer the true history of populations, it is necessary
to root the tree using an outgroup.

This work points out that, under the drift assumption, the major part of the
genetic distances (the Nei distances Dm and DS for example) also depends
on unknown parameters, the founder frequencies. For example the expected
value of the minimum distance of Nei depends on the heterozygosity H0 of the
founder population. With such a distance we cannot separate the effect of the
genetic drift occurring in each population and the ancient history of the founder
population. So this fact can also disturb the phylogeny reconstruction, mainly
when migration or admixture does occur between founder populations.

As in [11], we privileged distances which can be expressed with the increase
during t generations of the inbreeding coefficient alone (or equivalently the
increase of the kinship coefficient). This parameter is of importance to analyse
the genetic diversity of breeds. It allows us to measure the loss of the within
population diversity due to the drift process [34]. Eding [11] argues that, in
terms of kinship, a generic formula of distance can be written as d(X,Y) =
fY+fY−2fXY = ∆fX+∆fY , with fX , fY the within breeds kindship coefficient, fXY

the kindship coefficients between breeds and ∆fX = FX , ∆fY = FY the increase
since divergence of fY and fY respectively. d(X,Y)/2 is therefore equal to the
average inbreeding coefficient F̄. This shows that using the Reynolds distance
is equivalent to using a distance giving a measure of the within breed diversity
(fX and fY) corrected by the between breed diversity (fXY).

As a by product, this suggests an important fact when considering very
closely related breeds. Since distances computed with allele frequencies of
neutral markers are expressed as a function of the loss of the genetic diversity
methods, such criteria as the Weitzman one [67,71] which advises conserving
most of the diversity of the whole set by conserving the most distant breeds,
are not appropriate in this case [34]. Indeed if we consider a set involving large
populations and a totally inbred breed (F = 1) which has no original allele, the
Weitzman approach will suggest conserving the inbred breed.

Although expected values of distances are quasi independent of the sampling
process, a part of their standard deviation depends on sample size. From (36)
σ/F̄ is proportional to 1/mF̄, showing that when divergence is low, the accuracy
of distances when building trees is sensitive to sample size. It is impossible to
get accurate estimations when divergence tends to 0.
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By contrast when the divergence increases the sample size does not make
much differences in the accuracy of distance estimations. Therefore, for
intermediate inbreeding values, the accuracy of distance estimations mainly
depends on the number and on the degree of polymorphism of the markers
used. The variance of distances is inversely proportional to the number of
alleles per locus within the founder population. This strongly advocates in
favour of the present use of markers such as microsatellites rather than gene
polymorphism, which is expected to be less variable within populations.

Nevertheless, distances such as χ2 or DB are more biased with eight founder
alleles than with two founder alleles. For such low polymorphism values,
the bias of DB, χ2 and 2GST behaves as predicted by equation (27). The
dependency of their biases on the value of inbreeding and on the number of
founder alleles suggests that these distances are sensitive to rare alleles present
within the founder and derived populations (the most frequently eliminated
when the level of drift increases and forgotten when sample size is small).

The estimations computed with five loci and eight founder alleles show
biases close to those observed with 20 loci (data not shown). For small F̄
(between 0.03 and 0.1), the

√
MSE are within the order of magnitude of the

standard error making DB and χ2 slightly more accurate than the less biased
distances DL and DR, whereas all distances show the same performances when
the number of loci is equal to 20. For F̄ higher than 0.1 and for a small number
of loci as well as for a number of loci close to that observed in the literature [33,
40], more than 20, the conclusions are different. As shown by the difference of√

MSE with respect to the standard error as long as F̄ increases, the reduction
of the accuracy due to bias largely counterbalances the gain in variance due to
the number of loci and high polymorphisms when we consider distances such
as DB or χ2. This suggests that unbiased distances, such as DL in all cases
presented and DR with high polymorphisms, should be privileged mainly when
the number of markers used is larger than 20.

For F̄ higher than 0.3, DL and DR should behave quite better than the other
distances, mainly when the polymorphism of markers is high (microsatellites
and eight alleles per locus, data not shown).

The weighted estimate of the Reynolds distance (37), taking the difference
between the number of alleles observed into account, do not give a significant
gain in accuracy. This formula is deduced from the expected standard deviation
of the Reynolds distance (36) which depends on k0,` the number of alleles
within the founder population. When this number is approximately known
(for example when a sample of the founder population is available), using the
weighted estimate of the Reynolds distance computed between the founder and
the derived population X yields an important gain in accuracy [34]. Since the
founder alleles can be lost because of the genetic drift process nXY,` is a bad
estimator of k0,` as far as the inbreeding coefficient increases.
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To conclude this work it seems that, among distances estimating F̄ when
drift is assumed, the Latter and Reynolds distances (DL and DR) have to be
privileged whatever the polymorphism of markers used. It is necessary to keep
in mind that, because of the drift process, the obtained trees do not represent
true phylogenetic relationships when the effective sizes are different between
breeds. Since the distances depend on the increase of the inbreeding coefficient
of each breed, FX and FY [11,34], these trees can be viewed as a representation
of the loss of the within breed genetic diversity due to the genetic drift process.

However FX and FY can be separately estimated using a statistics directly
derived from the Reynolds distance [69] or using a more accurate method
based on a Monte Carlo Markov Chain algorithm [34]. Since all t/2N can be
measured in all couples of breeds by these approaches, new methods allowing
to locate the most recent common ancestor on trees, and therefore to retrieve
the true evolutionnary relationships when no outgroup is available, could be
proposed.
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APPENDIX A

Denote by Ee and Vare the sampling expectation and variance respectively.
Setting µX,k = ∑

i xk
i and µX,k,k′ = ∑k

i6=j xk
i xk′

j (idem for population Y) and

νk,k′ =∑
i xk

i yk′
i , the sampling expectation of D̂S calculated with mX,• = mY,• =

m and a Taylor expansion of the second order around unbiased estimates of j is

Ee(D̂S) = DS + 1

2m

ν1,2 + ν2,1 − (ν1,1)
2

(ν1,1)2

− 1

m

(
µX,3 − (µX,2)

2

(µX,2)2

)
− 1

m
(
µY,3 − (µY,2)

2

(µY,2)2
)+ O

(
1

m2

)
·

APPENDIX B

One locus variance of Dm assuming genetic drift only

Denote by Ed and Vard the drift expectation and variance respectively. The
total variance of D̂m estimated with sampled allele frequencies and unbiased
estimation of

∑
i p2

X,i and
∑

i p2
Y,i, may be decomposed into

Var(D̂m) = Ed[Vare(D̂m)] + Vard[Ee(D̂m)].
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Assuming that
(
1− 1

2N

) (
1− 2

2N

)
,

(
1− 1

2N

) (
1− 2

2N

) (
1− 3

2N

)
, c1 and c2 in

Nei and Chakravarty [50], may be respectively approximated by (1 − F)3,
(1 − F)6, 9

5 and 1
5 in Chevalet and Gillois [8] and setting µk = ∑

i pk
0,i and

µk,k′ =∑k
i6=j pk

0,ip
k′
0,j,

Vard[Ee(D̂m)] = 1

2
(F2

X + F2
Y)

[
(µ2 + (µ2)

2 − 2µ3)− 6(µ3 − (µ2)
2)

]

+ FXFY(µ2 − (µ2)
2 + (µ2)

3 − µ4)+ O(ε3)

Ed[Vare(D̂m)] =
(

1

mX,•
+ 1

mY,•

)
(FX + FY)

(
µ2 + (µ2)

2 − 2µ3
)

+
(

1

2m2
X,•
+ 1

2m2
Y,•
+ 1

mX,•mY,•

)

× (
µ2 + (µ2)

2 − 2µ3
)+ O(ε3)

where O(ε3) means O(F3)+ O
(

1
m3

)+ O
(

F
m2

)+ O
(

F2

m

)
·

Assuming that the founder frequencies are equally distributed within loci,
p0,i = 1

k0
, the factors µ2+(µ2)

2−2µ3 and µ2−(µ2)
2+(µ2)

3−µ4 are equal to

(k0−1)/k2
0, whereas µ3− (µ2)

2 is equal to 0. Then the approximated standard
deviation of Dm can be simplified to

σ(D̂m) =
√

2
(k0 − 1)

k2
0

(
F̄ +

(
1

2mX,•
+ 1

2mY,•

))2

+ O(ε3)

≈
√

2
(k0 − 1)

k2
0

(
F̄ +

(
1

2mX,•
+ 1

2mY,•

))
· (A.1)

One locus variance of DR assuming genetic drift only

With unbiased estimation of
∑

i p2
X,i and

∑
i p2

Y,i,

Ee(D̂R) = Ee

[
D̂m

1−∑
i xiyi

]
≈ Dm

1− jXY

with Dm, the distance computed with true allele frequencies (equation (3)).

Var(D̂m) = Ed[Vare(D̂R)] + Vard

[
Dm

1− jXY

]
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Vard

[
Dm

1− jXY
)

]
≈ Vard(Dm)

E2
d(1− jXY)

− 2
Covd(Dm, 1− jXY)Ed(Dm)

E3
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+ E2
d(Dm)Vard(1− jXY)

E4
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Ed

[
Vare

(
D̂m
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≈ Ed[Vare(D̂m)]
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e

(
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− 2
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[
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]
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e
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Ed
[
E4

e

(
1−∑
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)] ·

As in Nei and Chakravarty [50], we do not take into account the second and
third terms of the Taylor expansion (in order to compute the second term we
need to know the moment of the order 5 of frequency distributions under genetic
drift).

Vard(Dm)

E2
d(1− jXY)

= 1

2
(F2

X + F2
Y)

[(
µ2 + (µ2)
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2
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Ed

[
E2

e

(
1−∑

i xiyi

)] ≈
(

1

mX,•
+ 1

mY,•

)
(FX + FY)

µ2 + (µ2)
2 − 2µ3

1− µ2

+
(

1

2m2
X,•
+ 1

2m2
Y,•
+ 1

mX,•mY,•

)
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With the same approximations as in the previous section, the approximated
standard deviation of D̂R can be simplified to

σ(D̂R) =
√

2

k0 − 1

(
F̄ +

(
1

2mX,•
+ 1

2mY,•

))2

+ O(ε3)
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1
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+ 1

2mY,•

))
· (A.2)

The validity of this approximated formula has been checked by way of computer
simulations in Section 4.3.


