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Abstract — Multivariate BLUPs can be derived when data are a mixture of continu-
ous traits and observed discrete traits controlled by logistic latent traits. Algorithms
were developed for predicting discrete responses to BLUP selection, and latent
responses when the selection process included additional culling on scores. These
algorithms were Taylor expansions using well-known expressions such as the prob-
abilities and the two first moments of the truncated multinormal distribution, after
appropriate re-parametrizations They were compared to very accurate quadrature
integrations. The test examples were suggested by a situation found in chickens where
selection can involve body weight and leg deformity described by two logistic latent
variates. Quadratic Taylor expansions generally provided a good accuracy. Therefore,
they could be recommended when quadrature methods are too demanding, e.g., for
complex breeding schemes.

logistic / BLUP / selection / response

Résumé — Prédiction des répenses observées et sous-jacentes a la sélection
sur le BLUP. On peut calculer des BLUPs & partir de données mélangeant des
caractéres continus et des caractéres discrets contrdlés par des vanables logistiques.
On développe des algorithmes de prédiction des réponses discrétes 4 la sélection sur
le BLUP. De méme, on cherche & prédire les réponses sur les variables latentes quand
le processus de sélection inclut une sélection directe sur les variables discrétes en plus
de la sélection sur le BLUP. Ces algorithmes sont des développements de Taylor qu
utilisent des expressions bien connues, telles que la probabilité et les deux premiers
moments d’une distribution multinormale tronquée, aprés modification appropriée
des paramétres Ils sont comparés & des quadratures numériques trés précises. Les
exemples de test proviennent d’une situation rencontrée en sélection avicole ou la
sélection peut impliquer le poids corporel et les déformations des pattes, décrites par
deux variables latentes logistiques. Les développements de Taylor du second degré sont
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généralement précis. Par conséquent, ils pourraient &tre utilisés quand les méthodes
de résolution par quadratures sont trop exigeantes en temps de calcul.

logistique / BLUP / sélection / réponse

1. INTRODUCTION

Real breeding schemes in livestock often rely on many traits. Some of them
are clearly categorical: dichotomous such as fertility or mortality, polychotom-
ous ordered such as “linear” type traits, calving difficulty, prolificity, conform-
ation scores or unordered such as abnormality assessments. Much statistical
work has been devoted to studying relevant models for these traits, quan-
tifying the corresponding dispersion parameters and finally defining optimal
procedures for estimating breeding values. The usual method that deals with
such traits assumes the existence of latent variates expressed through a link
function in a generalized linear mixed model [9,19]. In the threshold model,
this function is related to the probability that the latent variate is higher than
the threshold(s) concerned. In the multivariate logistic model, the link function
is related to the probability that a given latent variate will be maximal among
the whole set of latent variates [2,16,17]. In the context of the generalized linear
mixed model, procedures for estimating breeding values were developed using
either the estimates with maximum posterior probability density(MAP) [12,
13] or quasi-likelihood approaches [14]. The equation system used for estima-
tion presents striking similarities with its counterpart for conventional BLUPs,
except that mixed model equation (MME) matrices depend on the true position
parameters. Solutions should be obtained after iteratively modifying these
matrices.

Finding the optimal design of a breeding scheme requires accurate predic-
tions of responses on the observed scale to given selection procedures. Pre-
diction over several generations should include recurrent predictions, from one
generation to the subsequent one, about the expectations and the variance-
covariance matrix of the genetic latent variates. The last prediction is needed
to take into account the linkage disequilibria induced by selection s.e., the
so-called Bulmer effect [5].

Authors often focus on predicting observed responses of discrete traits to
BLUP selection. Exact solutions are given for instance for the threshold
model and for the Poisson distributed model [10,11], assuming normality of
the estimated breeding values (EBVs), although it might be questioned [6,7]-

Logistic latent variates can be encountered for unordered polychotomous
traits such as leg deformities, for binary traits or sequential discrete traits [9,19].
The objective of this paper is now to develop analytical approaches exploiting
assumed multinormality of EBVs, in this logistic setting: (i) to predict discrete
responses to selection on indices involving BLUPs; (ii) to predict responses
on the first two moments of latent variates when the selection process is com-
plicated by some direct culling on the corresponding observed scores, due to
natural or artificial reasons.

It should be reminded that the forthcoming algorithms will address the issue
of predicting genetic gains from future selection, with known initial dispersion
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parameters. Hence, they will be quite distinct from posterior estimation of
genetic trends, with unknown dispersion parameters, in an observed population
with a past selection history, where the use of Markov chain Monte Carlo
methods might be relevant.

2. PREDICTING SCORE PROBABILITIES AFTER BLUP
SELECTION

Let us consider a situation where we want to predict score probabilities after
BLUP selection. We want to predict the score probabilities of the selected
candidates because, for instance, scores affect the length of breeding period.
Alternatively, we might have considered the score probabilities for the future
progeny of candidates based on BLUPs obtained from the sampling progeny.

2.1. Notations

A candidate for selection is described by a set of relevant variates: his
breeding values and his EBVs for the continuous variates (latent variates and
observed continuous traits). The joint distribution corresponds to the com-
pound distribution of n, Gaussian variates and of n; latent logistic variates.
The latter govern the expression of one categorical trait concerning the candid-
ate, according to n;+1 possible scores with probabilities 7, (i = 1,...,n;+1). In
the Gaussian-logistic model, n; Gaussian variates correspond to the expectation
of their logistic counterparts [16,17]. Therefore, the other ny — n; Gaussian
variates are the breeding values of continuous traits and the EBVs.

Let x be the vector of standardized Gaussian variates of dimension ng x 1
t.e.,

E(z)=0 Var(z)=R

where R is the correlation matrix. Then, in this logistic setting, we can
write [17,18]:

7rz]a:=—7£:”—— i=1,...,m
1+Zg=lw]
[ 1
T = —————
mk 1+E?l=1w1

where the w, terms are of the form exp [k + hl:z:] after considering a scalar &

and a vector h. Equivalently, for any ¢ = 1,...,n; + 1, these probabilities can
be re-written as follows:

1
Ty +l
Z]:l 'v".?

’ 3 - » .
where v,; = exp [km + hmw]. In this expression, k,, is a scalar and h,; is a

(1)

e =

vector of dimension ng % 1. For any i, k,, =0, h,, = 0.
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The selection procedure is summarized by the (ng x 1) vector £ of selection
thresholds. If certain variates are not directly selected for, then the corres-
ponding thresholds are set to —oc.

2.2. Prediction algorithm

The selection domain S is defined by z, > ¢, fori = 1,...,n, and summarized
by the notation & > t. We have to calculate score probabilities for the selected
population i.e., Eg(w,) for j = 1,...,1+n;. They cannot be integrated out ana-
Iytically even when the joint distribution of continuous variates is multinormal.
Therefore, numerical methods should be investigated.

2.2.1. Numerical quadrature

The Gauss-Hermite quadrature approximates the integral [ g(z)f(z)dz by
the finite sum

iasf (zs)
s=1

where the z, terms are the nodes and the a; terms are the corresponding
weights, depending on the support function g involved [4,20]. The approxima-
tion is exact if f(z) can be described by a polynomial of degree smaller than
2ns. If g(z) is the Gaussian probability density function and if integration is
not bounded, then the x, terms are the roots of the Hermite polynomial of
order ns [4]. Numerical values of z, and o, can be found in [1]. This approach
can be extended very easily to a multivariate function if the multiple integral
can be decomposed into the product of simple integrals, after considering new
independent variates (e.g., after a Cholesky transformation of the variance-
covariance matrix of the variates to be integrated out).

Here, the integrals considered describe the effect of selection among an infin-
ite set of independent candidates. Then, this effect can be approximated by
considering that the population submitted to selection is a mixture of a finite
number of candidates with known breeding values and frequencies. In our case,
the full Gauss-Hermite quadrature consists of calculating the probability that
each configuration of unselected variates (each dummy candidate) be indirectly
selected through the variates under culling. Then, the probability of each
configuration in the selected population is calculated, which leads directly to
the expectation of the w, terms in this population.

2.2.2. Taylor expansions

As shown by expression (1), any score probability 7, can be written as the
inverse of a function denoted fi(z) or f) in short, for the sake of simplicity.
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If we are interested in calculating Egs(m,), then the function f; is equal to
E;”_—il v,,- Its expectation f1 in the selection domain

B ny+1 ny+1
fi=Es(fi) = Z Es{v,) = Z E(u,|z > t).
=1 1=1

The Taylor expansion of 7, = f_lz up to the order n in the vicinity of f1 is equal

A% 0-8)

The expectation of this expansion in the selection domain involves calculating
expressions such as Es (f}) for i = 2,...,n. Finally, the expectation of the

quadratic Taylor expansion is equal to f%ES (f7) and the expectation of the
1
cubic expansion is equal to:

—-g“+ = Es () - Es (12) .

AR
The functions f; are still similar to function fi itself because they can be
written as linear combinations of expressions such as exp [k + h':r] , where k
is a constant and h is a vector. Finally, the problem amounts to calculating
Eg(exp [h,a:]). This expression is simply the moment generating function of

the truncated multinormal distribution [3,21].

70- - }o ¢ (x)exp [h’x} dzy - dxg,

e (eXp [hw]) - t;g f ¢ (z)dz - -

tng

where ¢(z) is the probability den31ty of vector @ i.e., the product of the integra-
tion constant (27)" &2 det R™% by exp [——a& R-1 J As already mentioned

by Tallis [21], if we pose &* = @ — Rh, t* =t — Rh with z* ~ N (0, R), then
the nominator of the fraction is equal to:

exp[ th]/ /qﬁ )dzy-- dzy, .

Let us denote Prob (z > t; R) by P (¢; R). Then,

Es (exp [h,m]) = exp Bthh} W .
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For calculating probabilities P, we can use the usual approximations such as
the very accurate Dutt approximation [8].

Unfortunately, the accuracy of the expectations of Taylor expansions for
functions such as fl is not certain to increase automatically along with the

expansion order. The reason is that the Taylor expansion of function f; around

f1 is divergent when fi > 2 fl in this case, ’1 - i—' does not tend towards

zero with an increasing 7. This can be examplified by a very simple situation
where function f; is z and where :n is a discrete variate with three values zy,
Tg, X3, with probabilities equal to . Then

3
1 1 1
E{=)=Y"=.
(7)-3%=
When z; = 2, 23 = 3, 3 = 4, the correct value is obtained for a Taylor
expansion of order 8. However, if z3= 15, then the Taylor expansion does not

converge at all. The largest values of the ratio £ are 1.33 and 2.25 respectively.
The coefficients of variation are 0.288 and 0.595 respectively.

3. PREDICTIONS ABOUT THE GAUSSIAN VARIATES
AFTER SELECTION BASED ON BLUPS AND SCORES

In some cases, candidates can be naturally or artificially selected on scores in
addition to BLUPs. For instance, selected cows should still be alive for further
breeding, regardless of their EBVs. Poultry breeding schemes can discard
candidates exhibiting leg deformities, at least for not impairing reproduction.
In these cases, the first two moments of variates z can no longer be calculated
exactly for the selected population.

3.1. First moments of the Gaussian variates

For instance, let 2 be the score required for selected candidates and let j
be the Gaussian variate we are interested in. Let us denote S, the selection
domain. Then, using simplified notations:

f LT,

_ Es (z,m,)

ES (55.7)* f’“'z = ES("Tz)

after dividing both members of the fraction by P(¢; R) and calling S the
selection domain without considering scores. Calculation by quadrature is
straightforward, given the previously described guidelines.

The denominator of the second fraction was already calculated using a Taylor
expansion. The nominator corresponds to the expectation of fraction -*J’:—f where
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function f; = z, and function f; = }_ v, as defined previously. Let us
denote:

A=Es(f) f2=Es(f)

Then, the expectation of the quadratic expansion is:

2+ 5 (RBs(fD) ~ s (afo)

and the expectation of the cubic expansion is:

hoo 3 g L :
ij + 7 (szs(flz) - flES(fle)) + 7 (f1ES(f12f2) - f2E5(ff)) :

In these expressions, fo = Eg (z,) has an already known analytic solution [21]

and Es(f1f2) is a linear combination of terms such as Fs(z, exp(h':c)) where
the h terms are known vectors. After changing variates as previously indicated,
we get:

Eg (3"',7 exp[h’a:]) = (Es eXp[hl:I:]) (h; +FE (33;|q;* >t— h*))

where z* ~ N (0, R) and h* = Rh. The first term was previously calculated

and the second term involves calculations similar to those of fg i.e., the expect-
ation of variates in a truncated multinormal distribution (See Appendix 1).

3.2. Second moments of the Gaussian variates

We need to calculate expressions such as:

Eg(mz,2:m) ‘

Es, (z;2m) = Es(m)

The nominator of this fraction is still Eg (%) where fo = z,z,. It can
be calculated using a Taylor expansion. FEs{fif2) and Es(f2fs) are linear
combinations of expressions such as Eg (zvj Trp, exp[h' :c]) , which is equal to:

(Es exp[h'w]) Eqe>t-n~ [(h; + ) (A, + 2,)]

using the afore-mentioned notations. The first term of the latter equation was
previously calculated and the second one involves calculating first and second
moments of the truncated multinormal distribution, the expressions of which
are well-known |21} and reminded in Appendix 1.
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4. TEST EXAMPLES

4.1. The situation corresponding to BLUPs

This situation was inspired, after some simplification, by the investigation
of Le Bihan et ol. [18] who analysed the joint distribution of latent variates
for leg scores (score 1 = valgus abnormality, score 2 = varus abnormality,
score 3 = normal) and of body weights in chickens. Independent sires were
considered as candidates for selection. Each of them was evaluated based
on the performances of n progeny recorded for a discrete trait with three
categories and a continuous trait. The discrete variate could be interpreted
as the expression of two latent logistic variates. The (n x 1) vectors of the
expectations of the latent variates for the progeny of a given sire was pt1, po
and the vector of the observed performances for the continuous variate was
y3. Let uy, g, u3 be the corresponding sire’s breeding values for these variates.
The (3 x 1) vector of the sire’s breeding values was v ~ MVN (0, G). Then,
we wrote:

1 = A1 (1n91 + ln% + /3183)

M2 = A2 (1n92 + ln%z' + ﬁ2e3)

U3
Ys = 1n? + es.

Overall means 08, 85 were assumed to be known. We took 83 = 0 without a loss
of generality. 8, and 35 were regression coeflicients assumed to be known and
possibly different from 0: therefore, the continuous trait and the latent traits
could be correlated at both levels z.e., between and within-sire. The residuals,
eg, affected individual risks and could be interpreted as random nuisance factors
when estimating the sire’s breeding values. Finally, A; and A, were scale factors

defined as follows
2 3
M= ——=—1 -
’ (wz—Sﬁiaﬁg)

This scale adjustment was carried out so that the residual variance of the model
2
was still %~ [16,18] 1.e., the variance of the standard logistic distribution.

Let p be the individual index (p = 1,...,n). Then, the probabilities of score
1 and 2 of the discrete variate were respectively

A1y = exp (Nlp)
P 1+ exp (p1p) + exp (uap)
ex
Tap p (ﬂ2p)

1+ exp (p1p) + exp (p2p) '
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Let us define the following variates

— \2 _
Waap = ATl — Typ) 1=1,2
Wigp = Waip = —A1A2T1pM2p
Wyzp = W3p = _ﬁlwzlp - ﬁ2wz2p
2 2

w33p = E }_ 16)1,/81, wzz’p

i=1,'=1

Upp = Ay (Tap — Top)
1

€3p = Ysp — 5”3

where n,, = 1 if individual p expresses score %, n,, = 0 otherwise.
Le Bihan et ol. 18] showed that the vector @ of MAP estimates was obtained
iteratively by solving the system

6] (5lt+1) _ sl — ot _ =150t
MY (a i T G4

where @1 was the solution vector obtained at iteration ¢ + 1 starting from

matrix M and vector T built from Ty and esp estimated at iteration ¢,
- {¢] 5lt]

t.e., 7, and &, respectively. In this system, we had
At
llp E w12p E pr
t
M[t] =0.25 Zp £2]p Z w23p + Gul
. n
Sym zp w[;g],p +—
o2,
and
0.5 3,8l
Tl — 0.5 3, 732:0

o
0.5 Zp ~0.56, %, 9% — 050, Y, 64

Prediction algorithms directly considering the final solutions after convergence
would be quite hard to develop. Then, the estimated breeding values used for
prediction were those of the first iteration, starting from:

~[0] _ ,&g)] — ﬁ[30] -0

g s = Ys

[0]

and 7, - calculated accordingly, for ¢ = 0. Then, assuming multinormality, the
expression of both Var(#) or Cov(#, u) was equal to G — (Mg + G™?) - [15].
Matrix M was obtained from null values for 4y, 4, @3 and €Esp.
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4.2. The parameter values

Trait 1 2.e., the latent variable for expression of score 1 of the discrete variate,
was assumed to have a heritability equal to 0.2. The overall probability of score
1 was assumed to be 0.2. Trait 2 s.e., the latent variable for expression of score
2, was assumed much more difficult to select for because heritability was only
0.05. On the contrary, trait 3 was assumed much more heritable: A% was equal
to 0.4. Genetic variances were 0.6921, 0.166 6, 1 for traits 1,2 and 3 respectively.
Traits 1 and 2 were assumed to be genetically independent. Both traits were
assumed to exhibit the same genetic correlation coefficient with trait 3, i.e.,
+0.2. The number n of progeny per candidate was equal to 20. For each trait
(1 or 2), the corresponding 's were calculated so that the variance controlled
by the covariate es was twice as high as the variance controlled by the sire
effect. Therefore, for i = 1 or 2,

2

g,
2 2 Uy
ﬁzaes_2 4 )

Then, the pair of § values was 0.392 and 0.192.

4.3. The predictions to be carried out

4.3.1. Predicting phenotypic scores

In the first illustrating exercise, we assumed that the phenotypic scores of
sires were not available and we wanted to predict score phenotypes of sires
selected based on their BLUPs. The logistic latent values corresponding to the
phenotype of sires had expectations t1(61 + u1) and ¥3(f2 + uz) respectively,
where 8,02 were constant mean effects and 1/, ; were scale effects so that

the residual variance of the model was still %2 [16,18]. Then, for latent variate
1 for instance,

Vion,
2
viok + 5
3
Given the values of h? and h% used in [18], the values for 1, and ¢, were 1.09
and 1.02 respectively. Let 1, ..., 25 be the standardized variates corresponding
to uy, ug, ug, —i;, s respectively. Table T shows the corresponding correlation
matrix (R). Table II shows the analytic expressions of the different score
probabilities involving the scalars k and vectors h mentioned previously. A
two-threshold selection was carried out on —%; and iz with two subsituations
ts = t5 = 0 and ¢4 = t5 =1.5. Of course, f; = £y = f3 = —00.

h? =

4.3.2. Predicting first and second moments of standardized
breeding values

Here, score phenotypes of sires were known. For the sake of simplicity, these
phenotypes were not incorporated into the EBVs so that Tables I and I could
be re-used. The same selection procedure as in 4.3.1. was considered, but with
the restriction that selected sires should exhibit normal score (i.e., score 3).
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Table I. Definition of the variates involved i, ..., x5 and corresponding correlation
matrix.
Variate 1 2 3 4 5

1 1 ¢ 0.2 -0.601 0.131

2 1 0.2 0.006 0.165

3 1 —0.182 0.832

4 1 —-0.218

5 1

z1 = u1/0w, = standardized latent breeding value for score 1.

T = Uz /0w, = standardized latent breeding value for score 2.

Zs = U3 /0y, = standardized breeding value for the observed continuous trait.
xy = —1l1 /05, = — standardized EBV for u;.

x5 = i3/, = standardized EBV for us.

Table II. Full expression of score probabilities.

71 = Prob(score 1)
1

~ 1+ exp(1.441 — 0.907a1) + exp(—1.321 — 0.907z; + 0.41622)

w2 = Prob(score 2)
1

~ 1+ exp(1.321 + 0.907z; — 0.41622) + exp(2.762 — 0.41622)

w3 = Prob(score 3)
1

~ 1+ exp(—1.441 + 0.907z1) + exp(—2.762 + 0.41622)

Score 1, 2 and 3 = valgus deformity, varus deformity and no deformity respectively.

5. TESTING GOODNESS OF THE PREDICTIONS

5.1. Accepting multinormality

Taylor expansions {(quadratic and cubic) were compared to the values
approximated by an accurate quadrature, because Hermite polynomials of
degree 20 were used. The functions were evaluated for each combination of
u1,u2 and the expectations were obtained after weighting the corresponding
values. For each level of quadrature, 20 nodes [1] were sampled so that (20)2
= 400 pairs of values u1,u> were considered in the quadrature calculations.

5.2. Questioning multinormality

In a preliminary investigation, the complications due to score predictions
or constraints were excluded: selection was carried out only on BLUPs. This
allowed us to focus on the possible consequences of the joint distribution not
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being strictly multinormal. We examined the potential of alternative prediction
methods assuming that the joint distribution was a mixture of multinormal
distributions with specific parameters.

We examined the genetic responses for each trait (z.e., on wuy,ug,us) for
three selection pressures (50%, 10%, 1% respectively) and for three selection
objectives (selection on 1y, g, 43 respectively).

The observed genetic responses were obtained based on sets of 40000 inde-
pendent candidates evaluated with the iterative MAP methodology using the
relevant parameters.

The predicted genetic responses were obtained by three methods: the
conventional method (C) assuming multinormality, method @ (quadrature
approach) and method Q* (mixed quadrature-Taylor expansion approach),
where normality was assumed only locally. Methods ) and Q* are described
in Appendix 2 and 3 respectively. Let us call S,;; the observed responses of
trait k (k = 1 to 3) for selection objective 3 (7 = 1 to 3) and selection pressure
i (+ = 1 to 3), expressed in corresponding genetic standard deviation. Corres-
ponding predicted values were Cyp, @y, Q:‘j ., for the conventional approach,
the quadrature approach and the partial quadrature approach respectively. The
overall prediction potential of the prediction method P (either C, @, or @*)
was assessed through the following quadratic error norms:

E[z] _ E, k(P — Szjk)z
F Zg Zk S‘ngk

established for each selection pressure 1.

6. RESULTS AND DISCUSSION

6.1. Predicting categorical probabilities of selected sires

The results obtained are shown in Table III. The agreement between quad-
rature and quadratic Taylor expansions was fairly good for categories 2 and 3
and less good for category 1. The sum of the predictions for the three categories
was not equal to 1. By contrast with the quadratic expansions, the cubic Taylor
expansion gave quite misleading results for the prediction of probabilities for
score 1. As mentioned previously, the probability of divergence for Taylor
expansions was expected to increase along with the coefficient of variation of the
function corresponding to the inverse of the score probability. Table IV shows
that this coefficient of variation was definitely high for score 1 (f; = W—ll) in both

subsituations. For the other scores (2 and 3), extending the expansion to higher
degrees led to predictions affected more and more by the high values of function
fi1. For instance, in the first subsituation, the prediction of w5 was 0.019 and
4.0x 108, for n = 5 and 10 respectively. Corresponding values for 75 were 0.775
and 2.2 x 10%. In this circumstance, the use of only quadratic expansions seems
to be the most robust procedure. Quadratic expansion could be recommended,
except for the score probability exhibiting the highest coefficient of variation,
which should be calculated indirectly, so that score probabilities sum to 1. The
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Table I11. Testing score probabilities of selected sires. Values between brackets for
score 1 were obtained from values for scores 1 and 2. Bold values correspond to the
proposed method.

Thresholds Method Score probabilities
for x4 and zs 1 5 3
Quadrature 0.153 0.057 0.789
ta=ts=0 Taylor 2 0.172(0.149) 0.058 0.793
Taylor 3 —0.094 0051 0.785
Quadrature 0.090 0.069 0.843
ti=1s=1.5 Taylor 2 0.095(0.088) 0.068 0.844
Taylor 3 —0.015 0 062 0.842

Table IV. Coeflicient of variation of the inverse of score probabilities in the sire
population selected for continuous variates.

Thresholds for z4 and x5 Score
1 2 3
ta=1t5=0 0.869 0.442 0.153
ty =15 =15 0.829 0.414 0.086

results of the recommended procedure are shown in bold in Table III. In this
case, accuracy was fairly good for any score in comparison with the quadrature.

6.2. Predicting moments of the constrained selected sire
population

Table V shows the quadratic expansions of the first moment of variates
uy, #2,u3 In the population of sires selected above the thresholds and con-
strained to exhibit score 3 (4.e., no leg deformity). The accuracy was reasonably
good. Table VI shows that the same was true for the second moments. Using
Taylor expansions in this kind of calculation already required a good accuracy
of the Taylor expansion concerning the probability of the constraining category.
This was clearly the case for score 3. Had score 1 been chosen for constraining
the phenotype of the sires, then Prob (score 1) should have been calculated
indirectly after considering the function 1 -Prob (score 2) -Prob (score 3).

6.3. Sensitivity to normality assumptions

The relative prediction error norms observed for the three prediction meth-
ods are shown in Table VII. The relative prediction error norms observed for the
three prediction methods increased when the selection pressure became more
and more severe. Methods @ and @* showed the same accuracy as method
C' except for the strongest selection pressure (1%) where the conventional
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Table V. Testing first moments of the selected sire population constrained to exhibit
no leg deformity.

Thresholds Method E(z;) E(x2) E(x3)
for 4 and x5

Quadrature —0.532 0.135 0.588

tg =t =0 Taylor 2 —0.545 0.136 0.586

Taylor 3 —0.518 0.136 0.590

Quadrature —1.176 0.381 1.546

ty =t = 1.5 Taylor 2 —1.181 0.381 1.546

Taylor 3 —1174 0.382 1.547

Table VI. Testing second moments of the selected sire population constrained to
exhibit no leg deformity.

Thresholds ~ Method  E(z}) E(23) E(z}) E(ziz2) E(zizs3) E(z223)
for z4 and x5

Quadrature 0.992 0.990 0.8Y0 -0.073 —0.217 0.186
ty =ts =0 Taylor2 0970 0.990 0867 -0.079 —0.229 0.186
Taylor 3 1.006 0.991 0.873 —-0.070 -0.205 0.187

Quadrature 2.036 1.110 2.775 -0446 —1.730 0.667
ty =t5 = 1.5 Taylor 2 2.037 1.108 2773 -0.451 —1.739 0.666
Taylor 3 203 1.110 2.776 —-0.445 —1.726 0.668

Table VII. Preliminary study: relative error norms (10™*) observed for the three
prediction methods.

Prediction method 50% Selection 10% Selection 1% Selection
Conventional 48 56 258
Quadrature 52 61 193
Quadrature-Taylor 47 63 208

approach was found inferior, Table VIII shows the detailed predictions. If
selection was carried out on continuous traits (selection on 43), then direct and
indirect predicted responses could be done reliably by conventional methodo-
logy assuming multinormality of the vector of latent values and corresponding
EBVs. Conversely, if emphasis was laid on the discrete traits (selection on 4; or
1), then conventional predictions were still reliable provided selection pressure
was reasonable. In our preliminary simulation, substantial errors occurred only
if a very severe (about a few % selected) selection pressure was favouring a
rare score (score 2). The use of quadrature methods assuming mixture of
distributions would be useful only for this case. Then, in the large majority of
situations, conventional methods assuming multinormality can be used, or to
be exact, are hard to be significantly improved.
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7. CONCLUSION

The problem of predicting responses on logistic scores or on latent vari-
ates when culling on scores is practised can be addressed by using quadrature
methods or Taylor expansions. In the latter case, standard tools for calculating
probabilities of the truncated multinormal distribution and their corresponding
two first moments can still be used after appropriate re-parametrizations. This
would allow one to easily incorporate other constraints not studied here, so that
the overall fraction of selected individuals will be equal to a specified value. The
use of standard approaches such as a Newton-Raphson algorithm would then
be straightforward.

The test examples analyzed a situation concerning a set of variates observed
in chickens. In these examples, both numerical methods were easy to implement
i.e., were not too computationally demanding. This allowed us to observe that
the accuracy of Taylor expansions might be considered as fairly reasonable
provided that correcting procedures be carried out in some cases.

The formal algorithms would allow one to address a very wide set of situ-
ations which could range from a single-step selection up to a complete sequence
of selection steps involving categorical scores. In this case, the EBVs and the
scores (e.g., survival) considered might depend on the ages of the breeding
individuals during lifetime. Probabilities 7, would then represent the product
of elementary probabilities at each selection step. In these complex cases, the
overall number of selection thresholds and of variates to be integrated out might
be high enough.

The first limiting factor for calculations whatever the approach chosen (quad-
rature or Taylor expansion) is the number of thresholds. When it exceeds 5
or 6, numerical integrals of the multinormal distribution are either inaccurate
or very long to compute [8]. Furthermore, quadrature methods are very much
demanding when the number of variates to integrate out is high because it
affects computation times exponentially. Finally, Taylor expansions can be
useful whenever quadrature methods would lead to a substantial computational
burden. In practice, this might be the case for complex selection schemes with
sequential discrete traits.
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APPENDIX 1

First and second moments of the truncated multinormal
distribution

Let  ~ AM(0, R). The selection domain S corresponds to = > t with the
probability P(¢; R) = mg. The moment generating function is:

P(t— Rh;R)

@ (h) = exp Fh'RhJ PR

2
Then,

o -
ES(xz) = (ahz) [h:(]] = 7'T-S'l ;szfé(tJ)P(t];RJ)
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In this expression, ¢ , and R, are vectors of thresholds and matrix of correla-
tions conditioned on threshold ¢, and variate j respectively. ¢() stands for the
probability density of the standard Gaussian distribution. Furthermore,

O*w
Es(z.x,) = (W) [h=0]

=Tyt W,;l Zrk1¢(tk)
k

X TkjtkP(t w0 R k) + ZT” /1 — T%Jqﬂ(tq k)P(t kq> R_kq) .
g#k

APPENDIX 2

Preliminary study: full quadrature approach

Continuous variates to be integrated out were u;, ug, ug and the n egps.
To avoid combinatorial explosion between the corresponding roots, a good
accuracy (e.g., 6 roots) could be retained when integrating out the u terms
whereas a low accuracy (2 roots) was accepted when integrating out the e,
terms. Because the us were correlated, roots of the corresponding Cholesky
transforms were calculated and then re-transformed into the original scale:
this gave 216 (= 6%) triplets of us with weights corresponding to the product of
weights for roots of Cholesky transforms. Then, at least theoretically, each of
these situations should have been subdivided into 2™ subsituations according
to the number n* of positive roots for eg (number of negative roots = n —n*).

Each subsituation should have been weighted by the expression (é)n nT':_l—h_‘—'

because % is the weight of both roots of the quadratic Hermite polynomial (41
and —1 respectively in standard units). In fact, an additional approximation
was introduced by allowing n* to vary only between two bounds n}, and nj; so
that the total weight involved was almost 1 e.g., 0.999 8. After eliminating these
outlying values, the weights were re-transformed so that they would sum up
to 1 again. Finally, the overall number of distinct situations to be investigated
was 216(1 + n}; — n}).

Let a basic situation be referenced by a quadruplet ¢, 7, k&, of indices with
i, 7, k varying from 1 to 6 and ! varying from 1 to 1 + n} — n} . The corres-
ponding matrix and right-hand side of the equation system used for estimating

breeding values were M E(;]kl and TE(;]M respectively. In the MME matrix, the w

terms did not depend on uy, and ug;, the roots involved for u; and us. They

indirectly depended on wug; because egﬂ = y3p. Then, in this situation, n*

values of y3, were equal to & + o, and n — n* values of y3, were equal to
Wk —g,,. We now had to calculate E(@) and Var(#) in the situation igkl.
We had:

B(a) = MY B (T8),)
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with
[ 053 5, (m1p — 0 \
0.5% 52, (m2p — 7))
E (Ti‘j],d) _ | [o5{05muse) + n*zgz —(n—n")oe, |
0520, 5, (msp — 7l )
| 05xa Y, (rm - )

In this vector, the terms 7, and m, depended on every kind of the roots
[0]

ip depended on root ugg. Then, we

corresponding to the situation. Terms 7
had:

Var(@) = MUY Var (T8) MU

The central variance matrix simply corresponded to the w terms of M,
calculated based on the true probabilities 1, T, influenced by the different
roots of the u terms and of the es terms. Next, we were interested in the
response to selection on the overall index I = a’d where a was a vector of
economic weights. We selected candidates such that I > Iy where I was a pre-
determined threshold. After assuming that the local distribution of & was still
multinormal, although admitting that parameters might vary across situations,
we could easily calculate the expected contribution of each “candidate’ to the
selected population. Then, we could calculate characteristics of this population
such as the average breeding value and the genetic variance.

APPENDIX 3

Preliminary study: mixed quadrature-Taylor expansion approach

In this method, the numerical quadrature for the u terms was maintained
but the effects of the different values of e; were integrated using linear and
quadratic Taylor expansions of the following functions:

E(dlu) = E, (F (@|u, e3))
Var(i|u) = Vare, (E (Glu, e3)) + B, (Var (ilu, e3)).

These expansions were calculated for each triplet (uq,us,u3) involved in the
quadrature, in the vicinity of eg = 0 after considering n independent variates
e3p. Because each of these variates brought the same information, we only
needed to calculate the derivatives with respect to only one of them e.g., e3,.
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(i) Calculating E., (E (@|u,e3))

This expectation was equal to:

82

€3n

. 1 o (3 .
E(t|u,0) + =no? E (ii|u, e3)
2 - [es=0]

For the sake of simplicity, let matrix M and vector T* stand for M and
T conditioned on the current u terms and on ez = 0. Then, E(d|u,0) =
MYE(T). In the matrix M, the w terms were-influenced only by u3 because

A[0 1
terms 6[311 = Y3p = u3z when ez, = 0. Next,

[ 05T, (wlp - frgg})
0557, A (wgp - frggg)

B(T) = 0.2522

055, Buhy (mp — 7))
\ | 053, Bada (2 — 7))

First and second derivatives could be obtained from first and second deriv-
atives of M and E(T): see Appendix 4.

(ii) Calculating Vare, (E(@t|u,e3))

The first order expansion of E(#i|u, es) around ez = 0 was equal to:

, 8
B (afe,0) + (ten) (Go—Plafwes)) .
aegn [63:0]
Then, Vare, E (itlu, es) ~ no? hh' where b = (%;E(am, 63))[ o The

expression of A is given in Appendix 4.

(iii) Calculating Fe, (Var (d|u, es))

We had: Var (é|u, es) = (Mlu, es) ™ Var (T|u, es) (M |u, e3) ™.
This variance was approximated by a quadratic expansion around ez = 0
i.e.:
1

2
M~ Var(T)M ™! + Zno? o
2 3 8263:"_ [e3n=0]
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with & = M~ Var (T) M~ In this expression,
Wiip 12p 13p
2op Witp 2op Wizp 2p W

Var(T') = 0.25 > p Wazp D, Wazp
Sym 2p Wasp

where the w,,, terms were calculated from the true probabilities. The derivat-
ives of function ¥ are shown in Appendix 5.

APPENDIX 4
Calculating the derivatives of f = FE (&fu,e3) = M E(T)

Let es, be the last term of vector eg. Then,

ﬁf__M—l(%_aMf)

Bean dezn dean
0%f _ At 82E(T) B PM 9 M Of
8263n a 8263n 82@311, 8e3n 3€3n
after repeatedly using
8M_1 —1 8M ._.1
a€3n - _M 8e3n M
and
M "IE(T) =

(a) First derivatives of M

Term (z,2) for ¢ = 1,2 is equal to:

T (- 88 (ot + ).
n

Term(1,2) is equal to:

ikl . . R R
Ben. Lon —)‘1’”?} (51w12n + ,32w£%n) - )‘27T£31 (ﬁlwun + ﬁzwill%n) .
€3n
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Term(4,3) for 2 = 1, 2 and term (3,3) can easily be obtained from the previous
terms (see definition of these terms given previously). In these expressions, the
7tun’s and Wy, correspond to individual n with performance ys, = %m.

(b) Second derivatives of M

The corresponding terms can be obtained from the preceding ones and by
noting that:

ozl
5€3n = A (18 wzln +ﬁzw12n) .
For example,
? ’lf)ioln .[0] atf)ﬂl S, 210
3263n N )\1 (1 - 21T1n) ﬁl 8e3n + ﬁ2 863,,,

o
_%gﬂl (ﬁ 2 4 g, w[O])

(c) First derivatives of E (T)

Term 1 = 0.5[ 1 (wnn w%ln) + B2 (wlzn wgzln)]
Term 2 = 0.5 [ 1 (’wlzn — 'ngozln) + B2 (w22n — @[202],1)] :

1
Term 3 = —f1(Term 1) — B2(Term 2) + =

€3

In these expressions, the w,;,’s are calculated from the true probabilities

stemming from the local combinations w;,us,us and ez, = 0. The wz[;’]n’s

consider probabilities with #&; = 4y = 0 and &3, = 2'11,3 d) second derivatives of
E (T).

From (c) and (a), the calculations are straightforward. For instance, term 1
is equal to

Bwi1n 31?);[3]71 Owign aTDg]n
0-5 {ﬁl ( Oesn Oesn +h Jesn Oesn

where the —2" were previously defined and where the Yt are caleulated
desn Oesn

based on the true probability.
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APPENDIX 5
Calculating the derivatives of ¥ = Var (ii|u, e3)

Then, ¥ = M'VM ™ and 45 = M4 Y M1 + &, + ¥,
where

PM! oM~ oM oM™t Vv
¥, = VML v 2 M
'S e t s | Besm | Bes Oem
oM oM M
= (oM 1 —p1? - M 07
( Oesn desn M 0%esn )
a1 OM g OM s opg OM OV py-a
aegn Begn 3e3n Begn

The derivatives of M were given previously and the derivatives of V' can be
obtained from the definition of V' = Var(T') in paragraph 2.3.3 and derivatives
of terms w,,,, given in Appendix 4(a) and 4(b).



