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78352, Jouy-en-Josas Cedex, France

(Received 18 November 1999; accepted 17 January 2000)

Abstract – The physical alignment of the entire region of the pig major histocompat-
ibility complex (MHC) has been almost completed. In swine, the MHC is called the
SLA (swine leukocyte antigen) and most of its class I region has been sequenced. Over
one hundred genes have been characterised, including the classical class I and class
I-related genes, as well as the class II gene families. These results in swine provide
new evidence for the striking conservation during the evolution of a general MHC
framework, and are consistent with the location of the class I genes on segments re-
ferred to as permissive places within the MHC class I region. Recent results confirm
the involvement of the SLA region in numerous quantitative traits.

pig / major histocompatibility complex / physical map / performance / paralo-
gous regions

Résumé – Le complexe majeur d’histocompatibilité du porc et les régions par-
alogues. La construction de la carte physique du Complexe Majeur d’Histocompatibi-
lité du porc (SLA) est pratiquement achevée et la séquence nucléotidique d’une grande
partie de la région SLA des gènes de classe I est d’ores et déjà disponible. Plus de
100 gènes de la région dont les différentes familles de gènes d’histocompatibilité ont
été caractérisés. Les résultats obtenus chez le porc montrent l’existence d’une trame
ancestrale de gènes, conservée durant l’évolution. Ils renforcent l’hypothèse de la
multiplication et différenciation des gènes de classe I après spéciation et de leur con-
finement dans des segments particuliers, désignés comme permissifs, de la région de
classe I. Des résultats récents confirment la participation de la région SLA dans de
multiples caractères quantitatifs.

porc / histocompatibilité / carte physique / régions paralogues / caractères
quantitatifs
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1. INTRODUCTION

The Major Histocompatibility Complex (MHC), called the SLA (swine
leukocyte antigen) in swine, is located on either side of the centromere of chro-
mosome 7. It consists of three major gene clusters or regions which are schemat-
ically represented in Figure 1. As shown in the figure, the centromeric class III
region and its contiguous telomeric class I region span about 1.5 megabases on
the short arm [42]. The class II region spans about 0.5 megabases on the long
arm, and the class II DRA gene and the RING1, KE4 and KE6 gene cluster
are respectively located on its centromeric and telomeric ends [9].

Figure 1. Physical map of the SLA complex. Black boxes: loci containing MHC-
related sequences. White boxes: loci without MHC-related sequences. The name and
function of the genes are specified in Tables III, IV and V. From the long arm to the
short arm of the chromosome, the order of the regions is class II (II), class III (III)
and class I (I).

Two-hundred and twenty-four genes have been located in the human MHC
region [37]. Among them are 30 to 40 genes related to class I and class II genes,
including many pseudogenes. The remaining genes comprise various oligo-copy
gene families or single genes, including genes with proven functions, or genes to
which functions inferred from related genes have been assigned, and also genes
with no known function [39].

To date, about one-hundred genes and pseudogenes have been characterised
in the SLA region. Numerous single-copy or anchor genes present throughout
this region constitute a framework which has been well conserved during the
evolution of the mammalian MHC region [1, 8, 42].

The main feature of the MHC is the incomparable polymorphism of the genes
encoding its classical class I and class II membrane-anchored glycoproteins.
These two classes of glycoproteins differ in their structure, the cells and tissues
in which they are expressed, the origin of the peptides they present to the T
cells and the subsets of T cells they activate. Thus, class I molecules primarily
present peptides derived from nuclear and cytosolic proteins to the cytotoxic
CD8 + T cells, whereas class II molecules mostly present peptides derived from
exogenic molecules to helper CD4 + T cells.
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2. THE SLA CLASS I REGION

Historically, the SLA region has been characterised using SLA class I
serology. In fact, despite the present importance of molecular techniques in
analysing the MHC region, SLA class I serology, using conventional allo-anti
SLA reagents, still remains a powerful, quick and inexpensive tool for analysing
large panels of individuals. On the basis of the segregation of SLA epitopes in
more than 550 informative families, the existence of three class I series, A,
B and C, has been postulated according to haplotype, with each haplotype
corresponding to an allelic combination. At least 74 haplotypes have been
characterised (Tab. I). Some of the haplotypes appear to be breed-specific,
although the term of breed preference would be more consistent with the
observations made. There are rare haplotypes which seemed to express more
than three SLA class I series, while other haplotypes appear to express a
single locus (Tab. I). The SLA class I region sequences for the haplotype H01
(Tab. I) recently obtained (Genbank, accession numbers AJ131112, AJ251829
and AJ251914) confirmed the presence of at least three potentially functional
classical class I genes, but also indicated that one or two additional loci might be
expressed. Evidence for the existence of strong linkage disequilibrium extending
across the entire MHC region has been obtained in several haplotypes. The
significance of this disequilibrium is not clear, and might simply result from a
recent admixture of reproducers, or on the contrary from a selective advantage
driving force.

2.1. Number of swine leucocyte antigen class I genes

Earlier biological molecular analysis provided evidence for the existence of
about 10 SLA class I loci [34, 42]. This came as a surprise since the number
of class I sequences found in humans and rodents is three to four times larger.
However, among these numerous human and rodent class-I sequences, only two
to three genes encode classical class I or Ia genes. The other genes encode class
I-related gene families (Ib), the even more distant MIC gene family (Ic) and
several pseudogenes. We recently sequenced 460 kb of the genomic SLA class I
region, including two distinct segments, one comprising the Ia genes, (EMBL
accession numbers AJ131112 and AJ251829) and the other, a tight cluster
of Ib and Ic genes (EMBL accession number AJ251914) (Fig. I). Gene and
exon predictions were carried out using the GENSCAN programme available
on the web site: http://genomic.stanford.edu/GENSCANW.html. The BLAST
and CLUSTALW programmes from the GCG package were used for sequence
identification and multialignments.

2.2. The SLA Ia genes

From the most centromeric SLA-11 Ia gene, the order of the other Ia genes
is SLA-4, -2, -3, -9, -5 and -1 (Fig. 1). The SLA-1, -2 and -3 sequences are
functional genes [42], and respectively correspond to the serologically defined
SLA C, B and A series. The SLA-4 and SLA-11 sequences are truncated,
whereas in the third exon, the SLA-9 sequence displays a stop codon that
causes premature termination of the transcription. The structure of the SLA
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class Ia gene consists of a leader sequence, three exons encoding corresponding
extracellular domains, a transmembrane exon and three intracytoplasmic exons
(Fig. 2) [33]. All Ia genes code for a polymorphic heavy glycoprotein chain of
about 45 kiloDaltons (kDa) which binds non-covalently to the monomorphic
β2-microglobulin at the cell membrane [35].

Figure 2. Organisation of different MHC genes. L: leader peptide; Ex-C: extracel-
lular domain; TM: transmembrane domain; cyt: intracellular domain.

The polymorphism of swine SLA class Ia genes corresponds to amino acid
substitutions in positions involved either in fixing the foreign peptides or in
establishing direct contact with the T -cell-receptor [8]. This polymorphism is
located in the extracellular α1 and α2 domains of SLA class I genes, and is
almost perfectly superimposable on those of the human HLA class Ia sequences.

The SLA class I antigens are expressed constitutively on all nucleated
cells, with however, great variations. The overall structural and regulatory
organisation of the MHC class I genes among species, including the pig, is
well conserved.

2.3. The SLA Ib genes

As mentioned above, the SLA-6 Ib gene is tightly linked to the SLA-7 and 8
genes, and to the Ic genes. The previously defined SLA-6 (PD6) gene exhibits
an overall similarity of 55% with the classical swine Ia genes [13]. The position
of the residues involved in glycosylation sites and disulfide bond formation are
given in Table II. The size and eight-exon organisation of SLA-6 are similar to
those of the class I genes. However, SLA-6 has a codon stop in exon 7 leading
to a SLA-6 mature protein comprising some 270 amino acid residues. The
SLA-6 gene was present in all the breeds tested, and displayed no polymorphism
at the molecular level, thus presumably giving rise to a monomorphic protein.
Research in humans and mice for a gene homologous to SLA-6 proved negative,
as usually observed for non-classical class I genes.

The SLA-6 and the nearby SLA-7 genes are transcribed in the same
direction, while further down the SLA-8 gene is coded for on the opposite
strand. The alignments of all known SLA genomic sequences permitted the
identification of exons 1 to 5 for SLA-7, and exons 1 to 6 for SLA-8. The
putative additional exons of these genes could not be identified by comparison
with the other class I gene sequences, either because of too much DNA sequence
divergence, or simply because of their absence. The SLA-7 and SLA-8 genes
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Table II. Potential glycosylation sites and cystein positions within mature SLA
molecules

Cystein position (amino acid number)

SLA2 SLA6 Sla7 Sla8 Mic2

Domain 1 60
Domain 2 101, 164 101, 164 99, 101, 161 101, 164 95, 119, 126, 144, 162
Domain 3 203, 259 203, 259 203, 259 191, 203, 259 187, 199, 257
Domain 4 287 310

Potential glycosylation site (amino acid number)

Domain 1 86 (1) 86 (2) 86 (1) 86 (1)
Domain 3 195, 208, 235, 263 (3)

Glycosylation site corresponding to an NQS amino acid motif (1), NHS (2), and NLT,
NIS, NGT, NHS (3).

are similar to class Ia genes with regards to the size and organisation of their
characterised portions, and probably code for membrane-anchored molecules.
The positions of the residues involved in glycosylation sites and disulfide bond
formation are given in Table II. Note that at positions 86 to 88 the N -linked
glycosylation consensus sequence NQS, found in all SLA class Ia sequences
analysed so far, was also conserved in the SLA-7 and -8 genes, while for the
SLA-6 gene this site comprises the amino acid residues NHS. The residues
involved in the binding sites of human CD8+ T cells, which have been localised
on the α2 and α3 HLA domain, are well conserved in the porcine SLA Ia and
Ib sequences.

The SLA-6 gene, previously referred to as PD6 gene, is transcribed in a
tissue-specific manner [13]. The SLA-7 gene has been shown to give rise to a
transcript in cultured swine fibroblasts [8], although neither its expression in
these cells and other tissues nor its polymorphism has yet been studied. The
transcription, expression and polymorphism of the SLA-8 gene must also be
studied.

These swine class Ib genes appear to be closely related to the SLA Ia genes,
and like the human and mouse Ib genes, have no counterparts in either of
these species. The functions of the swine Ib genes are not known, but their
tasks may include the control of NK cell activity or presentation of specific
peptides like the mouse H2-M3 molecules [34, 27]. The functions of most class
Ib genes in humans and mice are in fact still unknown, although a putative role
in reproduction has been attributed to some of them.

2.4. MIC (Ic) genes

2.4.1. Human MIC genes

In humans, the MIC genes constitute a family of five related sequences,
two of which are functional [18]. The overall predicted domain structures are
similar to those of the class I genes. The MICA and MICB genes are closely
related and exhibit a 91% similarity in their coding sequences, while the amino
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acid similarity with the human or mouse class Ia or Ib genes ranges from
15 to 35%. Unlike the classical and other class I-related products, the MIC
proteins do not associate with β2 microglobulin. In humans, an unexpected
polymorphism has been detected with at least 16 alleles for MICA, due to the
occurrence of clustered amino acid substitutions in all three external domains.
Curiously, the MIC polymorphic residues are located mainly at the periphery
of the putative antigen-binding groove. The MIC proteins have a restricted
pattern of expression with abundant expression in intestinal mucosa and also
in a number of tumours [2]. In addition, they are expressed in the epithelial
cells present in the subcapsular cortex of the thymus in freshly isolated
keratinocytes, and in endothelial cells and monocytes [44]. Unlike the classical
class I genes, the transcriptional control regions of the MICA and B genes
lack an interferon-response element, but their promoter region contains a heat
shock element, as observed in HSP70 genes. This finding is consistent with the
large increase in the mRNA and protein expression of both MIC genes following
heat shock induction. The MIC proteins are the ligands of the NKG2D receptor
expressed by the Tγδ and NK cells [2]. NKG2D engagement causes the lysis
of cells expressing MIC, the MIC proteins serving as an immune surveillance
mechanism [18]. MIC genes have been identified in most mammalian species,
but not in the mouse genome. In this species, however, the H2-T22b and
H-2T10b genes might correspond to homologous evolutionary genes [17].

2.4.2. Swine MIC-like (Ic) genes

On the basis of the MIC sequences characterised, only the swine MIC2 gene is
probably functional. Alignment with the human MIC genes permitted only the
characterisation of the putative exons 2, 3 and 4. A putative exon 1 which might
code for a peptide leader of 23 amino acids was localised 4648 bp upstream of
exon 2 (Fig. 2). Upstream of exon 1, we found, as observed for the human MIC
genes, a consensus heat shock element. In addition, the swine MIC2 sequence
displays specific characteristics of the human MIC genes, such as four putative
N-glycosylation sites, three of which are clearly counterparts of the human
glycosylation sites. Similarly, several cystein residues of MIC2 domains 2 and
3 may participate in the building of disulfide bonds (Tab. II).

2.5. Relationships between the SLA Ia, Ib and Ic genes

The overall homology of the coding regions between the SLA Ia, Ib and Ic
genes is low, ranging from 65 to 75%, compared to the homology of nearly
90% observed between the SLA class Ia genes. As shown in the phylogenic
tree (Fig. 3), the SLA-7 and SLA-8 sequences are closer to each other and to
the SLA-2 Ia genes than to the SLA-6 sequence. These findings suggest that
although the three SLA Ib genes were all generated from a single SLA class
Ia ancestor gene(s), it is likely that the SLA-6 gene diverged from a common
ancestor before the generation of the SLA-7 and SLA-8 genes. Surprisingly, the
swine Ib genes appear to be evolutionary more distant from the SLA class Ia
genes than are the human Ib genes from the HLA Ia genes. The characterised
domains of the swine MIC2 genes displayed a little more than 50% similarity
to the human MIC sequences, but less than 25% to the SLA-2 Ia and SLA Ib
sequences.
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Figure 3. Relationship between constant domains of various class I molecules.
Amino acid sequences were aligned using the Clustal W programme. The tree was
constructed using the neighbour-joining method. The number at each fork indicates
the % of time for which that node was supported in 1000 pseudo-replications. pMIC,
pCD1: pig MIC or CD1 molecules; hMIC, hCD1: human MIC or CD1 molecules.

2.6. Non MHC class I sequences

The other loci of the SLA I-region, found in several species including swine,
are listed in Table III, together with current information concerning their
functions.

Table III. Genes of the class I region unrelated to the SLA class I gene family and
their encoded protein putative functions.

SC1 (TCF19): trans-activating factor with late growth-regulating activity.
POU5F1: octamer transcription factor containing a POU domain.
p52: protein subunit of the TFIIH transcription / DNA repair factor.
S: keratin-like protein specifically expressed in the granular layer

of the epidermis.
ZNF173: acid finger protein.
RFB30: ring finger B30 protein.
MOG: myelin oligodendrocyte glycoprotein.
OLF42: olfactory receptor-like genes.
OLF89:
BUT: butyrophylin (milk protein, related to RFB30).

3. THE SLA CLASS III REGION

The SLA class III region is centromeric and contiguous to the class-I region,
with the most distal class III BAT-1 gene less than 20 kb from SLA-6. The class
III region spans about 700 kb of DNA and contains over 35 characterised genes
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[40]. Many of them are involved in important non-specific or innate defence
mechanisms, such as the complement components, the TNF gene families, the
Hsp70 gene family, the RAGE gene and the allograft inflammatory factor-1
(Tab. IV). Comparison with the human HLA class III region confirmed the good
overall conservation of the class III gene cluster during evolution. Nevertheless,
the segment containing CYP21, TNX and C4 which in humans and mice has
been independently duplicated in tandem, has not been duplicated in pigs.

4. THE SLA CLASS II REGION

The SLA class II region spans about 500 kb and has been shown to harbour
eighteen sequences including the classical class II DR and DQ genes, class II-
related sequences, and also most of the other genes found in the HLA and H2
class II regions (Fig. 1) [9]. The swine DQ and DR genes display the overall
organisation established for the class II genes in all mammalian species (Fig. 2)
[29]. All functional class II molecules are transmembrane heterodimers which
consist of an α-chain with a molecular weight of about 34 kDa non-covalently
bound to a β-chain of about 29 kDa [19]. While the single swine DRA gene
is monomorphic, the DQA gene and above all the DQB and DRB genes are
polymorphic. This polymorphism, revealed by direct nucleotide sequencing, is
essentially concentrated in the first domain (second exon) [8], in a region which
forms the floor and wall of the peptide-binding groove. The serology of the SLA
class II molecules has not been used routinely, mainly because of the existence
of a wide range of class II cross-reactions among the classical reagents. In
addition, there were too few monoclonal antibodies to permit class II typing.

The results of both Southern blot analyses and polymerase chain amplifica-
tion indicated the existence of three DRB sequences per haplotype in pig breeds
and wild boar. Only one DRB gene was however considered to be functional
since other two displayed clear characteristics of pseudogenes [5]. Next to the
DRB loci lies the DQA locus, and further telomeric are two DQB loci, one of
which may correspond to a functional gene, and the other, to a pseudogene.
Further telomeric, there is another class II-like sequence, provisionally called
DOB since it might be the swine counterpart of the human DOB sequence. An-
other SLA class II sequence was designated as DPA, although no DPB locus
has yet been identified. The LMP-7 locus has been tentatively located between
the DMB and DOB loci close to the TAP1 and TAP2 genes, in accordance
with the order of these genes in the class II HLA region. The telomeric end of
the class II region comprises five tightly linked genes, including those coding
for COL11A2, RXRB, KE6, KE4 and RING1. The putative functions of the
other genes of the class II region are described in Table V.

SLA class II molecules are expressed in a tissue-restricted manner. They are
found mainly on lymphoreticular B cells and macrophages, and are especially
abundant on mature dendritic cells which are highly efficient initiators and
regulators of immune responses. SLA class II antigens are also expressed on a
significant proportion of circulating T cells, and on some parenchymatous cells
such as kidney cells.
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Table IV. Genes of the SLA class III region and their encoded protein putative
functions.

RAGE: receptor for advanced glycosylation end products
of proteins. Major signal transduction receptor for members
of a family of closely related polypeptides released
from activated inflammatory cells.

PBX2: homeodomain-containing protein.
G15: lysophosphatidic acid acyltransferase.
CREB-RP (G13): cAMP response element binding protein-related protein.
TNX: tenascin X is a component of the extracellular matrix.
CYP21: 21-hydroxylase enzyme from the cortisol and aldosterone

synthesis pathway.
C4: complement component involved in the classical pathway

cascade.
G11: putative protein kinase activity.
BF: factor B, a serine protease involved in the complement

alternative pathway.
C2: serine protease involved in the complement classical

pathway.
HSP70: cluster of three distinct heat shock proteins constitutively

expressed or heat-inducible.
BAT7: sialidase enzyme with optimal activity at acidic pH.
VARS2: valyl tRNA synthetase.
MSH5: MutS homologue 5 affects testicular size and ovarian

structure.
G2 (BAT2): prolin-rich protein with novel repeat elements.
AIF-1 (G1 ?): allograft inflammatory factor-1 also involved in the control

of insulin production.
LTB: lymphotoxin B anchors LTA to cell membranes.
TNFA: tumor necrosis factor A plays a major role in inflammation,

immunomodulation and lipid metabolism.
LTA: lymphotoxin A involved in lymphoid organ development

and germinal center formation.
IKbL: inhibitor of transcription factors.
V-ATPaseG: vacuolar-ATPase subunit involved in a broad range

of cellular functions, including glycosylation in the Golgi
body and degradation of cellular debris in lysosomes

BAT1: putative RNA helicase of the DEAD family.

G18, G17, G16,
G14,G9a ,G7,G6,
BAT9, BAT8, BAT5,
BAT4, BAT3, RD: genes with unknown functions



The pig MHC complex and paralogous regions 119

Table V. Genes of the class II region unrelated to the SLA class II gene family and
their encoded protein putative functions

Tapasin: TAP-associated protein is a transmembrane molecule of the
immunoglobulin superfamily probably emerged from an ancestor
of the MHC class I / II b-like genes. Plays a critical functional role
in MHC class I-restricted antigen processing.

RING1: RING finger protein.
KE6: steroid and prostaglandin dehydrogenase-related protein.
KE4: membrane hydrophobic protein with histidine and glycine-rich

domains.
RXRB: retinoid acid X receptor is a transcription factor for class I genes.
COL11A2: collagen type 11 α2.
TAP1&2: transporter associated with antigen processing 1 and 2

form a complex that translocates peptides generated
in the cytoplasm into the endoplasmic reticulum vesicles.

LMP7: Low molecular weight polypeptide catalytic subunit which
translocates into the proteasome complex following activation
by cytokines (notably γ-interferon).

5. THE MHC FRAMEWORK REGION AND ITS
EVOLUTIONARY ASPECTS

5.1. Recombination within the SLA region

The recombination rate within the swine SLA complex is less than 1%.
Fifteen of the 17 recombinations documented seem to have occurred within the
class III region, although the precise crossover site is not known. The crossover
site of the remaining two recombinants occurred between the A and B loci, that
is at the centromeric end of the classical class I chromosomal segment (Fig. 1).
The distance between the SLA-A and B loci is no more than 12 kb and might
contain a recombinational hot spot.

5.2. The class I orthologous region, and permissive places

In species not closely related, such as humans, mice and swine, class I
gene expansion seems to have resulted from duplication events which occurred
after the divergence of these species. Nevertheless, although the orthologs
of the class I genes between humans, mice and swine cannot be found, the
precise physical organisation of the MHC class I regions of these species so
far characterised shows that these regions are orthologous. They each comprise
three segments, referred to as permissive places [1] in which all class I genes were
located (Fig. 4). In humans and mice, the orthologous segment located between
the TNF and POU5F1, single copy anchor sequences, harbours classical class
Ia genes, whereas in swine, this orthologous segment contains the class I-
related Ib genes. Conversely, whereas in man and the mouse the permissive
place between the HSR1 and ZNF173 sequences contains only class Ib genes,
in swine, this place contains all the classical class-Ia genes. The third permissive
place, identified between the RFB30 and MOG sequences in humans and mice,
is absent in pigs.
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Figure 4. Location of class I-related sequences in human, mouse and pig MHC: Ia
classical class, Ib non classical, Ic MIC sequence, in parenthesis: number of sequences.
Black boxes: permissive regions for gene duplications.

In conclusion, studies in swine confirm that class I insertional events and
their subsequent duplication and deletion occurred independently in most
mammalian species. This finding constitutes new evidence for the remarkable
conservation of the general MHC framework throughout long evolutionary
periods. With regards to the origin of the MHC region, it has been shown
that the MHC class I and class II genes tapasin, RAGE, BT and RFB30 have
common ancestors and were derived from these ancestors by cis-duplication and
shuffling. In addition, the discovery in Caenorhabditis elegans of a linkage group
containing several MHC genes [38], mostly consisting of class III-like genes but
also including a proteasome subunit, confirms that this syntenic group existed
long before the emergence of prototype class I and class II genes.

5.3. Pig endogenous retroviral sequences

About 50 copies of the type C endogenous retrovirus were reported in
the swine genome of which 10 to 20 copies might correspond to a full-length
provirus. These copies are generally not arranged in tandem, although clusters
of integration sites were observed in some areas, including the 7p1.1 band,
where the SLA class I region is located [32]. Although these SLA – associated
endoviral elements appear to be located outside the class I region itself, they
might be partly responsible for the plasticity of the region.

5.4. Non-MHC-encoded class I-related genes

5.4.1. Related class I sequences

The results of both comparative gene mapping and chromosome painting
point to conserved syntenic regions between the small arm of the human
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6 chromosome which among other genes harbours the HLA complex, and the
small arm of the swine 7 chromosome and part of its pericentric region [16].
One may therefore expect, that the genes located near the HLA complex, such
as the class I-related HFE gene which has been mapped about 4Mb telomeric
to the HLA-F gene, will also be genetically linked to SLA. Since HFE plays a
major role in iron metabolism [30], its swine counterpart might be of interest,
especially in piglets which usually display dramatic anaemia. In the mouse, the
HFE gene maps on chromosome 13, in a region paralogous to the H-2 region
located on chromosome 17.

Beside the MHC classical class-I genes and their variously related genes, the
mammalian genome comprises a number of other class I genes located in other
parts of the genome [20]. These include the CD1 family (cluster differentiation),
the neonatal Fc receptor, the Zn-α2-glycoprotein, and the MR1 gene (for MHC
class I-related). Except for the CD1 family, none of these genes has so far been
identified in the pig.

5.4.2. The CD1 gene family

The swine CD1 genes constitute a family of at least four closely related
genes, all clustered on pig chromosome 4 [15]. Their intron/exon molecular
organisation is similar to that of MHC class I genes, although they display a
significant homology to both class I and class II genes. The CD1 gene in fact
emerged about 250-300 million years ago, from a primordial antigen-presenting
ancestor gene which also engendered the precursors of todays MHC class I and
class II genes. The CD1 proteins in the α2 and α3 domains display a homology
of about 35% with the corresponding MHC class I domains. A direct homology
was found between the CD1 genes in all mammalian species including man,
despite great variations in the number of genes and loci expressed. The swine
pCD1.1 gene, the best so far analysed, exhibited the greatest similarity to
human CD1a, and another swine pCD1.1 gene seemed to be similar to the
human CD1b gene [10].

The CD1 proteins have a characteristic folded structure that is similar to
the MHC class I proteins, and possess a binding groove with specific features
enabling the CD1 isoforms to bind lipid and glycolipid ligands [31]. These
ligands are restricted to T cells comprising mainly circulating CD4-CD8-T
cells or γδ TCR + T cells, population types which are particularly abundant in
swine. Note that the CD1 proteins also bind the β2 microglobulin noncovalently.
As in humans, the swine pCD1.1 molecule was shown to be expressed by a
subset of thymocytes, professional antigen-presenting cells such as dendritic
cells, and macrophages and B lymphocytes. However, no CD1.1 expression has
been found in endothelial or epithelial cells. The involvement of CD1 proteins
in immune protection against microbial pathogens must now be evaluated.

5.5. The swine MHC paralogous regions

Paralogous regions are defined as chromosomal segments containing closely
linked pairs of duplicated genes. In humans, certain regions of chromosomes 1,
9 and 19 display similarities to the MHC region of chromosome 6 in both their
gene content and organisation [24]. Similarly, the swine MHC paralogous re-
gions map to chromosomal segments 1q2.9-13, 4q1.5-1.6 and 2p14-17 (Tab. VI),
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which respectively have their corresponding segments in the human chromo-
somes 9, 1 and 19 [16].

6. MHC COMPLEX INVOLVEMENT IN PHYSIOLOGICAL
AND PATHOLOGICAL SYNDROMES

Numerous HLA-associated diseases have been described, most of which are
auto-immune syndromes [14]. Little is known about the mechanisms behind
these diseases except for those caused by a deficiency of specific genes such as
the C2 and 21-OH genes. Reports that class I or class II alleles exert direct
protective effects against viral, bacterial or metazoan parasitic infections are
few, both in humans and other vertebrates [21]. Nevertheless, there are con-
sistent indications of human HLA complex involvement in different retroviral
infections, such as HIV, where a significant association was observed between
HLA class I homozygosity and rapid disease progression [7]. Similarly, HLA al-
leles affect the human T -lymphotropic virus-I (HTLV-I) proviral load and may
increase the risk of HTLV-I-associated myelopathy. The outcome of hepatitis B
and papilloma virus infections has also been associated with HLA alleles. The
role of certain HLA antigens in protection against malaria caused by Plasmod-
ium falciparum has been clearly shown, and recent results strongly indicate a
host-parasite coevolution. HLA class II alleles have also been suggested to be
involved in human onchocerciasis, a tissue nematode transmitted by insect vec-
tors. The effect of the chicken MHC H-B complex on Mareck disesase has also
been well documented [25], as has that of the BoLA complex in cattle in the
bovine leukaemia virus infection (BLV). BLV is a member of the human HTLV
subgroup of retroviruses which after infection cause persistent lymphocytosis
whose development is controlled by the BolA-DR3 allele [28].

There is increasing evidence that genes of the MHC region other than
those belonging to the class I or class II families may be directly involved in
the outcome of infectious pathogenic syndromes. For instance, one nucleotide
mutation in the TNF promoter region affecting the binding of the transcription
factor OCT-1 is associated with a significantly increased risk to severe malaria
[26]. TNF alleles and the TNF subregion have also been associated with various
metabolic disorders such as insulin-dependent diabetes mellitus disease, severe
debilitating inflammatory syndromes and cancer.

6.1. Involvement of the SLA region in pathological syndromes
and the immune response

6.1.1. Cutaneous malignant melanoma

Segregation analyses of the occurrence of melanocytic lesions in the Ameri-
can miniature pig Sinclair line were consistent with a two-loci model involving
an as yet undefined major initiator gene and a second locus belonging to the
SLA region [4]. One particular SLA haplotype appeared to be necessary for
the tumour initiator locus to be fully penetrant. In another herd of hybrid pigs
comprising genes of five origins, including the Sinclair line, the spontaneous
reappearance of the malignant melanoma also seemed to correlate with an an-
cestral SLA haplotype [22]. In contrast, segregation analysis of melanocytic
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lesions in crosses with the Munich miniature swine Troll in Germany, showed
no involvement of the SLA-complex. However, a linkage was found between
TNFB-locus and a particular type of nevi [11].

6.1.2. The SLA complex and immune responsiveness

A favourite explanation for the class I and II genes being the most polymor-
phic genes known in mammals is the existence of an overdominant selection
or heterozygote advantage effect. Thus, individuals heterozygous at the MHC-
presenting molecules are more prone to present a larger set of peptidic epitopes
than homozygotes, leading to a larger range of responses. However, at least
in mice, the MHC polymorphism can also result from an MHC-incompatible
mating preference in the wild, which indirectly leads to a similar advantage
with regards to the immune response [43].

The role of the SLA complex in allograft tissues and organs has been fully
assessed and therefore constitutes a well characterised model in biomedical
research. Similarly a recently published review [40] was devoted to the respons-
ability of the SLA complex for at least part of the genetic control of the immune
response involving both antibodies and cellular responses to conventional anti-
gens, pathogenic viruses and the nematode Trichinella spiralis.

No pathologies have been attributed to the SLA class III region so far. Like
the human C4B component, the swine C4 molecule exhibits higher affinities
to hydroxyl group-containing targets than to amino group-containing targets,
although its average normal level is low. Nevertheless the SLA complex was
shown to significantly affect complement haemolytic activity tests in a Large
White herd [41].

6.2. The swine leukocyte antigen and production performances

A wide variety of productive and reproductive traits is affected by SLA
specific haplotypes [40]. An extensive evaluation of these traits was recently
conducted in a large herd of F2 pigs issued from initial matings of Meishan
and French Large White grandparents. In all, eleven-hundred pigs were SLA
typed and screened for more than 20 quantitative traits, from birth until they
weighed 100 kg. Overall, the results of this evaluation confirmed that the SLA
region indeed affects a number of traits, such as the level of androstenone,
carcass composition, growth rate, the thickness of the dorsal fat layer, the
intra-muscle fat contain, the malic enzyme activity level, and the development
of reproductive organs in sires and females. In addition, parameters affected by
the SLA region were discovered, including the basic glycaemia level at 120 days
of life, and the hematocrit and haemoglobin levels [3].

7. CONCLUDING REMARKS

The SLA region is by far the best characterised region of the whole swine
genome, and we are on the verge of obtaining its complete nucleotide sequence.
The sequencing of the class I region was essential for the unravelling of
the overall SLA class I organisation. In particular, it permitted individual
characterisation of all class I genes, which because of their close homology,
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had not been clearly assigned to a specific locus. SLA sequencing will also help
to clarify the differences observed between the levels of expression of certain
Ia alleles in miniature and French Large White pigs. We were also able to
definitely demonstrate the existence in the class I region of three SLA class I-
related genes which may in fact correspond to three distinct lineages. Two
of these genes, namely SLA-6 and SLA-7 have been shown to be expressed.
However, the tissular expression regulation and the role of the SLA Ib genes,
as well as those of the MIC-like sequences must now be defined.

Analysis of the SLA structure has also confirmed the overall orthology
between species for the entire MHC region, including the class I regions. The
SLA class I region clearly comprises two permissive places in which the class I
genes have evolved. However, in swine, the class Ia and Ib genes have opposite
locations in these places compared to the locations of the Ia and Ib genes in
men and mice (Fig. 4).

The involvement of the SLA region in various QTLs also needs to be defined.
It is important to remember that many of the associations observed between the
pig MHC region and its traits, were previously observed in the mouse H-2 region
[23], and occasionally also in domestic species such as cattle and chickens. A
number of these associations concerned traits related to reproductive functions,
including embryo development, litter size, mating preference, and sometimes
miscarriage [40]. The MHC class Ia molecules are probably not involved in
any of these associations, since these molecules are not expressed at the
surface of the embryos. However, in man the HLA-G Ib gene, which codes
for an essentially monomorphic molecule, is primarily transcribed in cells of
the trophoblastic lineage [6] starting from the preimplantation embryo stage.
Similarly, in mice, class Ib but not Ia molecules have been shown to be expressed
on the surface of mouse embryos before the implantation stages in particular
strains. The function of these Ib molecules in reproduction is not known,
although it has been postulated, at least for HLA-G, that they may protect
the trophoblasts from NK cell-mediated lysis, because they behave like a self-
element of the mother [6]. In mice, the Q9 Ib gene product controls the rate
of cell cleavage and embryonic survival. It will therefore be of great interest
to determine whether one of the SLA Ib genes is also preferentially expressed
by the trophoblasts in swine. The presence of the β2-microglobulin molecule
on the outer trophectoderm cell layer of the swine blastocysts before their
implantation was readily observed. The association of this molecule with SLA
classical antigens on blastocysts could not be established. Among the genes
located in the MHC region which are not related to the class I genes, the
presence of olfactory factors encoding genes is worth noting in connection with
the importance for gilt puberty or boar taint. Similarly, the tissue level of
androstenone, a compound which functions like a pheromone in the boar, is
also controlled by the SLA region, although the gene involved has not yet been
characterised [40]. Among the other peculiarities of swine reproduction, the
segregation of the SLA H07 haplotype was observed to deviate significantly
from the usual 1 :1 ratio in a number of back-cross families. It is not known
whether this was due to the effect of a swine homologous region to the
T/t complex, which in mice is located near the H-2 complex, or to genes of
the SLA complex itself. Several genes within the human MHC in fact code for
products which are specifically transcribed in the testis, including one involved
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in gonadal maintenance [12]. Similarly, the mouse H-2 located Ring3 gene [36],
has been suggested to play an important role in spermatogenesis.
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