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Abstract - This paper reviews basic theory and features of the multiplicative model
of gene action. A formal decomposition of the mean and of the genotypic variance
is presented. Connections between the statistical parameters of this model and those
of the factorial decomposition into additive, dominance and epistatic effects are also
emphasized. General formulae for the genotypic covariance among inbred relatives
are given in the case of linkage equilibrium. It is shown that neglecting the epistatic
components of variation makes the multiplicative model a pseudo-additive one,
since this approximation does not break the strong dependency between mean and
variance effects. Similarities and differences between the classical polygenic ’additive-
dominance’ and the multiplicative gene action approaches are outlined and discussed.
Numerical examples for the biallelic case are produced to illustrate that comparison.
&copy; Inra/Elsevier, Paris
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Résumé - Un autre regard sur le modèle multiplicatif en génétique quantitative.
Cet article présente la théorie et les principales caractéristiques du modèle multipli-
catif d’action des gènes. Une décomposition formelle de la moyenne et de la vari-
ance génotypique permet d’établir les relations entre les paramètres statistiques de ce
modèle et ceux issus de la décomposition factorielle de l’effet des gènes en effets addi-
tifs, de dominance et d’épistasie. Une formule générale de la covariance entre appar-
entés dans une population consanguine en équilibre de liaison est proposée. On montre
que les composantes épistatiques de la variabilité génétique peuvent être négligées ; le
modèle multiplicatif devient alors un modèle pseudo-additif, l’approximation ne supp-
rimant pas la forte liaison entre moyenne et variance. Les similitudes et les différences
entre le modèle polygénique « additif-dominance » classique et le modèle multiplicatif
d’action des gènes sont discutées et illustrées par des exemples dans le cas biallélique.
&copy; Inra/Elsevier, Paris
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1. INTRODUCTION

Most models for quantitative characters in evolutionary genetics proceed
from a few concepts developed by Fisher [15] in applying Mendel’s laws
to complex characters: genetic variation is due to a very large number of
independent loci whose effects are very small and of about the same magnitude
at each locus. The use of a statistical linear decomposition of the genotypic value
into mean effects of genes and allelic interaction effects within and between
loci justifies the use of a multifactorial model. Furthermore, the assumption
of an infinite number of loci without epistasis leads to normal distribution
theory with properties that allow prediction of changes in moments of traits for
populations subjected to different evolutionary forces such as drift or selection
!2!. However, phenotypes may be controlled by other mechanisms of gene action.
The optimum model [45], the multiplicative model [24] and the synergistic
model [27] have been proposed as alternatives to the additive or additive-
dominance models.

One of the basic features of the multiplicative model is that it creates

allelic interactions between loci and introduces a dependency between mean
and variance of a trait. Indirect evidence for multiplicative gene action (MGA)
has been provided by studying the distributions of breeding values for complex
traits. Such distributions are expected to be skewed under MGA !35!, or to
become Gaussian after logarithmic transformation. Such evidence has been
found for height !11! and growth [10] in mice and on fruit weight in tomatos
[14, 35!. More generally, production traits are multiplicative !21!. Grain yield
in maize is the product of the number of seeds and mean weight of seeds. In
the same way, prolificacy of domestic mammals is the product of ovulation
rate and embryo survival. There is also some experimental evidence for the
applicability of such a model to the biosynthesis chain of anthocyanin in
flowers !38!. Furthermore, the multiplicative model turns out to be the common
choice in resource allocation models, when considering a trade-off between life
history traits such as seed and pollen production, or survival rate (biomass)
and reproduction [12, 13, 41]).

Theory of the multiplicative model was worked out by Cockerham [7] who
proposed a partition of the genotypic variance and expressed the amount of
non-additive variation due to multiplicative effects of genes. As he pointed out,
non-additive variation was rather small for realistic values of the total genotypic
coefficient of variation (less than 40 %). It was suggested that the multiplicative
model was formally an additive one. However, this model has been used as an
explanation for heterosis !21, 37!. The authors emphasized the analogy for the
decomposition of the mean between a multiplicative model at the trait level
(one trait being the product of several traits) and a multiplicative model at
the gene level (multiplicative gene action). Using generation means, a test for
the existence of multiplicative effects was proposed [33] and some evidence
for such multiplicative effects was found in fava beans. Finally, considering a
trait governed by genes with multiplicative effects and undergoing stabilizing
selection, Gimelfarb [19] showed that MGA enhances some ’hidden’ variability
which can be expressed as additive variation when selection is relaxed. This

appears to be a general consequence of epistasis, which has the main effect
of modifying the additive and dominance components of the genetic variance



(4!. Another consequence of epistasis is the increase of the additive variation in
finite [9, 20] or subdivided [44] populations. In this context, it seems worthwhile
to reconsider some implications of the multiplicative model.

The purpose of this paper is threefold: i) to present a formal decomposition
of the mean and of the genotypic variance under MGA, ii) to make connections
between the statistical parameters of this model and those of the classical de-
composition of the genotypic value into its additive, dominance and epistatic
components, and iii) to derive exact and approximate formulae for the covari-
ance among inbred relatives under MGA.

2. DECOMPOSITION OF THE GENOTYPIC VALUE

2.1. Classical theory

The decomposition of the genotypic value of an individual was derived
by Fisher [15] based on the ’factorial’ method of experimentation and later
generalized by Kempthorne (25!. It proceeds from the factorial decomposition
of genotypic values in a panmictic population of infinite size.

Consider a character determined by S autosomal loci. Let L be the set of all
possible genotypes at the S loci, and Gz be the random variable designating the
genotypic value of an individual chosen at random in the population with z E L.
The realized value gz can be partitioned into different effects and interactions
within and between loci:

I...

where i and k refer to the paternal allelic forms at loci s and t, respectively,
and j and l to the maternal allelic forms at loci s and t, respectively; tL is the

general mean; ais is the average (or additive) effect of allele i at locus s; (3ijs is
the first order interaction (or dominance) effect between alleles i and j at locus
s; (&OElig;&OElig; k k, is the first order interaction (or additive by additive effect) between
the additive effects of allele i at locus s and of allele k at locus t.

In a large panmictic population, supposing that all the loci are in linkage
equilibrium, the corresponding components of variance are:



where A, 2 a# and (TAA 2 represent the additive, dominance and additive by
additive components of variance, respectively, and pi, is the frequency of allele
i at locus s in the population. Other components of the genetic variance,
such as the additive by dominance (QAD) and the dominance by dominance
(012 DD) epistatic variances may be derived in the same way. If the loci are in
linkage disequilibrium in the population, extra covariance terms among effects
at those loci must be added, and the expression of variance components becomes
somewhat complex, especially under selection and assortative mating !2, 28, 40!.

2.2. Partition of the mean and variance under MGA

Let As be the effect of alleles at locus s for a randomly chosen individual
having z as genotype, and a,,!s be the realized value of this random variable
given z = (ij) at locus s. Then, by definition of MGA, the genotypic value is

One can express the mean p and the variance (7b of G as functions of the
mean as = ¿ Pij s aij and variance as = ! pij s (aijs - as)2 of the Ass. Under

ij 
&dquo; 

ij 
’

linkage equilibrium, the Ass are independent so that

Under the same assumption, -E(G!) = n!(!)’ and the expression for the
8

variance is

In equation (5a), QG is a product of sums, but may be alternatively expressed
as a sum of products of means and variances because the product of mean
effects over the S loci cancels out due to statistical independence. Denote by
A the set of the S loci and r the set of all possible subsets of A, the null set
excepted, and then

where U stands for any element of >,. For example, with two loci,

2.3. Relationships with parameters of the factorial method

This section deals with the different components of genotypic values under
MGA resulting from the application of the factorial method. Mathematical de-
tails and derivations are given in Appendix A. They follow straightforwardly
from the general approach of Kempthorne (26!. Note that a formal decomposi-
tion of this model limited to the mean deviation effects has already been given
by Schnell and Cockerham [37] for two loci.



Let /-Lijs = E(Gz ! z == ijs) be the conditional expectation of the genotypic
value Gz given the (ordered) genotype z being ij at locus s. The additive effect
of allele i at locus s is defined as ais = Ej (!tt!) &mdash;/!. Using equation (4) fora and

factoring I1 at, this effect can be expressed as ai, = C ! pjsaijs - as) ( I1 dt .tis j to !s !
The first term can be interpreted as an additive effect among the aijs values
at locus s. Denote this effect by

Then,

Thus, under MGA, the additive effect of an allele at locus s is the product of
the additive effect of the allele among the effects of genotypes at locus s times
the product of mean genetic effects at the other loci.

Similarly, the dominance effect (3ij between alleles i and j at locus s is the
product of fl at and the dominance effect (3;j, among the a;j, at locus s, i.e.

t54s 
c ’

and

Using equations (6a) and (6b), the additive by additive effect (aa)is!t
pertaining to allele i at locus s and allele k at locus t is:

Thus, in the multiplicative model, the genetic components (a, (3) at a locus
level depend upon the mean genotypic values at other loci. More precisely, any
interaction effect can be expressed as the product of the additive and dominance
effects among the genotypic effects at each locus times the product of mean
genotypic effects at different loci. For instance, the additive by dominance (a(3),
dominance by dominance (/3/3) and additive by additive by additive (aaa)
epistatic components can be written as:



Using formulae (6b), (7b), (8) and (9abc), one can derive the expression
for the different variance components (see Appendix B). The additive ge-
netic variance (or2A) is the sum, over all loci, of the product of the additive
genetic variance (oa5 ) among the ai! values at each locus s times the product
of the squared mean effects at the other loci:

where

S ? 
!2 2 B

Note that equation (lOa) can alternatively be written as QA = J-l2 2&dquo; ,
as

for 1i! # 0. This shows that, under MGA, variance components are related to
squared coefficients of variation at each locus.

Similarly, the dominance variance (a#) can be expressed as the sum, over
loci, of the dominance variance (Qd_‘ ) among the /3;j s elements times the product
of the squared mean effects at the other loci: 

&dquo;

where

The additive by additive epistatic variance reduces to:

while the additive by dominance (a fi!), the dominance by dominance (QDD)
and the additive by additive by additive (a fi ! !) genetic variances are:

Hence, each variance component can be easily expressed as the combination
of a genetic variance at one locus (or product of variances at different loci)
times squared mean effects at the remaining loci. The total genetic variance
as defined in equations (5a) and (5b) can be decomposed as the sum of all



such partitions. The highest order variance corresponds to the (S - l)th order
interaction

Table I illustrates the partition of the genetic variance as expressed ana-
lytically in formulae (10ab), (llab), (12abc) for a trait controlled by MGA.
Clearly, the additive and dominance components of variance depend not only
on additive and dominance genetic effects at each locus but also on average
genotypic values at the other loci.

2.4. Covariances between arbitrary relatives

Extensions of those formulae to covariances between relatives can be easily
derived. De Jong and Van Noordwijk [12] gave the expressions for covariances
between non-inbred relatives and between life-history traits for some models of
resource allocation. Those results are now extended to the case of inbreeding.
We consider here the variability of a neutral trait governed by independent

loci in a large, possibly inbred, population. Under those hypotheses, the loci
are expected to be in linkage equilibrium and the Ass are independent, so that

s

E(G*z) = n E(AS). Now, E(AS) = aFs = a9+fzdos, where fz is the probability
8=1

of identity by descent between two homologous alleles of an individual (denoted
here as z) drawn at random in the population, and do, = L Pis f3iis is the

i 
&dquo;

average dominance effect in the homozygous population. Therefore, the first
moment of the distribution of Gz is

Under the same assumptions and using the same notation as in equation
(B.1), the genotypic covariance between two individuals z and z’ is defined as:

Hence, the problem reduces to calculating the covariance between relatives at
one locus.

Following the basic results obtained by Fisher (15!, Wright [45] and Malecot
(30!, the general expression for covariances between relatives was first derived
by Cockerham [5] and Kempthorne [25, 26] under the assumptions of random
mating and linkage equilibrium. The case of linked loci was investigated later by
Cockerham [6] and Schnell (36!. The case of inbred relatives was independently
solved by Harris (22!, Gillois [18] and later on by Cockerham (8!, assuming the
absence of linkage. Using Gillois’ identity by descent coefficients, the genotypic





covariance between two individuals (z, z’) from an inbred population under
MGA can be written as:

where the Ais are the probabilities of identity modes; wzz, is Malecot’s
coefficient of kinship between individuals (z, z’); afl = 2!p!a!! and a§ =&dquo; 

i 
&dquo; 

2 ij j, are the classical additive and dominance components of thezj 2ij

genetic variance, respectively, in a large panmictic population under linkage
equilibrium; Qdos = 2 ¿; Pis f3tis and d 2 are the variance and squared mean.° 

i 
’ &dquo; ’

of the dominance effects, respectively, in the homozygous population, and
(J’ ados = 4 ¿; Pis 0;7, f3tis is the covariance between additive and dominance effects

i

in the same population.

Formula (15a) encompasses three new moment parameters defined in the
homozygous population resulting from the condition of full identity between
homologous genes. This formula also involves six functions of the elementary
identity coefficients. Using for instance identity measures introduced by Zhao-

Bang Zeng and Cockerham [46], i.e. -yl = !1 + 4 I(A2 + A3 + A4 + A5),
61 = A9 + A12, 62 = !1 and b3 = !1 + A6, it can be alternatively written in
a more condensed form as:

The same reasoning applies to the genotypic variance and leads to

The expressions for variances and covariances between inbred relatives in
(15abc) are products of sums and may be decomposed as in (lOa-13) into
sums of products. This would lead to five components of variance of the first



order, 5S(S - 1) epistatic components of the second order, 5S(S - 1)(S - 2)
epistatic components of the third order and so on. Each variance component
is the sum of variances at one or more loci times squared mean effects at the
remaining loci. Each covariance component is the sum of covariances at each
locus times products of mean effects at the remaining loci.

With our assumptions (independent loci, infinite size population), those
expressions are much simpler than the corresponding expressions in the full
factorial decomposition [16, 43]. In fact, the only coefficients of identity that
are needed in (15bc) are obviously the ones corresponding to identities between
four alleles at a single locus.

Under linkage disequilibrium, additional covariances (between loci) occur
in the expression of total genetic variance, the effects of which on the vari-
ances and covariances are essentially unknown. For instance, the total genetic
variance comprises five components for two polymorphic loci in the absence
of dominance effects, i.e. an additive variance (a fi), an additive by additive
epistatic variance (a fi! ) , covariances between additive effects (QA,A), between
additive and epistatic effects (a fi !! ) , and between epistatic effects (!AA,AAO
In the general case, higher order terms are also involved. Note that in this case,
the corresponding expression for the population mean (14a) also involves high
order identity by descent coefficients.

2.5. Approximations

In this section, we will show that neglecting the epistatic variance compo-
nents leads to much simpler expressions for the covariance between relatives.

In a panmictic population and under MGA, the ratio of the non-epistatic
variance components to the total genotypic variance depends on the number
of loci and on the total genotypic coefficient of variation (CV = aG/» [7].

S j2 !2 1From (5a), C1 1 + CV!) = fl C1 + 2 a2) In the symmetrical caseFrom (5a), 1 + CV2 ?=i ! 1 a_, + ! . In the symmetrical caseB 7 8=1 B as as /
with allelic effects and frequencies being the same at each locus, it reduces

/ B / !2 ! S
to C1 + CV21 = C1 + a2 2 + a2 ) S !7!. Using equations (lOa) and (lla) andto 1 + / = 1 a ä! a&dquo;/ [7]. Using equations (lOa) and (l1a) and

/ 
/ B / i/s

rearranging, we obtain 
( a! + 2 ab ) 

= I 1 + CV2 ) 
2 

-1 I 

. Whatever therearranging, we obtain aG = S CV 2 . Whatever the
(7! CV

number of loci, this ratio is very close to 1 for values of the total genotypic
coefficient of variation lower than 40 %. Hence a$ = a fi + ab and the total

genotypic variance can be approximated by its first order components:



Similar approximations to that given in equation (16a) apply in the case of
inbreeding. The covariance between inbred relatives reduces to

and the genotypic variance may be approximated by

Note that the approximations (16abc) are tantamount to assuming that the
genotypic value Gz can be written (apart from a constant) as

Those approximations will be checked numerically in the next section.
Formally, as outlined by Cockerham (7!, this approximation makes the mul-

tiplicative model an additive one without epistasis and the two could not a
priori be distinguished from data. However, it does not break down the depen-
dency between mean and variance, which is one of the main characteristics of
the presence of epistasis: the genotypic variance is a sum of products of means
and variances at different loci. In other words, the genetic variance at each
locus is weighted by mean effects at the other loci. As inbreeding affects both
mean and variance effects at each locus (equations 14a and l6bc), it should be
possible to distinguish between the two models by comparing different levels of
inbreeding for the same population.

3. NUMERICAL RESULTS: THE BIALLELIC CASE

Numerical results presented here rely upon a biallelic symmetrical model.
S loci in linkage equilibrium are considered, with allelic frequencies being the
same at each locus in the base panmictic population. Genotypic effects of the
three possible genotypes at one locus were set to M+a, M+d and M-a, where
M is the mid-parent value and a and d the additive and dominance deviation,
respectively. Parameter values for M, a and d were assumed to be the same at
each locus. We defined 6 = d/a as the constant degree of dominance.

3.1. Base population

In the base panmictic population, the genetic variance at one locus s is



and the mean effect of locus s is as = M + (p - q)a + 2pqd where p is the
frequency of the favourable allele and q = 1 - p. Under MGA and with allelic
effects and allelic frequencies being the same at each locus, the total genetic
variance is given by equation (5a) so that

Equating these two formulae for or allows us to express the additive deviation
(a) as a function of the mean (!t), the total genotypic coefficient of variation
(CV), the allelic frequency (p) and the degree of dominance (6):

Similarly, M is given by

The total genotypic coefficient of variation of the base population is assumed
to be equal to CUo = 0.2, and the mean of the base population is equal to
p, = 1. We also took 6 = 1 corresponding to complete dominance at each
locus, or 6 = 3 corresponding to overdominance. Using the approximations
in equation (16abc), the total genetic variance of the base population is

Var(Go) N 6’cr!as and the initial squared coefficient of variation is
2

Cl0 X5 S !2 ] .! &dquo;o ! ! !’0 

as 
2

3.2. Inbred population

We consider now an inbred population derived from the base population
by changing the reproductive behaviour of the individuals and forcing inbred
matings during t generations. In this case, the five variance components in the
biallelic model were given by Chevalet and Gillois !3] and Mather and Jinks[32]. They can easily be expressed as functions of as, the contribution of one
locus to the genetic variance. Let us define hz, the heritability (narrow sense)
as

so that (J! = h2(J; and aj! = dÕ = (1 - h2)(J;. Similarly, one can define b =
(p - q) and r = 1 (p - ( q )s{j 

) 
so that (J2 dos = b(1 - h2)(J2 and a__do = rh2(J2 s’

p9 I - (P - q)6 ! 

respectively.



Therefore, from equation (l6abc), the variance of allelic effects at one locus
in an inbred population is

and the covariance of allelic effects at one locus between inbred relatives is

The total genetic variance of the population also depends on

At any time t, the expected genetic variance is equal to

while under AGA, Var(Gt) reduces to !3!:

Note that the terms between brackets in the right hand sides of equation
(18ab) depend only on allelic frequencies and on the degree of dominance.
It would therefore be possible to compare the two models of gene action by
expressing the genetic variances at time t in units of the total genetic variance
in the base population. It is also clear from equation (l8ab) that in the biallelic
case, the only difference between AGA and MGA is the coefficient m 2(S-1)
weighting the inbreeding variance under MGA.

Figure 1 illustrates the evolution of the expected total genetic variance with
the mean inbreeding coefficient of the populations. Under AGA with complete
dominance (figure lc), the genetic variance increases with fz. The more the
frequencies of the favourable alleles depart from 1/2, the higher are the values
of the total genetic variance. Under AGA with overdominance (figure 1 d), the
genetic variance decreases with fz for intermediate frequencies of the favourable
allele (p = 0.4 or 0.6). Under MGA with complete dominance, two major
differences occur as compared to the AGA case. First, for low frequencies of
the favourable allele, the genetic variance decreases with inbreeding ( figure 1 a),
as seen in the case of AGA with overdominance. Second, the genetic variance
increases with the frequency of the favourable alleles. This phenomenon is
enhanced by an increase in the number of loci governing the trait (figure lb).

However, such results rely upon the approximations made in equation (l6bc),
the validity of which is checked by calculating the epistatic components of the



total genetic variance at time t, i.e.

/ BS
with af + a2 a7ae corresponding exactly to the definition of the total( z ! ! ! F,

genetic variance of the population.
Figure 2a and b shows the residual epistatic component of the total genetic

variance as a function of the mean inbreeding coefficient, fz, and for the same
genetic models as in figure 1 and b, respectively. It can be seen that the

magnitude of the epistatic variance components depends on allelic frequencies.
For very low frequencies of the favourable alleles, the epistatic variance never
exceeds 10 % of the additive and dominance components. It drops to less

than 1 % of the additive and dominance components in other cases and may
consequently be neglected.



4. DISCUSSION

This study was primarily concerned with the statistical properties of the
multiplicative model of gene action. This model can be seen as a good
candidate to explain some features of traits observed in physiological or

biochemical studies, as well as in classical quantitative genetics experiments
(see Introduction).

It was found, as predicted by Cockerham !7!, that the epistatic components
of variance can be neglected under MGA when the total genotypic coefficient of
variation is not too large. It is then possible to describe a trait by invoking only
additive and dominance effects at each locus. Tractable formulae for variance

components are obtained by neglecting the terms corresponding to products
of variances at each locus. Those approximations were shown to be valid
even under strong inbreeding. Formally, they make the multiplicative model
a pseudo-additive one, since they do not break down the dependency between



mean and variance under MGA. Allelic effects and variances at each locus are
weighted by the effect of other loci. This phenomenon may have two main
consequences.

First, means and variances at each locus are not affected in the same way
2 Q2

by inbreeding. Let us define CV£ 2 = E !!a_, GV1Do = L _°2°° , and so on. ItA -2 A 2
s G! s Q’ FS

turns out from equation (16b) that the squared total genotypic coefficient of
variation of an inbred population can be expressed as

Var(Gz) /1+ fz)GVA 2 + (1- z 2 + z + z + fz(1- z
2 

^&dquo;’’ l .f ) A+(’-f-)CV6+f-CV!D,,+f,CV6o+f!,(’-f!,)CV!2 0
z

This formula clearly indicates that the coefficients affecting the CVs in the
right hand side of the above equation are the same as those affecting variance
components under AGA. This means that under inbreeding, the formal similar-
ity betwen MGA and AGA is not at the variance level, but rather at the level
of the total genotypic coefficient of variation. Such results have been observed
in alfalfa by Gallais !17!, who pointed out that the genotypic coefficient of vari-
ation provided a better scale than the genetic variance to linearize the effect
of inbreeding depression on the genetic variation. Note that the analytical ex-
pression obtained here relies on some strong assumptions (linkage equilibrium
and infinite population) which are discussed below.

Second, if a favourable allele is fixed by selection in a given population,
fixation will increase the mean effect of the locus and decrease its variance.
These two effects may cancel out in equation (5a) and result in no change
for the total genetic variance of the trait. Under AGA, the same phenomenon
would lead to a systematic decrease of the total genetic variance.

Despite such important qualitative differences, the two models can hardly be
distinguished. In an outbred population, the absence of a significant amount of
epistatic variation may be interpreted in two different ways: as originating from
polygenic additive-dominance genetic determinism or from multiplicative gene
action. Similarly, it is difficult to distinguish between AGA with overdominance
and MGA without overdominance in the presence of inbreeding. Note that
multiplicative gene action can also be viewed as a parsimonious explanation
for heterosis: complete dominance under MGA can explain some patterns of
change of the inbreeding genetic variance as does overdominance under AGA.

It is nevertheless possible to test multiplicative gene action by comparing
different levels of inbreeding for the same population. Melchinger et al. [33]
defined a multiplicative factor and proposed a test based on the comparisons
of the means of different inbred generations. Our results suggest a possible test
at the variance level restricted to populations exhibiting low frequencies of the
favourable alleles. In this case, whatever the degree of dominance, the genetic
variance is expected to increase with inbreeding under AGA, and to decrease
under MGA.

The numerical results presented here in the biallelic case were obtained by
assuming equal allelic effects and frequencies for each locus. The main reason
for that was to simplify the complex algebra generated by MGA. However,
this assumption should not alter the general trend of the results. We checked
numerically that even with strong discrepancies between gene effects, the



epistatic components rarely exceed 10 % of the total genetic variance, as long
as the total genotypic coefficient of variation does not exceed 40 % (results not
shown). Up to now, the exact distribution of allelic effects over loci governing
a trait is not known, even though results concerning the distribution of QTLs,
which can be detected in a population, seem to indicate a L-shaped distribution
[29, 31, 34]. Relying upon QTL detection results, unequal gene effects may
concern a maximum of 20 % of loci that govern a given trait. Equal allelic
effect is an implicit assumption in the polygenic additive-dominance model
[2, 15!. In our opinion, the strongest assumption here is the equal frequencies
hypothesis. Even without random genetic drift, and with the same selection
pressure acting on each locus, the allelic frequencies may not be expected to
be the same because of mutation.

Most of the results presented here are also heavily dependent on the
hypothesis of statistical independence between loci. This hypothesis restricts
the analysis to the case of independent loci and large populations. However,
such situations may exist in artificial inbred populations created by breeders. In
plant breeding, for example, populations of 300 to 500 reproducing individuals
are common, with linkage disequilibrium restricted to loci situated on the
same chromosome (Dillmann and Charcosset, pers. comm.). In general, random
genetic drift in finite populations, as well as linkage between loci, generates
multilocus identities by descent [16, 39, 42, 43]. In that case, the validity
of our approximations remains to be checked. But, equation (16b) stresses

the importance of mean effects at each locus in evolutionary processes, when
epistasis is involved, and provides a good basis to study the evolution of genetic
variation under inbreeding for MGA traits.

As for the effect of inbreeding, we were only concerned with expectations of
the parameters. Those parameters also have a variance which may be calculated

[46]. As experimental studies always involve a finite number of populations, and
often a unique one, the variation around expected values may be important.
In particular, genetic drift and selection generate not only variation between
populations in mean performance, but also in within population variance which
contributes indirectly to the variation in selection response [1, 23!. It makes

the intensity of selection fluctuate and therefore changes the population means
at the next generation. Due to the interaction between mean and variance,
those fluctuations may even be enhanced by multiplicative gene action. We are
presently studying the combined effects of selection and random genetic drift,
including also the case of linked loci.
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APPENDIX A: Decomposition of the genotypic value under MGA
according to the factorial method

Additive effects

From equation (3), and assuming linkage equilibrium

In the factorial method, the additive effect of allele i at locus s is defined as

where symbols are the same as in the text. Using the expression (3) for p and
factoring fl at, one obtains the expression (6b) for the additive effect of allele

tics
i at locus s under MGA.

Dominance effects

The dominance effect (3ij between alleles i and j at locus s is defined

classically as 

The expression (7b) is obtained by using formulae (A.1) for Itij, and (6b) for
ais and ajs’ and again factoring fl at.

tops s

Epistatic effects
As pointed out in the text, the factorial decomposition applied under MGA

generates epistatic effects. The additive by additive effect (aa)t! pertaining
to allele i at locus s and allele k at locus t is defined as:

where /!.i+.sk+t is the expectation of genotypic values for individuals having
received gene i at locus s and gene k at locus t from one of their parents
(e.g. sire), the genes transmitted by the other parent being any gene drawn at
random in the population. Under linkage equilibrium

Using the expression for at given in equation (6a) and putting it into equations
(A.4 and A.5) gives 

which reduces to equation (8) after rearranging.



APPENDIX B: Partition of the genotypic variance under MGA

Consider the same decomposition as in equation (1) with realized values
replaced by random variables pertaining to the same genetic effects defined for
a random by chosen individual in the population

where the symbols i and j coding for the alleles are replaced by the integers
1 and 2 designating the genes transmitted by the sire and dam, respectively
(those figures being omitted in dominance effects for the sake of simplicity).
The same assumptions are made as before (i.e. infinite population size, linkage
equilibrium and panmixia), resulting in orthogonal decomposition with inde-
pendent random variables.

Additive genetic variance (QA)
By definition

and, because the paternal and maternal components are playing the same
s / B

roles, Var(als ) = Var(a2,) = ! pis a2s and afi = 2 ! C ! pis a2s J . The7, 
&dquo; 

8=1 ! &dquo;/
additive genetic variance (lOa) is then obtained by using the expression of
ais in equation (6b), and by setting

for the additive variance among at values at locus s.

Dominance genetic variance (QD)
Similarly, QD = ¿ Var(,8s). Knowing that ,8ij, = ,8ijs ( I1 lit and letting,s 

&dquo; &dquo;B!!t 7s s#t
as before

one obtains the expression (lla) for the dominance genetic variance.
Additive by additive genetic variance

From (B.1)



As previously, paternal and maternal contributions are equivalent, and the four
elementary variances are equal. Thus (omitting subscripts for parental contri-
butions) a fi ! = 4 £ £ Var((aa)!t) , with Var((aa)st) =!!pispkt(aa)2skt.

s t>.s I k 
&dquo;

Now, using equation (8) for (a!)i,!!t and equation (B.3) for the relationship
between a:s and d!_, , we have

Finally,

Other variance components
Additive by dominance genetic variance, dominance by dominance genetic

variance, as well as variances pertaining to higher order interactions can be
derived in the same way. For instance, the expression for additive by additive
epistatic variance (QAAA) can be obtained along the same lines as in equation
(B.6). In that case, there are eight variance terms for (aaa) stu paternal
and maternal contributions which are equal. As ¿pdaT,)2 = Qa,g/2, this

i ’
factor 8 cancels out with (1/2)3 owing to the introduction of the product
!as!atQau. As there are 3! possible permutations of s, t and u in (aaa)St!,
which are equivalent, the final expression for QAAA is obtained by summing up
elementary contributions over different s, t and u loci and by dividing by 3 !

(see equation 12d).


