
HAL Id: hal-00894192
https://hal.science/hal-00894192

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Restricted maximum likelihood estimation of
covariances in sparse linear models

Arnold Neumaier, Eildert Groeneveld

To cite this version:
Arnold Neumaier, Eildert Groeneveld. Restricted maximum likelihood estimation of covariances in
sparse linear models. Genetics Selection Evolution, 1998, 30 (1), pp.3-26. �hal-00894192�

https://hal.science/hal-00894192
https://hal.archives-ouvertes.fr


Original article

Restricted maximum likelihood
estimation of covariances
in sparse linear models

Arnold Neumaier Eildert Groeneveld

a Institut fur Mathematik, Universitat Wien, Strudlhofgasse 4, 1090 Vienna, Austria
b Institut fiir Tierzucht und Tierverhalten, Bundesforschungsanstalt

fur Landwirtschaft H61tystr. 10, 31535 Neustadt, Germany

(Received 16 December 1996; accepted 30 September 1997)

Abstract - This paper discusses the restricted maximum likelihood (REML) approach
for the estimation of covariance matrices in linear stochastic models, as implemented in
the current version of the VCE package for covariance component estimation in large
animal breeding models. The main features are: 1) the representation of the equations
in an augmented form that simplifies the implementation; 2) the parametrization of the
covariance matrices by means of their Cholesky factors, thus automatically ensuring their
positive definiteness; 3) explicit formulas for the gradients of the REML function for the
case of large and sparse model equations with a large number of unknown covariance
components and possibly incomplete data, using the sparse inverse to obtain the gradients
cheaply; 4) use of model equations that make separate formation of the inverse of the
numerator relationship matrix unnecessary. Many large scale breeding problems were
solved with the new implementation, among them an example with more than 250 000
normal equations and 55 covariance components, taking 41 h CPU time on a Hewlett
Packard 755. &copy; Inra/Elsevier, Paris
restricted maximum likelihood / variance component estimation / missing data /
sparse inverse / analytical gradients

Résumé - Estimation par maximum de vraisemblance restreinte de covariance dans

les systèmes linéaires peu denses. Ce papier discute de l’approche par maximum de
vraisemblance restreinte (REML) pour l’estimation des matrices de covariances dans les
modèles linéaires, qu’applique le logiciel VCE en génétique animale. Les caractéristiques
principales sont : 1) la représentation des équations sous forme augmentée qui simplifie
les calculs ; 2) le reparamétrage des matrices de variance-covariance grâce aux facteurs de
Cholesky qui assure leur caractère défini positif ; 3) les formules explicites des gradients de
la fonction REML dans le cas des systèmes d’équations de grande dimension et peu denses
avec un grand nombre de composantes de covariances inconnues et éventuellement des
données manquantes : elles utilisent les inverses peu denses pour obtenir les gradients de
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manière économique ; 4) l’utilisation des équations du modèle qui dispense de la formation
séparée de l’inverse de la matrice de parenté. Des problèmes de génétique à grande échelle
ont été résolus avec la nouvelle version, et parmi eux un exemple avec plus de 250 000
équations normales et 55 composantes de covariance, demandant 41 h de CPU sur un
Hewlett Packard 755. &copy; Inra/Elsevier, Paris
maximum de vraisemblance restreinte / estimation des composantes de variance /
données manquantes / inverse peu dense / gradient analytique

1. INTRODUCTION

Best linear unbiased prediction of genetic merit [25] requires the covariance struc-
ture of the model elements involved. In practical situations, these are usually un-
known and must be estimated. During recent years restricted maximum likelihood
(REML) [22, 42] has emerged as the method of choice in animal breeding for vari-
ance component estimation [15-17, 34-36].

Initially, the expectation maximization (EM) algorithm [6] was used for the
optimization of the REML objective function [26, 47].

In 1987 Graser et al. [14] introduced derivative-free optimization, which in the
following years led to the development of rather general computing algorithms
and packages [15, 28, 29, 34] that were mostly based on the simplex algorithm
of Nelder and Mead [40]. Kovac [29] made modifications that turned it into a stable
algorithm that no longer converged to noncritical points, but this did not improve
its inherent inefficiency for increasing dimensions. Ducos et al. [7] used for the
first time the more efficient quasi-Newton procedure approximating gradients by
finite differences. While this procedure was faster than the simplex algorithm it
was also less robust for higher-dimensional problems because the covariance matrix
could become indefinite, often leading to false convergence. Thus, either for lack of
robustness and/or excessive computing time often only subsets of the covariance
matrices could be estimated simultaneously.
A comparison of different packages [45] confirmed the general observation of

Gill [13] that simplex-based optimization algorithms suffer from lack of stability,
sometimes converging to noncritical points while breaking down completely at more
than three traits. On the other hand the quasi-Newton procedure with optimization
on the Cholesky factor as implemented in a general purpose VCE package [18] was
stable and much faster than any of the other general purpose algorithms. While
this led to a speed-up of between two for small problems and (for some examples)
200 times for larger ones as compared to the simplex procedure, approximating
gradients on the basis of finite differences was still exceedingly costly for higher
dimensional problems [17].

It is well-known that optimization algorithms generally perform better with
analytic gradients if the latter are cheaper to compute than finite difference

approximations.
In this paper we derive, in the context of a general statistical model, cheap

analytical gradients for problems with a large number p of unknown covariance
components using sparse matrix techniques. With hardly any additional storage
requirements, the cost of a combined function and gradient evaluation is only
three times that of the function value alone. This gives analytic gradients a huge



advantage over finite difference gradients. Misztal and Perez-Enciso [39] investigated
the use of sparse matrix technique in the context of an EM algorithm which is

known to have much worse convergence properties as compared to quasi-Newton
(see also Thompson et al. [48] for an improvement in its space complexity), using
an LDLT factorization and the Takahashi inverse [9]; no results in a REML

application were given. A recent papers by Wolfinger et al. [50] (based again on
the W transformation) and Meyer [36] (based on the simpler REML objective
formulation of Graser et al. [14]) also provide gradients (and even Hessians), but
there a gradient computation needs a factor of O(p) more work and space than
in our approach, where the complete gradient is found with hardly any additional
space and with (depending on the implementation) two to four times the work for
a function evaluation.

Meyer [37] used her analytic second derivatives in a Newton-Raphson algorithm
for optimization. Because the optimization was not restricted to positive definite
covariance matrix approximations (as our algorithm does), she found the algorithm
to be markedly less robust than (the already not very robust) simplex algorithm,
even for univariate models.

We test the usefulness of our new formulas by integrating them into the VCE
covariance component estimation package for animal (and plant) breeding mod-
els [17]. Here the gradient routine is combined with a quasi-Newton optimization
method and with a parametrization of the covariance parameters by the Cholesky
factor that ensures definiteness of the covariance matrix. In the past, this combi-
nation was most reliable and had the best convergence properties of all techniques
used in this context [45]. Meanwhile, VCE is being used widely in animal and even
plant breeding.

In the past, the largest animal breeding problem ever solved ([21], using a quasi-
Newton procedure with optimization on the Cholesky factor) comprised 233 796
linear unknowns and 55 covariance components and required 48 days of CPU time
on a 100 MHz HP 9000/755 workstation. Clearly, speeding up the algorithm is of
paramount importance. In our preliminary implementation of the new method (not
yet optimized for speed), we successfully solved this (and an even larger problem
of more than 257 000 unknowns) in only 41 h of CPU time, with a speed-up factor
of nearly 28 with respect to the finite difference approach.

The new VCE implementation is available free of charge from the ftp site

ftp://192.108.34.1/pub/vce3.2/. It has been applied successfully throughout
the world to hundreds of animal breeding problems, with comparable performance
advantages [1-3, 19, 21, 38, 46, 49].

In section 2 we fix notation for linear stochastic models and mixed model

equations, define the REML objective function, and review closed formulas for
its gradient and Hessian. In sections 3 and 4 we discuss a general setting for

practical large scale modeling, and derive an efficient way for the calculation of
REML function values and gradients for large and sparse linear stochastic models.

All our results are completely general, not restricted to animal breeding. How-
ever, for the formulas used in our implementation, it is assumed that the covariance
matrices to be estimated are block diagonal with no restrictions on the (distinct)
diagonal blocks.



The final section 5 applies the method to a simple demonstration case and several
large animal breeding problems.

2. LINEAR STOCHASTIC MODELS AND RESTRICTED
LOGLIKELIHOOD

Many applications (including those to animal breeding) are based on the gener-
alized linear stochastic model

with fixed effects )3, random effects u and noise 11. Here cov(u) denotes the
covariance matrix of a random vector u with zero mean. Usually, G and D are
block diagonal, with many identical blocks.

By combining the two noise terms, the model is seen to be equivalent to the
simple model y = X(3 + 11’, where rl’ is a random vector with zero mean and

(mixed model) covariance matrix V = ZGZT + D. Usually, V is huge and no
longer block diagonal, leading to hardly manageable normal equations involving
the inverse of V. However, Henderson [24] showed that the normal equations are
equivalent to the mixed model equations

This formulation avoids the inverse of the mixed model covariance matrix V
and is the basis of most modern methods for obtaining estimates of u and j3 in
equation (1).

Fellner [10] observed that Henderson’s mixed model equations are the normal
equations of an augmented model of the simple form

where

Thus, without loss in generality, we may base our algorithms on the simple
model [3], with a covariance matrix C that is typically block diagonal. This
automatically produces the formulas that previously had to be derived in a less
transparent way by means of the W transformation; cf. [5, 11, 23, 50J.

The ’normal equations’ for the model [3] have the form

where



Here AT denotes the transposed matrix of A. By solving the normal equations
(4), we obtain the best linear unbiased estimate (BLUE) and, for the predictive
variables, the best linear unbiased prediction (BLUP)

for the vector x, and the noise e = Ax - b is estimated by the residual

If the covariance matrix C = C(w) contains unknown parameters w (which
we shall call ’dispersion parameters’, these can be estimated by minimizing the
’restricted loglikelihood’

quoted in the following as the ’REML objective function’, as a function of the
parameters w. (Note that all quantities in the right-hand side of equation (6) depend
on C and hence on w.)

More precisely, equation (6) is the logarithm of the restricted likelihood, scaled by
a factor of - 2 and shifted by a constant depending only on the problem dimension.
Under the assumption of Gaussian noise, the restricted likelihood can be derived
from the ordinary likelihood restricted to a maximal subspace of independent error
contrasts (cf. Harville [22]; our formula (6) is the special case of his formula when
there are no random effects). Under the same assumption, another derivation as
a limiting form of a parametrized maximum likelihood estimate was given by
Laird [31].
When applied to the generalized linear stochastic model (1) in the augmented

formulation discussed above, the REML objective function (6) takes the computa-
tionally most useful form given by Graser et al. [14].

The following proposition contains formulas for computing derivatives of the
REML function. We write

for the derivative with respect to a parameter w! occurring in the covariance matrix.

Proposition [22, 32, 42, 50]. Let

where A and B are as previously defined and

Then



where

(Note that, since A is nonsquare, the matrix P is generally nonzero although it
always satisfies PA = 0.)

3. FULL AND INCOMPLETE ELEMENT FORMULATION

For the practical modeling of linear stochastic systems, it is useful to split
model (3) into blocks of uncorrelated model equations which we call ’element
equations’. The element equations usually fall into several types, distinguished by
their covariance matrices. The model equation for an element v of type y has the
form

Here All is the coefficient matrix of the block of equations for element number v.
Generally, All is very sparse with few rows and many columns, most of them zero,
since only a small subset of the variables occurs explicitly in the vth element.

Each model equation has only one noise term. Correlated noise must be put
into one element. All elements of the same type are assumed to have statistically
independent noise vectors, realizations of (not necessarily Gaussian) distributions
with zero mean and the same covariance matrix. (In our implementation, there are
no constraints on the parametrization of the Coy, but it is not difficult to modify the
formulas to handle more restricted cases.) Thus the various elements are assigned
to the types according to the covariance matrices of their noise vectors.

3.1. Example animal breeding applications

In covariance component estimation problems from animal breeding, the vector
x splits into small vectors /3k of (in our present implementation constant) size ntrait
called ’effects’. The right-hand side b contains measured data vectors y, and zeros.
Each index v corresponds to some animal. The various types of elements are as
follows.

Measurement elements: the measurement vectors y&dquo; E lRntra’t are explained in
terms of a linear combination of effects (3i C 7Rnt!a’t,

Here the iwi form an nrec x neff index matrix, the J.1vl form an nrec x neff coefficient
matrix, and the data records y! are the rows of an nrec x ntrait measurement matrix.
In the current implementation, corresponding rows of the coefficient matrix and the



measurement matrix are concatenated so that a single matrix containing the floating
point numbers results. If the set of traits splits into groups that are measured on
different sets of animals, the measurement elements split accordingly into several
types.

Pedigree elements: for some animals, identified by the index T of their additive
genetic effect (3T, we may know the parents, with corresponding indices V (father)
and M (mother). Their genetic dependence is modeled by an equation

The indices are stored in pedigree records which contain a column of animal indices
T(v) and two further columns for their parents (V(v), M(v)).
Random effect elements: certain effects /3 R(-y) h = 3, 4, ...) are considered as

random effects by including trivial model equations

As part of the model (13), these trivial elements automatically produce the
traditional mixed model equations, as explained in section 2.
We now return to the general situation. For elements numbered by v = 1, ..., N,

the full matrix formulation of the model (13) is the model (3) with

where -y(v) denotes the type of element v.
A practical algorithm must be able to account for the situation that some

components of b, are missing. We allow for incomplete data vectors b by simply
deleting from the full model the rows of A and b for which the data in b are missing.
This is appropriate whenever the data are missing at random [43]; note that this
assumption is also used in the missing data handling by the EM approach [6, 27].

Since dropping rows changes the affected element covariance matrices and their
Cholesky factors in a nontrivial way, the derivation of the formulas for incomplete
data must be performed carefully in order to obtain correct gradient information.
We therefore formalize the incomplete element formulation by introducing projec-
tion matrices P, coding for missing data pattern [31]. If we define P, as the (0,1)
matrix with exactly one 1 per row (one row for each component present in b,),
at most one 1 per column (one column for each component of b,), then P&dquo;A&dquo;
is the matrix obtained from A, by deleting the rows for which data are missing,
and P,b, is the vector obtained from b, by deleting the rows for which data are
missing. Multiplication by pT on the right of a matrix removes the columns cor-
responding to missing components. Conversely, multiplication by pT on the left or
P on the right restores missing rows or columns, respectively, by filling them with
zeros.

Using the appropriate projection operators, the model resulting from the full
element formulation (13) in the case of some missing data has the incomplete



element equations

where

The incomplete element equations can be combined to full matrix form (3), with

and the inverse covariance matrix takes the form

where

Note that C!, Mv, and log det C! (a byproduct of the inversion via a Cholesky
factorization, needed for the gradient calculation) depend only on type q(v) and
missing data pattern P,, and can be computed in advance, before the calculation
of the restricted loglikelihood begins.

4. THE REML FUNCTION AND ITS GRADIENT IN ELEMENT
FORM

From the explicit representations (16) and (17), we obtain the following formulas
for the coefficients of the normal equations

After assembling the contributions of all elements into these sums, the coefficient
matrix is factored into a product of triangular matrices

using sparse matrix routines [8, 20]. Prior to the factorization, the matrix is reor-
dered by the multiple minimum degree algorithm in order to reduce the amount
of fill in. This ordering needs to be performed only once, before the first function



evaluation, together with a symbolic factorization to allocate storage. Without loss
of generality, and for the sake of simplicity in the presentation, we may assume
that the variables are already in the correct ordering; our programs perform this
ordering automatically, using the multiple minimum degree ordering ’genmmd’ as
used in ’Sparsepak’ [43].

Note that R is the transposed Cholesky factor of B. (Alternatively, one can
obtain R from a sparse QR factorization of A, see e.g. Matstoms [33].)

To take care of dependent (or nearly dependent) linear equations in the model
formulation, we replace in the factorization small pivots < sB2i by 1. (The choice
E = (macheps)2!3, where macheps is the machine accuracy, proved to be suitable.
The exponent is less than 1 to allow for some accumulation of roundoff errors, but
still guarantees 2/3 of the maximal accuracy.) To justify this replacement, note
that in the case of consistent equations, an exact linear dependence results in a
factorization step as in the following

In the presence of rounding errors (or in case of near dependence) we obtain
entries of order eBii in place of the diagonal zero. (This even holds when Bii is
small but nonzero, since the usual bounds on the rounding errors scale naturally
when the matrix is scaled symmetrically, and we may choose the scaling such that
nonzero diagonal entries receive the value one. Zero diagonal elements in a positive
semidefinite matrix occur for zero rows only, and remain zero in the elimination
process.) If we add Bii to Rii when Rii < eBii and set Rii = 1 when Bii = 0, the
near dependence is correctly resolved in the sense that the extreme sensitivity or
arbitrariness in the solution is removed by forcing a small entry into the ith entry
of the solution vector, thus avoiding the introduction of large components in null
space directions. (It is useful to issue diagnostic warnings giving the indices of the
column indices i where such near dependence occurred.)

The determinant

is available as a byproduct of the factorization. The above modifications to cope
with near linear dependence are equivalent to adding prior information on the
distribution of the parameters with those indices where pivots changed. Hence,
provided that the set of indices where pivots are modified does not change with
the iteration, they produce a correct behavior for the restricted loglikelihood. If
this set of indices changes, the problem is ill-posed, and would have to be treated
by regularization methods such as ridge regression, which is far too expensive for
the large-scale problems for which our method is designed. In practice we have not



seen a failure of the algorithm because of the possible discontinuity in the objective
function caused by our procedure for handling (near) dependence.

Once we have the factorization, we can solve the normal equations RTRx = a
for the vector x cheaply by solving the two triangular systems

(In the case of an orthogonal factorization one has instead to solve Rx = y, where
y = QTb.)

From the best estimate x for the vector x, we may calculate the residual as

with the element residuals

Then we obtain the objective function as

Although the formula for the gradient involves the dense matrix B-1, the
gradient calculation can be performed using only the components of B-1 within
the sparsity pattern of RT + R. This part of B-’ is called the ’sparse inverse’ of
B and can be computed cheaply; cf. Appendix 1. The use of the sparse inverse for
the calculation of the gradient is discussed in Appendix 2.

The resulting algorithm for the calculation of a REML function value and its
gradient is given in table I, in a form that makes good use of dense matrix algebra
in the case of larger covariance matrix blocks Cl,. The symbol EB denotes adding a
dense subvector (or submatrix) to the corresponding entries of a large vector (or
matrix). In the calculation of the symmetric matrices B’, W, M’ and K’, it suffices
to calculate the upper triangle.

Symbolic factorization and matrix reordering are not present in table I since
these are performed only once before the first function evaluation. In large-
scale applications, the bulk of the work is in the computation of the Cholesky
factorization and the sparse inverse. Using the sparse inverse, the work for function
and gradient calculation is about three times the work for function evaluation alone
(where the sparse inverse is not needed). In particular, when the number p of
estimated covariance components is large, the analytic gradient takes only a small
fraction 2/p of the time needed for finite difference approximations.

Note also that for a combined function and gradient evaluation, only two sweeps
through the data are needed, an important asset when the amount of data is so
large that it cannot be held in main memory.





5. ANIMAL BREEDING APPLICATIONS

In this section we give a small numerical example to demonstrate the setup of
various matrices, and give less detailed results on two large problems. Many other
animal breeding problems have been solved, with similar advantages for the new
algorithm as in the examples given below [1-3, 19, 38, 49].

5.1. Small numerical example

Table II gives the data used for a numerical example. There are in all eight
animals which are listed with their parent codes in the first block under ’pedigree’.
The first five of them have measurements, i.e. dependent variables listed under ’dep
var’. Each animal has two traits measured except for animal 2 for which the second
measurement is missing. Structural information for independent variables is listed
under ’indep var’. The first column in this block denotes a continuous independent
variable, such as weight, for which a regression is to be fitted. The following columns
are some fixed effect, such as sex, a random component, such as herd and the animal
identification. Not all effects were fitted for both traits. In fact, weight was only
fitted for the first trait as shown by the model matrix in table IIZ

The input data are translated into a series of matrices given in table IV.
To improve numerical stability, dependent variables are scaled by their standard
deviation and mean, while the continuous dependent variable is shifted by its mean
only.



Since there is only one random effect (apart from the correlated animal effect),
the full element formulation [13] has three types of model equations, each with an
independent covariance structure C.Y.

Measurement elements (type y = 1): the dependent variables give rise to type
= 1 as listed in the second column in table IV. The second entry is special in that
it denotes the residual covariance matrix for this record with a missing observation.
To take care of this, a new mtype is created for each pattern of missing values
(with mtype = type if no value is missing) [20]; i.e. the different values of mtype
correspond to the different matrices C!. However, it is still based on C1 as given
in table V which lists all types in this example.

Pedigree elements (type q = 2): the next nine rows in table IV are generated from
the pedigree information. With both parents known, three entries are generated
in both the address and coefficient matrices. With only one parent known, two
addresses and coefficients are needed, while only one entry is required if no parent
information is available. For all entries the type is -y = 2 with the covariance
matrix C2.
Random effect elements (type y = 3): the last four rows in table IV are the entries

due to random effects which comprise three herd levels in this example. They have
type -y = 3 with the covariance matrix C3.

All covariance matrices are 2 x 2, so that p = 3 + 3 + 3 = 9 dispersion parameters
need to be estimated.

The addresses in the following columns in table IV are derived directly from
the level codes in the data (table 77) allocating one equation for each trait within
each level pointing to the beginning of first trait in the respective effect level.
For convenience of programming the actual address minus 1 is used. For linear



covariables only one equation is created, leading to the address of 0 for all five
measurements.

The coefficients corresponding to the above addresses are stored in another
matrix as given in table IV. The entries are 1 for class effects and continuous
variables in the case of regression (shifted by the mean).

The address matrices and coefficient matrices in table IV form a sparse repre-
sentation of the matrix A of equation (3) and can thus be used directly to set
up the normal equations. Note that only one pass through the model equations is
required to handle data, random effects and pedigree information. Also, we would
like to point out that this algorithm does not require a separate treatment of the
numerator relationship matrix. Indeed, the historic problem of obtaining its inverse
is completely avoided with this approach.

As an example of how to set up the normal equations, we look at line 12 of
table IV (because it does not generate as many entries as the first five lines). For
the animal labelled T in table IV, the variables associated with the two traits have
index T + 1 and T + 2. The contributions generated from line 12,

are given in table VIII.





Starting values for all Cw for the scaled data were chosen as 3 for all variances
and 0.0001 for all covariances, amounting to a point in the middle of the parameter
space. With Cw specified as above we have for its inverse

Optimization was performed with a BFGS algorithm as implemented by Gay
[12]. For the first function evaluation we obtain a gradient given in table VI with
a function value of 17.0053530. Convergence was reached after 51 iterations with
solutions given in table VII at a loglikelihood of 15.47599750.

5.2. A large problem

A large problem from the area of pig breeding has been used to test an

implementation of the above algorithm in the VCE package [17]. The data set
comprised 26 756 measurement records with six traits. Table IX gives the number
of levels for each effect leading to 233 796 normal equations. The columns headed
by ’trait’ represent the model matrix (cf. table III) mapping the effects on the traits.
As can be seen, the statistical model is different for the various traits.

Because traits 1 through 4 and traits 5 and 6 are measured on different animals
no residual covariances can be estimated, resulting in two types la and lb, with
4 x 4 and 2 x 2 covariance matrices Cla and C16. Together with the 6 x 6 covariance
matrices C2 and C3 for pedigree effect 9 and random effect 8, respectively, a total
of 55 covariance components have to be estimated. The coefficient matrix of the
normal equations resulted in 3 961 594 nonzero elements in the upper triangle,
which lead to 5 993 686 entries in the Cholesky factor.



We compared the finite difference implementation of VCE [17] with an analytic
gradient implementation based on the techniques of the present paper. An uncon-
strained minimization algorithm written by Schnabel et al. [44] that approximates
the first derivatives by finite differences was used to estimate all 55 components
simultaneously. The run performed 37 021 function evaluations at 111.6 s each on
a Hewlett Packard 755 model amounting to a total CPU time of 47.8 days. To our
knowledge, it was the first estimate of more than 50 covariance components simul-
taneously for such a large data set with a completely general model. Factorization
was performed by a block sparse Cholesky algorithm due to Ng and Peyton [41].

Using analytic gradients, convergence was reached after 185 iterations taking
13 min each; the less efficient factorization from Misztal and Perez-Enciso [39] was
used here because of the availability of their sparse inverse code. An even slightly
better solution was reached and only 41 h of CPU time were used, amounting to
a measured speed-up factor of nearly 28. However, this speed-up underestimates
the superiority of analytical gradients because the factorization used in the Misztal
and Perez-Enciso’s code is less efficient than Ng and Peyton’s block sparse Cholesky
factorization used for approximating the gradients by finite differences. Therefore,
the following comparison will be based on CPU time measurements made on Misztal
and Perez-Enciso’s factorization code.

For the above data set the CPU usage of the current implementation - which
has not yet been tuned for speed (so the sparse inverse takes three to four times
the time for the numerical factorization) - is given in table X. As can be seen from
this table computing one approximated gradient by finite differencing takes around
202.6 * 55 = 11 143 s, while one analytical gradient costs only around four times the
set-up and solving of the normal equations, i.e. 812 s. Thus, the expected speed-
up would be around 14. The 37 021 function evaluations required in the run with
approximated gradients (which include some linear searches) would have taken 86.8
days with the Misztal and Perez-Enciso code. Thus, the resultant superiority of our
new algorithm is nearly 51 for the model under consideration. This is much larger
than the expected speed-up of 14 mainly because, with approximated gradients,
673 optimization steps were performed as compared to the 185 with analytical
gradients.

Such a high number of iterations with approximated gradients could be observed
in many runs with higher numbers of dispersion variables and can be attributed
to the reduced accuracy of the approximated gradients. In some extreme cases, the



optimization process even aborted when using approximated gradients, whereas
analytical gradients yielded correct solutions.

5.3. Further evidence .

Table XI presents data on a number of different runs that have been performed
with our new algorithm. The statistical models used in the datasets vary substan-
tially and cover a large range of problems in animal breeding. The new algorithm
showed the same behaviour also on a plant breeding dataset (beans) which has a
quite different structure as compared to the animal data sets.

The datasets (details can be obtained from the second author) cover a whole
range of problem sizes both in terms of linear and covariance components. Accord-
ingly, the number of nonzero elements varies substantially from a few ten thousands
up to many millions. Clearly, the number of iterations increases with the number of
dispersion variables with a maximum well below 200. Some of the runs estimated
covariance matrices with very high correlations well above 0.9. Although this is close
to the border of the parameter space it did not seem to slow down convergence, a
behaviour that contrasts markedly with that of EM algorithms.



For the above datasets the ratio of obtaining the gradient after and relative to
the factorization was between 1.51 and 3.69 substantiating our initial claim that the
analytical gradient can be obtained at a small multiple of the CPU time needed to
calculate the function value alone. (For the large animal breeding problem described
in table X, this ratio was 2.96.) So far, we have not experienced any ratios that were
above the value of 4. From this we can conclude that with increasing numbers of
dispersion variables our algorithm is inherently superior to approximated gradients
by finite differences.

In conclusion, the new version of VCE not only computes analytical gradients
much faster than the finite difference approximations (with the superiority increas-
ing with the number of covariance components), but also reduces the number of
iterations by a factor of around three, thereby expanding the scope of REML covari-
ance component estimation in animal breeding models considerably. No previous
code was able to solve problems of the size that can be handled with this imple-
mentation.
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APPENDIX 1: Computing the sparse inverse

A cheap way to compute the sparse inverse is based on the relation

for the inverse B = B-1. By comparing coefficients in the upper triangle of this
equation, noting that (R-1)ii = (Rii)-1, we find that

where 6ik denotes the Kronecker symbol; hence

To compute Bik from this formula, we need to know the Bjk for all j > i with

Ri! ! 0. Since the factorization process produces a sparsity structure with the
property

(ignoring accidental zeros from cancellation that are treated as explicit zeros), one
can compute the components of the inverse B within the sparsity pattern of RT+R
by equation (A2) without calculating any of its entries outside this sparsity pattern.

If equation (A2) is used in the ordering i = n, n - 1, ....,1, the only additional
space needed is that for a copy of the RZ! ! 0, (j > i), which must be saved before
we compute the B,!(R,! 7! 0, k > i) and overwrite them over Rik. (A similar
analysis is performed for the Takahashi inverse by Erisman and Tinney [9], based
on an LDLT factorization.) Thus the number of additional storage locations needed
is only the maximal numbers of nonzeros in a row of R.

The cost is a small multiple of the cost for factoring B, excluding the symbolic
factorization; the proof of this by Misztal and Perez-Enciso [39] for the sparse
inverse of an LDLT factorization applies almost without change.

APPENDIX 2: Derivation of the algorithm in table I

For the derivative with respect to a variable that occurs in Coy only, equation
(15) implies that

(The computation of Coy is addressed below.) Using the notation [... ], for the vth
diagonal block of [...] and trpTX = trXpT, we find from



(a consequence of the Proposition) the formula

hence

ii k

with the symmetric matrices

Therefore,

Up to this point, the dependence of the covariance matrix Coy on parameters
was arbitrary. For an implementation, one needs to decide on the independent
parameters in which to express the covariance matrices. We made the following
choice in our implementation, assuming that there are no constraints on the
parametrization of the C,y; other choices can be handled similarly, with a similar
cost resulting for the gradient. Our parameters are, for each type -y, the nonzero
entries of the Cholesky factor L,y of Coy, defined by the equation

together with the conditions

since this automatically guarantees positive definiteness. (In the limiting case, where
a block of the true covariance matrix is semidefinite only, this will be revealed in
the minimization procedure by converging to a singular L.y while each computed
Loy is still nonsingular.)
We now consider derivatives

with respect to the parameter

where -y is one of the types, and the indices i, k satisfy i ! k.
Clearly, Loy is zero except for a 1 in position (i, k), and, using the notation e’ for

the ith column of an identity matrix, we can express this as

Therefore,



If we insert this into equation (A4), we find

so that

In order to make good use of the sparsity structure of the problem, we have to
look in more detail at the calculation of M!. The first interior term in M’ is easy
since

Correct treatment of the other interior term is crucial for good speed. Suppose
the ith row of A&dquo; has nonzeros in positions k E I&dquo;,2 only. Then the term of K’,
involving the inverse B = B-1 can be reformulated as

Hence A&dquo;B-lAv is a product of small submatrices. Under our assumption that
all entries of Coy are estimated, C’ and hence M, and [#]w are structurally full.
Therefore, [R + RT], is full, too, and [B]v is part of the sparse inverse and hence
cheaply available. Since the factorization is no longer needed at this stage, the
sparse inverse can be stored in the space allocated to the factorization.


