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Summary - Two procedures for computing the marginal posterior density of heritabilities
or genetic correlations, ie, Laplace’s method to approximate integrals and Gibbs sampling,
are compared. A multiple trait animal model is considered with one random effect,
no missing observations and identical models for all traits. The Laplace approximation
consists in computing the marginal posterior density for different values of the parameter of
interest. This approximation requires the repeated evaluation of traces and determinants,
which are easy to compute once the eigenvalues of a matrix of dimension equal to the
number of animals are determined. These eigenvalues can be efficiently computed by the
Lanczos algorithm. The Gibbs sampler generates samples from the joint posterior density.
These samples are used to estimate the marginal posterior density, which is exact up to
a Monte-Carlo error. Both procedures were applied to a data set with semen production
traits of 1957 Normande bulls. The traits analyzed were volume of the ejaculate, motility
score and spermatozoa concentration. The Laplace approximation yielded very accurate
approximations of the marginal posterior density for all parameters with much lower
computing costs.

marginal posterior density / Laplace approximation / Lanczos method / Gibbs
sampling / genetic parameters

Résumé - Calcul des densités marginales a posteriori des paramètres génétiques
d’un modèle animal multicaractère en utilisant une approximation laplacienne ou
l’échantillonnage de Gibbs. Deux procédures de calcul de la densité marginale a poste-
riori des héritabilités et des corrélations génétiques, à savoir la méthode de Laplace pour
l’appro!imatiou des intégrales et l’échantillonnage de Gibbs, sont comparées. Pour cela,
nous considérons un modèle animal multicaractère avec un effet aléatoire, sans observa-
tions manquantes et avec un modèle identique pour chaque caractère. L’approximation de
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Laplace conduit au calcul de la densité marginale a posteriori pour différentes valeurs
du paramètre qui nous intéresse. Cela nécessite l’évaluation répétée de traces et de
déterminants qui sont simples à calculer une fois que les valeurs propres d’une matrice de
dimension égale au nombre d’animaux ont été déterminées. Ces valeurs propres peuvent
être calculées de manière e,f!cace à l’aide de l’algorithme de Lanczos. L’échantillonnage
de Gibbs génère des échantillons de la densité conjointe a posteriori. Ces échantillons
sont utilisés pour estimer la densité marginale a posteriori, qui est exacte à une erreur de
Monte Carlo près. Les deux procédures ont été appliquées à un fichier de données compor-
tant les caractères de production de semence recueillies sur 1957 taureaux Normands. Les
caractères analysés étaient le volume de l’éjaculat, une note de motilité et la concentration
en spermatozoïdes. L’approximation laplacienne a permis une approximation très précise
de la densité marginale a posteriori de tous les paramètres avec un coût de calcul beaucoup
plus réduit.
densité marginale a posteriori / approximation de Laplace / méthode de Lanczos /
échantillonnage de Gibbs / paramètres génétiques

INTRODUCTION

The optimization of breeding programs relies on accurate estimates of genetic pa-
rameters, ie, heritabilities and genetic correlations. Genetic evaluations of selection
candidates by best linear unbiased prediction (BLUP; Henderson, 1973) assumes
known variance components which, in practice, are replaced by estimates. Thus, it
seems desirable to have an idea about the accuracy of the estimates used. Restricted
maximum likelihood (REML; Patterson and Thompson, 1971) is widely regarded as
the method of choice for estimation of variance components. REML estimates have
known large sample properties under the concept of repeated sampling of the data
analyzed but unknown small sample distributions. In contrast, a Bayesian analysis
yields an exact posterior probability density of the parameters of interest for the
data set at hand (Gianola and Fernando, 1986). REML estimates correspond to the
mode of the posterior distribution marginalized with respect to the location param-
eters in a Bayesian analysis with flat priors for fixed effects and variance components
(Harville, 1977). Gianola and Foulley (1990) used two arguments for suggesting an
alternative method for variance component estimation. First, REML estimates are
joint modes of all (co)variance components rather than marginal modes. The latter
are a better approximation to the posterior mean, which is the optimum Bayes
estimator under a quadratic loss function. Second, if interest is only in a subset
of the (co)variance components the remaining (co)variance components should be
regarded as nuisance parameters and inferences should take into account the error
incurred in estimating these nuisance variance components. Gianola and Foulley
(1990) suggest basing inferences about the variance components of interest on their
marginal posterior density.

Various methods exist for marginalizing the joint posterior density of variance
components. Analytical integration is possible only for certain parameters in simple
univariate models, eg, for obtaining the marginal posterior density of the variance
ratio (or the heritability) in a single trait linear mixed model with one random effect
(Gianola et al, 1990b). With more complex models, approximations or Monte-Carlo
integration techniques are used to obtain marginal posterior densities. Tierney
and Kadane (1986) have suggested computing marginal posterior densities by



Laplace’s method to approximate integrals. In animal breeding the method was first
considered by Cantet et al (1992) for a linear mixed model with maternal effects
and has been applied by Tempelman and Gianola (1993) to a Poisson mixed model
and recently by Ducrocq and Casella (1996) to a mixed survival model. Laplacian
integration involves the repeated computation of second derivatives of the logarithm
of the posterior density of all (co)variance components after integration of location
parameters. For single trait animal models with one random effect or for multiple
trait models where a canonical transformation is possible, the derivatives can be
efficiently computed once all eigenvalues of a symmetric matrix of dimension of
the number of animals are determined (Robert and Ducrocq, 1996). Robert and
Ducrocq (1996) have shown that the Lanczos algorithm is well suited to computing
these eigenvalues.

As an alternative, Monte-Carlo integration can be used to obtain the exact
marginal posterior distribution up to the Monte-Carlo error. Gibbs sampling
(Gelfand and Smith, 1990; Casella and George, 1992), a Markov chain Monte-
Carlo procedure, is becoming an increasingly important tool in statistical analysis
(Gilks et al, 1996). The Gibbs sampler generates samples from the joint (marginal)
posterior distribution. The samples are used to derive the desired summary statistics
of the target distribution. Applications in animal breeding have rapidly increased in
recent years (eg, Wang al, 1994; Janss et al, 1995; Sorensen et al, 1995; Van Tassell
and Van Vleck, 1996).

This paper considers the computation of the marginal posterior density of heri-
tabilities or genetic correlations of a simple multiple trait animal model. Heritabili-
ties and genetic correlations are nonlinear functions of (co)variance components. A
second order Laplace approximation of marginal densities of nonlinear functions has
been derived by Tierney et al (1989, 1991) and is presented in detail. The Laplace
approximation is compared to Gibbs sampling by applying both procedures to a
data set of semen production traits of Normande bulls.

METHODS

Model

Consider the multiple trait mixed model with only one random effect, equal
incidence matrices for all t traits and no missing observations:

where y is the vector of observations of order n ! t, It is an identity matrix of order t
by t, X and Z are known incidence matrices of order n by p and n by q, respectively,
b is the vector of fixed effects of order p . t and a is the vector of random additive
genetic effects of order (jf t, and e is the vector of residuals of order n - t.

The conditional probability density function of the observations is:

with Ro the (co)variance matrix of residual effects of order t by t.



The prior distribution for the unknown location parameters are assumed to be:

with Go the matrix of additive genetic (co)variances of order t by t and A the
numerator relationship matrix of order q by q.

For the (co)variance matrices the prior distribution is assumed to be an inverse
Wishart distribution (eg, Gelman et al, 1995):

. 1

with the known parameters degree of belief vi (analogous to degrees of free-
dom) and scale matrix Vi of order t by t, where i stands either for G or
R. The expected value of the inverse Wishart distribution is (for example for
Go) E(GowG, VG) _ (vG - t - 1)-1VG, which may be used for choosing VG. The
parameters b, a, Go and Ro are assumed to be independent a priori.

The joint posterior probability density of all parameters is defined as the product
of the probability density of the observations and the joint prior density of the
parameters and can be written as:

For this study the parameters of interest are functions of the (co)variance
components in Go and R!, ie, variance ratios and correlations. Therefore, 0 is
a nuisance parameter that should be integrated out of the joint posterior density.
As shown by Gianola et al (1990a) this can be achieved analytically leading to the
following marginal posterior probability density of all (co)variance components:



where 9 [(Ro <8 W’W) + (Go 1 &reg; £)) ! 1 (Ra 1 &reg; W’)y is the solution to the
mixed model equations (Henderson, 1973).

To draw inference about functions of a subset of the (co)variance components,
a further marginalization of the posterior density is required. Analytical solutions
are not available.

Laplace approximation

Approximation of marginal posterior probability densities using Laplace’s method
has been suggested by Tierney and Kadane (1986). They considered the case
where the vector of parameters can be partitioned as 6 = [o’i, (T2], where !1 is
the parameter of interest and Q2 is the nuisance parameter that is integrated out
of the posterior distribution using Laplace’s method to approximate integrals.

Genetic parameters such as heritabilities or genetic correlations are nonlinear
functions of (co)variance components. Inferences about genetic parameters should
therefore be based on marginal densities of nonlinear functions of (co)variance
components. Tierney et al (1989, 1991) extended the work of Tierney and Kadane
(1986) for the approximation of marginal posterior distributions of nonlinear
functions.

Let T = g(u) be the nonlinear function of interest of the m parameters in 0&dquo;.
We assume here that T is a scalar (eg, heritability or genetic correlation) but this
assumption is not required for the following derivation. A new parameterization is
defined as <1>(0&dquo;) = {<I>l (0&dquo;), <1>2 (O&dquo;n = {g( 0&dquo;), !2(!)} partitioned into the nonlinear
function of interest and a function 4)2 that ensures that the transformation

is one to one, although it might be difficult to specify <1>2 explicitly. The
approximation proposed by Tierney et al (1989, 1991) does not depend on an
explicit reparameterization. The only requirement is the existence of a one to one
transformation in a sufficiently small neighbourhood U of the joint mode 6. In our
application 4)2 is easy to specify and the approximation caused by the restriction
to the neighbourhood U does not occur.

In order to obtain the marginal distribution of’[ = g( 0&dquo;), the nuisance parameters
u2 = 4Y2 (u) in the new parameterization must be integrated out

where J (4) -1 !(r,U2)) is the Jacobian matrix of the transformation <t> -1.
Let 8r be the argument on the original scale that maximizes log p(6!y) sub-

ject to the constraint g(u) = T. In the new parameterization q!(8T) maximizes
log p( <t> -1 (g( 0&dquo;), U2) Iy) subject to the constraint g( 0&dquo;) = T. At the constrained mode
4)(&,r), the gradient of the Lagrangian log p(<t>-l(g(O&dquo;), U2)!y) + A(g(u) - -r) is

zero, where A is a Lagrange multiplier.
Now, log p(4) -’(r, u2)ly) in [4] for fixed T is approximated using a second order

Taylor series expansion around 4)2(&’):



In expression [5] the part that depends on U2 is the kernel of a normal distribution
with mean <l>2(Ô’’1’) and variance Qr,22. The normalizing constant of this kernel is
(27r) - 9 1 f2r,221 2, which leads to the following approximation of equation [4]:

In expression [6] S2T,22 and J(6’-r) depend on an explicit specification of !2(!).
Following Tierney et al (1989, 1991), we now derive an alternative expression for
[6] that does not require an explicit reparameterization.

Let S2T and HT be the matrices of second derivatives of the Lagrangian
evaluated at the constrained mode in the new and the original parameterization,
respectively, ie

with u’ = [g( 0&dquo;), u’], and

Note that n!,!2 in equation [5] is equal to the diagonal block of fl-1 pertaining
to u2 = !2(!)!

Following Meyer and Smith (1996, equation 53) and using the fact that the
gradient of log p(!-1(g(a’), u2)ly) + A (g (u) - r) is zero at q!(8r) , we have

evaluated at u = 8r. This leads to:

Using the formula for the determinant of the partitioned matrix in equation [7]
(Searle, 1982) and recalling that n!,!2 is equal to the diagonal block of S2T I
pertaining to u2 = <P2( u), the determinant of nor can be obtained as:



Substituting InTI = IHTIIJ 12 which follows from equation [7] into equation [8]
yields:

This equality can be used in equation [6] to obtain the following approximation
of the marginal probability density of the nonlinear function T = g(6) (Tierney
et al, 1989, 1991):

Note that in contrast to equation [6] an explicit parameterization <1>2 is not
needed for approximation !9!. To obtain the marginal posterior probability density
of the genetic parameter T = g(u), equation [9] is repeatedly used for different
values of T.

In equation [9] observed second derivatives of log p(!!y) are required. Model
[1] allows a transformation to canonical scale, which facilitates the computation of
derivatives. Colleau et al (1989) have given expressions on the canonical scale for the
derivatives of the residual likelihood, which is one part of log p( CTly). Derivatives of
log p(!!y) on the canonical scale and the transformation to the original scale are
given in the Appendix.

Approximating determinant and traces

Evaluation of the marginal density !3!, which is needed in equation !9), requires
the computation of the determinant of the coefficient matrix of the mixed model
equations for each canonical trait (Appendi!). For the evaluation of derivatives of
log p( CTly) traces involving the inverse of the coefficient matrix of the mixed model
equations on the canonical scale have to be computed (Appendi!). The computation
of these quantities becomes trivial once the eigenvalues, -y2, of L’Z’MZL have been
determined, where L is the Cholesky factor of A, ie, A = LL’, and M is the
absorption matrix, ie, M = I - X(X’X)-1X’. For the determinant we have (eg,
Gianola et al, 1990a):

The traces can be obtained as (eg, Robert and Ducrocq, 1996):



The procedure described by Robert and Ducrocq (1996) can be used to compute
all eigenvalues of L’Z’MZL. Here we only give a brief outline, for details see
Robert and Ducrocq (1996) and the references cited therein. The procedure uses
the Lanczos algorithm to transform the original matrix B = L’Z’MZL of size q to
a tridiagonal matrix Tk of a given size k, which in theory has the same eigenvalues
as B. A standard method can then be used to compute the eigenvalues of Tk.
The advantage of this algorithm is that memory requirements are minimal because
matrix B is not altered. The matrix-vector product Bv needs to be computed
repeatedly, which can be achieved very efficiently taking advantage of the special
structure of B (Robert and Ducrocq, 1996).

Owing to rounding errors in the practical application, the resulting Lanczos
matrix Tk is inaccurate. When the size k of Tk is increased, the eigenvalues of Tk
provide increasingly accurate estimates of eigenvalues of B. For k > q Tk has ’good’
eigenvalues which are true approximations of the distinct eigenvalues of B but also
extra eigenvalues which are either copies of a good eigenvalue or spurious. A test is
used to identify the spurious eigenvalues. A numerically multiple eigenvalue of Tk
is accepted as an accurate approximation of an eigenvalue of B. For the remaining
good eigenvalues an error estimate is computed (Cullum and Willoughby, 1985).

The Lanczos algorithm is unable to determine the multiple eigenvalues and their
multiplicities. The approach used by Robert and Ducrocq (1996) for identifying the
multiple eigenvalues is based on the fact that if 7 is a multiple eigenvalue of B,
then it will also be an eigenvalue of the matrix B obtained from B by adding a
symmetric rank one matrix, which is proportional to the product of the starting
vector of the Lanczos algorithm and its transpose. Hence the Lanczos algorithm is
applied to B and the eigenvalues of the resulting Lanczos matrix Tk that are also
eigenvalues of Tk are identified as multiple eigenvalues of B. Using the fact that
the multiplicity ml of the zero eigenvalue is known to be q - (n - rank(X)), the
multiplicity mi of the ith multiple eigenvalue -yi can be obtained as a solution to
the set of the following three equations:

subject to the constraint mi > 1, where rm is the number of multiple and rs is
the number of single eigenvalues of B. Robert and Ducrocq (1996) successfully
applied this method to a model with one fixed effect. Although the multiplicities
determined were not consistent for different sizes of the Lanczos matrix, the traces
were very well approximated using these multiplicities even for a Lanczos matrix
of size k = 2q.



Gibbs sampling

The Gibbs sampler (Gelfand and Smith, 1990; Casella and George, 1992) generates
samples from the joint posterior distribution by repeatedly sampling from the fully
conditional distributions of the parameters. Fully conditional densities are derived
from the joint posterior probability density given in equation [2] by collecting the
terms that involve 0. These terms are proportional to the kernel of a multivariate
normal density (eg, Gianola et al, 1990a):

the solution to the mixed model equations. Therefore, obtaining a new realization
of all location parameters jointly would require sampling from:

which is impractical for larger problems. A computationally much less demanding
alternative is to sample one location parameter at a time. Let e-z be e without
its ith component and c’ be the ith row of C without its ith element. Then, a
new realization of the ith location parameter 9, is obtained by sampling from (eg,
Wang et al, 1994):

The disadvantage of using equation [14] is that the samples of subsequent cycles
show higher correlations than if equation [13] were used. This leads to a slower
mixing of the chain and therefore a lower effective number of independent samples
(Sorensen et al, 1995), ie, a lower information content of a chain of given length (see
below). Recently, Garcfa-Cort6s and Sorensen (1996) have shown a way to sample
from equation [13] that circumvents the need for the inverse of the coefficient matrix
of the mixed model equations but requires a solution to the mixed model equations.
With their simulated data for a single trait animal model, the effective number
of independent samples for the additive genetic variance was only doubled using
equation [13] instead of equation (14!. Because computing costs for equation [13]
using the strategy proposed by Garcia-Cortes and Sorensen (1996) are increased
by a factor much larger than two it is concluded that equation [14] is the preferred
way to sample the location parameters in single trait animal models. With the
model considered here the canonical transformation can be used to transform the
correlated traits to uncorrelated variables. This allows us to sample the location
parameters on the canonical scale using equation (14), which is equivalent to jointly
sampling the location parameters for all traits of one effect on the original scale. To
improve mixing of the chain additive genetic values for sires and their final progeny
can be sampled jointly as proposed by Janss et al (1995).



The fully conditional distribution for the genetic (co)variance matrix Go is:

using the fact that e/(G010!)e=tr(SaGOl), where Sa={a!A-1aj} for
i = 1, ... , t and j = 1, ... , t, and ai is the vector of additive genetic effects for trait
i. The conditional distribution is in the form of an inverse Wishart distribution

with q + vG degrees of freedom and scale matrix VG + Sa.
Similarly, the fully conditional distribution for the residual (co)variance matrix

Ro is:

where e = y - (Id9W)8, Se = {eie! ! for i = 1, ... , t and j = l, ... , t, and ei is the
subvector of e for trait i. This is an inverse Wishart distribution with n+vR degrees
of freedom and scale matrix VR + Se. Sorensen (1996), among others, describes an
algorithm for sampling from the inverse Wishart distribution.

One cycle of Gibbs sampling consists in drawing samples in turn from equa-
tion [14] for all location parameters followed by equations [15] and !16!. After con-
vergence to the target distribution, the samples obtained are from the joint poste-
rior distribution, or if only one parameter is considered, then samples are from the
appropriate marginal distribution.

Samples from the marginal posterior density of the nonlinear function g(u) can
be easily obtained by applying g( 0’) to the samples generated for 6 in each cycle
of the Gibbs sampler (eg, Wang et al, 1994).

APPLICATION

Data

The methodology was applied to data set DS2 of Ducrocq and Humblot (1995) with
semen production traits of 1957 Normande bulls born between 1976 and 1986. The
three traits considered were volume of the ejaculate (mL), motility score (on a scale
from 0 to 4) and spermatozoa concentration(109/mL). The observations available
were means of these traits for 11.4 ! 3.6 sperm collections. There were no missing
observations. The means + standard deviations were 3.08 ! 0.88, 2.99 ! 0.63
and 0.98 ! 0.26 for volume, motility and concentration, respectively. All known
ancestors without records were added with the exception of ancestors that provided
no additional information, ie, ancestors with both parents unknown and only one
progeny. The total number of animals considered was 5 566. Further details about
this data set are given by Ducrocq and Humblot (1995).



Model

The same model as considered by Ducrocq and Humblot (1995) was used for each
of the three traits. The two fixed effects were birth year x birth trimester x station
of performance test (65 classes) and the effect of total number of sperm collections
(six classes: unknown, < 6, 7-9, 10-12, 13-15, > 15). The additive genetic effect
was the only random effect. Because the number of sperm collections that made
up a record did not vary much, and for simplicity, a constant residual variance was
assumed for each of the three traits.

Proper inverse Wishart distributions were assumed as priors for the matrices of
genetic and residual (co)variances. The degree of belief parameters were arbitrarily
set to 20 for both prior distributions. The scale matrices were chosen such that
the expected values correspond to the phenotypic standard deviations found in the
raw data (see above) with heritabilities of 0.5 for all three traits and genetic and
residual correlations of -0.2 between volume and motility as well as concentration
and of 0.6 between motility and concentration. The expected prior heritability of
0.5 for means of about ten observations correspond to a heritability of around 0.1 I
for single observations. The chosen prior distribution reflects our prior belief based
on literature values (Ouali, 1984; Taylor et al, 1985; Makulska et al, 1993).

Implementation of Laplace approximation

Eigenvalues of L’Z’MZL were computed using Lanczos matrices of size 2q, 4q, 8q
and 12q. Multiple eigenvalues and their multiplicities were determined using the
procedure of Robert and Ducrocq (1996) described above. As observed already by
Robert and Ducrocq (1996), eigenvalues were difficult to estimate in some intervals.
With increasing size of the Lanczos matrix, new eigenvalues were detected in these
intervals and the intervals with eigenvalues of low precision became smaller. These
observations led to a new strategy where intervals with eigenvalues with high error
estimates had the first eigenvalue with an error estimate > 10-5 on each side of the
interval arbitrarily declared as a multiple eigenvalue in order to compensate for the
eigenvalues not yet detected in the interval. For these ’multiple’ eigenvalues and the
multiple eigenvalue of 0.5 found with the procedure of Robert and Ducrocq (1996)
multiplicities were estimated with equations !10!, (11! and !12!, using a least squares
procedure. Integer programming was also attempted but failed on all occasions.

Application of the formula for the Laplace approximation [9] requires maximiza-
tion of log p( O&dquo;ly) subject to the constraint g( 0&dquo;) - T = 0. The iterative algorithm
used to solve this problem follows ideas developed by Bard (1974, ch 6-6). First,
log p(!!y) is approximated by a second order Taylor series expansion around the
current estimate 8! at round r:

where b6 = u - 6’ . Similarly, g(o-) - T is approximated by a first order Taylor
series expansion:



Now, p is maximized subject to the constraint ! = 0, which is equivalent to
finding the stationary point of the Lagrangian p + A!. Setting the first derivatives
of the Lagrangian with respect to b6 and A to zero leads to the following system
of equations:

The derivatives are evaluated at the current value of 8!. The new solution is then
found as CT = CT + 58!!!. In our implementation observed second derivatives in
equations [17] were replaced by expected second derivatives, which are faster to
compute as will be shown below. Expected values for second derivatives on the
canonical scale for the residual likelihood, which is one part of log p(uly), were
derived by the method of Meyer (1985). First derivatives and expected values of
second derivatives of log p(Q!y) on the canonical scale and the transformation to the
original scale are given in the Appendix. Once the constraint was met log p(!!y) was
computed for the proposed new solution and if necessary, step size was successively
halved until the density was found to increase. Iterations were stopped when the
maximum absolute change of heritability or genetic correlation estimates was less
than 0.001. At convergence, observed second derivatives were computed for use in
equation (9!.

The computation of derivatives of log p(oyy) involves the solution to the mixed
model equations on the canonical scale. Single trait mixed model equations were
iteratively solved for each canonical trait by successive overrelaxation using a
relaxation factor of 1.8 and solutions obtained in the previous round of the
constrained maximization by equation [17] as starting values. The sum of squared
differences between solutions in successive rounds of iterations divided by the sum
of squared solutions in the current round was used as stopping criterion and was
set to 10-12.

The computation of observed second derivatives involves the quadratic form

aiA-1C!°A-lai, where ai is the solution to the mixed model equations for additive

genetic effects for canonical trait i and Cqa is the submatrix of (W’W + a!E)-1
(the inverse of the coefficient matrix of the mixed model equations for canonical
trait j) pertaining to additive genetic effects. This quadratic form was evaluated
by first computing Ûi = A-’iii, followed by iteratively solving the mixed model
equations:

In addition to the Laplace approximation [9] a computationally less demanding
approximation of the marginal posterior distribution was obtained by replacing the
matrix of observed second derivatives in equation [9] by the matrix of expected
second derivatives. This approximation will be called LaplaceE in the following.



For heritabilities (genetic correlations) both approximations were computed for
35 (55) values equally spaced by 0.02 that covered the expected range of non-
negligible densities. For a more accurate location of the mode an additional three
values spaced by 0.005 were evaluated in the intervals on each side of the value with
the highest posterior probability density. The normalizing constant, the mean and
quantiles of the marginal posterior densities were computed by simple numerical
integration using the trapezoidal rule.

Implementation of Gibbs sampling

The Gibbs sampler was run in three parallel chains of 500 000 cycles each. At the
start of each chain the (co)variance components were set to a random sample from
their a priori distribution and the location parameters to the solution of the mixed
model equations given the starting values for the (co)variance components. MZRAN
of Marsaglia and Zaman (1994) was used as the basic random number generator,
which has a period of the order of 294.

Because the starting point of the Gibbs sampler is chosen arbitrarily samples are
not immediately from the desired target distribution. Therefore, the samples from
the first cycles, the burn-in period, have to be discarded. In a preliminary analysis
six parallel chains with extreme starting values were run for 10 000 cycles. Starting
values were: all three heritabilities 0.05 or 0.95; within these two alternatives
all three possible combinations of two genetic = residual correlations of +0.9
and one genetic = residual correlation of -0.9; variance of raw observations as
phenotypic variance in all six chains. Visual inspection of the plots of samples for
genetic parameters versus cycles indicated that after approximately 1000 cycles
convergence to the desired marginal posterior distributions was reached for all

parameters. Based on these results the first 2 000 cycles of each of the three Gibbs
chains were discarded.

Samples from subsequent Gibbs cycles are correlated. The higher the lag auto-
covariances the lower the information content of the samples of a chain of given
length. As suggested by Sorensen et al (1995) the ’initial positive sequence esti-
mator’ of Geyer (1992) was used to estimate the error variance of the marginal
posterior mean and from this the effective chain length (ECL), ie, the number of
independent samples that would result in the same error variance.

Marginal densities of heritabilities and genetic correlations were obtained by the
normal kernel estimator (Silvermann, 1986, Wang et al, 1994). Let Ti = g(a!i)(i =
1, ... s) denote the samples of the parameter of interest T = g(u). Then the marginal
posterior density can be estimated as:

where h is the window width. For all heritabilities and genetic correlations a window
width of 0.01 was used and the posterior density computed for values equally spaced
by 0.005 covering the whole range of the parameter space. Summary statistics of
the marginal posterior distributions were computed by numerical integration using
the estimated densities.



RESULTS

Approximation of determinant and traces

The eigenvalues determined as multiple and their estimated multiplicities are shown
in table I. With the procedure of Robert and Ducrocq (1996) only the eigenvalue 0.5
was detected as multiple with all sizes of the Lanczos matrix. All other eigenvalues
were determined as multiple with one size of the Lanczos matrix only. These results
suggest that 0.5 is the only real multiple eigenvalue and that the others were
falsely determined as multiple, probably due to a too loose criterion for comparing
eigenvalues obtained from the two Lanczos matrices T and T. No attempt was
made to change this criterion because it was also used for other comparisons within
the Lanczos subroutine.

In the alternative strategy, only 0.5 was accepted as a real multiple eigenvalue and
the first eigenvalue with an error estimate > 10-5 on each side of intervals with high
error estimates were arbitrarily determined as ’multiple’. For the Lanczos matrix
of size 2q two such intervals were found. For larger Lanczos matrices, only one of
these intervals remained and became smaller with increasing size of the Lanczos
matrix.

Table II shows the relative errors of the determinant and the traces obtained
with increasing size of the Lanczos matrix for error to genetic variance ratios a of
99, 4 and 1/3 corresponding to heritabilities of 0.01, 0.20 and 0.75, respectively.
For each strategy the values obtained with the Lanczos matrix of size 12q were
regarded as exact. These values were very similar for the two procedures, the largest
absolute relative difference being < 2 x 10-4 for the log-determinant and a = 1/3.
In general, absolute relative errors tended to increase with decreasing a. The new



strategy resulted in more accurate approximations than the procedure of Robert
and Ducrocq (1996). A Lanczos matrix of size 8q was required to obtain absolute
relative errors < 2 x 10-4 with the procedure of Robert and Ducrocq (1996), whereas
such accuracies were already obtained with a size of 2q using the new strategy.
Eigenvalues computed with the new strategy and a Lanczos matrix of size 12q were
used in the Laplace approximation.

Gibbs sampling

The lag-20 autocorrelations for samples of heritabilities and genetic correlations for
the three Gibbs chains were all very high and ranged from 0.79 to 0.87 (table III).
Lag correlations were highest for the heritability of motility and for the genetic
correlation between volume and motility and lowest for the heritability of volume.
Lag-1 autocorrelations were between 0.99 and 0.98 and lag-100 autocorrelations
between 0.53 and 0.36 over all genetic parameters and all three chains (data not
shown). The estimates of the standard deviation of the marginal posterior means



(SDM) ranged from 0.001 to 0.003. The effective chain length (ECL) ranged from
1535 to 2648, which is by a factor of 324 to 188 smaller than the actual chain length.

Marginal posterior probability density of genetic parameters

Figures 1 and 2 show an excellent agreement of the marginal posterior densities for
heritabilities and genetic correlations, respectively, obtained with Gibbs sampling
and the two Laplace approximations. Summary statistics of the marginal posterior
densities obtained with the different procedures are shown in table IV for heritabil-
ities and in table V for genetic correlations. The variation among the estimates of
the marginal mean for the three Gibbs chains is in agreement with the estimated
SDM in table III. Estimates obtained from the three chains combined are based on
4 722 to 7 673 effective number of independent samples (table III) and are regarded
here as exact for comparison with estimates obtained with Laplace approxima-
tions. Both Laplace and LaplaceE approximations yielded very accurate estimates
of summary statistics. In general, estimates based on approximation [9] were more
accurate than estimates using LaplaceE. For marginal means, the largest abso-
lute differences between Laplace (LaplaceE) and Gibbs sampling was 0.002 (0.004)
for heritabilities and 0.006 (0.007) for genetic correlations. Absolute differences in
mode estimates for heritabilities were never larger than the 0.005 spacing of the
grid used in the region of the mode and only slightly larger for genetic correlations.
For marginal quantiles, the largest absolute difference between Laplace (LaplaceE)
and Gibbs sampling was 0.004 (0.008) for heritabilities and 0.007 (0.009) for genetic
correlations.

Computing costs

Memory requirements for the Laplace approximation and Gibbs sampling were sim-
ilar. Computing time for the determination of the eigenvalues of L’Z’MZL were
0.3 or 2.7 h for Lanczos matrices of size 4q or 12q, respectively. As already noted
by Robert and Ducrocq (1996) the computing time for the Lanczos algorithm to







determine Tk increases linearly but the time required for computing the eigenvalues
of Tk increases quadratically with increasing k. The evaluation of the marginal
posterior density at 41 values for heritabilities and 61 values for genetic correlations
for the Laplace approximation required 0.4 and 0.5 h of CPU-time, respectively.
Computing times for LaplaceE approximations were about 40% lower. Assuming
that eigenvalues have to be determined by two (to identify real multiple eigenvalues)
runs with a Lanczos matrix of size 4q, total computing time for the approximation
of the marginal densities of all genetic parameters amounts to 3.3 h. In contrast,
generating the 500 000 samples of one Gibbs chain and post sampling analysis took
18 h of CPU-time, which adds up to 54 h for the three chains combined.

DISCUSSION AND CONCLUSIONS

Approximation of determinant and traces

Besides the zero multiple eigenvalue, only 0.5 was consistently detected as a multiple
eigenvalue with different sizes of the Lanczos matrix in our application with two
fixed effects. With a Lanczos matrix of size 2q, 350 distinct eigenvalues were found
in the interval [0.58, 0.76] with eigenvalues of low precision. In the same interval,
additional 448 distinct eigenvalues were detected with a Lanczos matrix of size
12q. Besides these 448 eigenvalues, only one eigenvalue in the other interval of low
precision !0.81, 0.85] was additionally detected by increasing the size of the Lanczos
matrix from 2q to 12q. The adhoc declaration of two eigenvalues in the intervals
of low precision as multiple with a Lanczos matrix of size 2q compensated well for
the eigenvalues not yet detected leading to accurate approximations of traces and
determinants. In contrast, much larger Lanczos matrices were required to achieve
the same accuracy with the procedure used by Robert and Ducrocq (1996).

Robert and Ducrocq (1996) successfully applied their strategy to a model with
one fixed effect and found accurate approximations of traces already with a Lanczos
matrix of size 2q. In their application, Robert and Ducrocq (1996) consistently
found three multiple eigenvalues (0.5, 0.6875, 0.75), which corresponded to animals
with certain genetic relationships that had records in the same level of the fixed
effect. They report that distinct eigenvalues not yet detected with a Lanczos matrix
of 4q were in the intervals [0.72, 0.75] and [0.84, 0.87]. Therefore, the estimated
multiplicities, especially for the multiple eigenvalue of 0.75, has compensated for
the eigenvalues not yet detected with small sizes of the Lanczos matrix, leading to
very accurate approximations of traces with a Lanczos matrix of 4q.

Marginal posterior probability density of genetic parameters

The Laplace approximation yielded very accurate approximations of the marginal
posterior densities. As evident from equations [5] and [6], the approximation
assumes normality, which is true only asymptotically. Our results suggest that the
1957 animals with observations were a large enough sample for normality to be a
good approximation. The performance of the Laplace approximation with smaller
samples is not known and will be the subject of another study.

The computing time for the Laplace approximation of the marginal densities of
all six genetic parameters was by a factor of 16 smaller than for Gibbs sampling.



Computing time for the Laplace approximation could be reduced by considering
more sophisticated numerical integration techniques, eg, iterative Gauss-Hermite
quadrature as used by Ducrocq and Casella (1996), which might require evaluation
of the density for less values. It should be kept in mind that in this study the
three combined Gibbs sampling chains were used to obtain an exact reference with
small Monte-Carlo error to investigate the accuracy of the Laplace approximation.
The small variation of all summary statistics among the three chains suggests that
a combined ECL > 1 500 is enough for obtaining marginal densities sufficiently
accurate for most practical applications. With increasing sample size computing
time is expected to increase nearly linearly for both procedures, Gibbs sampling and
Laplace approximation, with the exception of the determination of the eigenvalues
of the Lanczos matrix. However, increasing the number of traits will lead to a
quadratic increase in computing time for the Laplace approximation if marginal
densities are desired for all genetic parameters. For Gibbs sampling, the increase in
computing time is expected to be nearly linear because canonical transformation
can be used.
A simple multiple trait animal model with one random effect, no missing obser-

vations and equal incidence matrices was considered in this study. Hence, canonical
transformation was applied and traces and determinants for canonical traits were
easily computed once the eigenvalues of L’Z’MZL had been determined. Without
these computational advantages, the application of the Laplace approximation is
feasible only for small problems, since for each value where the marginal density
is computed, the traces need to be evaluated repeatedly to locate the constrained
mode and the determinant has to be evaluated once. The application of the compu-
tational strategies used in this study to multiple trait models with missing observa-
tions or models with more than one random effect is not possible. For the Laplace
approximation to be applied to such models new efficient computing strategies have
to be developed. Recent advances in the application of the canonical transforma-
tion to situations with missing observations for the solution of multivariate mixed
model equations (eg, Ducrocq and Chapuis, 1997) suggest that further research
towards an extension to multiple trait models with one random effect but missing
observations seems most promising.
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APPENDIX: DERIVATIVES OF THE LOG POSTERIOR DENSITY
ON THE CANONICAL SCALE

The log of the posterior probability density [3] is

The canonical transformation transforms the t correlated traits into t uncorre-
lated variables. The transformation matrix Q = [ql&dquo;&dquo; qt] satisfies Q’RoQ = Rp =
Io, and Q’GoQ = Go = diag{ai 1}. Let y’ = (Q’0In)Y and 0’ = (Q’ &reg; In)0 be
the vector of observations and location parameters on the canonical scale. The sub-
vectors Y’ and 8i = !bi , , af’] contain the observations and location parameters for



canonical trait i. Elements of Ro and Go will be denoted by r?j and gij, respectively.
Cia is the submatrix of (W’W + ocie)-l pertaining to additive genetic effects.

Note that

Following Colleau et al (1989) and adding contributions from the prior distribu-
tion, first derivatives on the canonical scale given the transformation matrix Q are
as follows:

Again following Colleau et al (1989) and adding contributions from the prior
distribution, the non-zero observed second derivatives on the canonical scale are:



Following Meyer (1985) and adding contributions from the prior distribution,
non-zero expected values of second derivatives on the canonical scale are:

First and second derivatives on the original scale can be obtained by appropriate
transformation of the first and second derivatives on the canonical scale, ie,


