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Summary - In proportional hazards models, the hazard of an animal A(t), ie, its

probability of dying or being culled at time t given it is alive prior to t, is described

as A(t) = ’>"o(t)eW’e where Ao(t) is a ’baseline’ hazard function and ew’B represents the
effect of covariates w on culling rate. A distribution can be attached to elements sq in
0, identifying, for example, genetic effects and leading to mixed survival models, also
called ’frailty’ models. To estimate the parameters T of the distribution of frailty terms, a
Bayesian analysis is proposed. Inferences are drawn from the marginal posterior density
x(T) which can be derived from the joint posterior density via Laplacian integration, a
powerful technique related to saddlepoint approximations. The validity of this technique is
shown here on simulated examples by comparing the resulting approximate x(T) to the one
obtained by algebraic integration. This exact calculation is feasible in very specific cases
only, whereas the saddlepoint approximation can be applied to situations where Ao(t) is

arbitrary (Cox models) or parametric (eg, Weibull), where the frailty terms are correlated
through a known relationship matrix, or in more general models with stratification and/or
time-dependent covariates. The influence of the censoring rate and the data structure is
also illustrated.

survival analysis / mixed model / variance component estimation / Bayesian analy-
sis / proportional hazards model

Résumé - Une analyse bayésienne des modèles de survie mixtes. Dans le cas des
modèles à risques proportionnels, la fonction de risque d’un animal a(t), c’est-à-dire sa

probabilité de mourir ou d’être réformé au temps t sachant qu’il est vivant juste avant t, a
la forme A(t) = >’o(t)eW’o où Ao (t) est une fonction de risque « de basé» et eW’o représente
l’e,f,fet des covariables w sur le taux de réforme. Une distribution peut être associée avx
termes Sq de 9, identifiant, par exemple, des effets génétiques et conduisant à des modèles
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de survie mixtes, aussi appelés modèles de fragilité. Pour l’estimation des paramètres T de
la distribution des termes aléatoires, une analyse bayésienné est proposée. Les inférences
statistiques sont faites à partir de la densité marginale a posteriori x(T) qui peut être
obtenue à partir de la distribution conjointe a posteriori par intégration laplacienne, une
technique liée aux approximations point-selles. La validité de cette technique est démontrée
ici à partir d’exemples simulés, en comparant les résultats de l’approximation de 7r(T) avec
ceux obtenus après intégration algébrique. Cette dernière correspond à un calcul exact
réalisable uniquement dans des cas très particuliers, alors que l’approximation point-selle
peut être appliquée dans des situations où Ào(t) est complètement arbitraire (modèles
de Cox) ou paramétrique (par exemple, de type Weibull), où les termes aléatoires sont
corrélés à travers une matrice de parenté connue, ou avec des modèles plus généraux avec
stratification et/ou covariables dépendantes du temps. L’influence du taux de censure et
de la structure des données est aussi illustrée.

analyse de données de survie / modèles mixtes / estimation des composantes de
variance / analyse bayésienne / modèle à risques proportionnels

INTRODUCTION

Traits associated with longer productive life of livestock are receiving increasing
attention in the animal breeding field: it is recognized that decreasing culling due
to the involuntary causes (eg, related to disease, infertility, lameness, etc) by genetic
or non-genetic means has a positive effect on economic performance, mainly through
decreased replacement costs (van Arendonk, 1986; Strandberg, 1991, Strandberg,
1995, Strandberg and S61kner, 1996). Huge field data sets are usually available
for comprehensive analyses of productive life, for example, as a by-product of
the dairy recording schemes in dairy cattle. The obvious methodology of choice
for such studies is survival analysis, in which proper techniques to deal with the
unavoidable presence of censored data have been developed. However, statistical
complexity and computational difficulties related to these methods have delayed
the adoption of state-of-the-art methodology and different indirect approaches
have been proposed (see Strandberg and S61kner (1996) for a review). Some large-
scale applications (Smith, 1983; Smith and Quaas, 1984; Ducrocq, 1987; Ducrocq
et al, 1988a, b; Ruiz, 1991; Fournet, 1992; Egger-Danner, 1993; Ducrocq, 1994)
as well as the availability of a software specifically written with animal breeding
applications in mind (Ducrocq and S61kner, 1994) have demonstrated that the use
of less appropriate approaches can be avoided.

The most popular class of survival models is the class of proportional hazards
models (Cox, 1972; Kalbfleisch and Prentice, 1980; Lawless, 1982; Cox and Oakes,
1984). The hazard of an animal (or in the animal breeding context, its risk of

being culled) at time t is described as the product of a baseline hazard function
.!o(t), which is either left completely arbitrary (Cox model) or has a parametric
form (eg, exponential, Weibull or gamma) and of a positive term which is an

exponential function of a vector of covariates w’ multiplied by a vector of regression
parameters 0.

Proportional hazard models can be extended to include random (eg, genetic)
effects, as in the regular mixed linear models that are used for genetic evaluations
worldwide. Mixed survival models are classically referred to as ’frailty’ models by
statisticians. The ’frailty’ term v is defined as an unobserved random quantity which



affects multiplicatively the hazard of individuals or groups of animals. When a term
vm is defined for each animal ’I!!I (!,,L(t,w) = vm.À(t, w)), the frailty component
extracts part of the unobserved variation between individuals (Vaupel et al, 1979;
Hougaard, 1986a,b; Follmann and Goldberg, 1988; Aalen, 1994) and therefore
allows for a correction of the possible discrepancy between the true variance of
the observations and the one specified by the model. Such an extra variation is
referred to as ’overdispersion’ (Louis, 1991; Tempelman and Gianola, 1994). When
vq is defined for a group of individuals, eg, all daughters of a sire q, it describes the
shared unobservable (genetic, in this case) characteristics which act on the hazard
of each member of the group (Clayton and Cuzick, 1985; Anderson et al, 1992;
Klein, 1992; Klein et al, 1992). In all cases, the simple transformation s = log v
allows the inclusion of the frailty term in the linear term w’O.

Traditionally, a gamma (Clayton and Cuzick, 1985; Ducrocq, 1987; Klein, 1992)
distribution has been attached to the frailty term v because of its flexibility and
mathematical convenience. Other distributions have also been proposed, eg, a

positive stable distribution or an inverse Gaussian distribution (Hougaard, 1986a,b;
Klein et al, 1992). Unfortunately, in all cases, they do not have the theoretical
appeal of the (multivariate) normal distribution commonly used in animal breeding
when a infinitesimal polygenic model is assumed. However, it has been shown that
the estimates obtained for the parameters of the gamma distribution of v were
relatively large, at least in dairy cattle, which means that v had an approximate log-
normal distribution, ie, s was approximately normally distributed (Ducrocq, 1987;
Ducrocq et al, 1988b; Ducrocq, 1994). Therefore, it has been suggested to account
for the genetic relationship between animals by assuming a multivariate normal
distribution for s, the logarithm of the frailty term v (Ducrocq, 1987; Korsgaard,
1996).

Several approaches have been used to estimate the parameters of the frailty
distributions. Klein (1992) and Klein et al (1992) suggested the use of an EM
algorithm (Dempster et al, 1977), with iterative estimation of v, 0 and the baseline
cumulative hazard distribution for a Cox model, followed by the estimation of the
frailty distribution given 0. When a Weibull model is combined with a gamma
frailty term, Follmann and Goldberg (1988) showed that the frailty term can be
algebraically integrated out from the likelihood function. The same property has
been used in a Bayesian context (Ducrocq, 1987; Ducrocq et al, 1988b; Fournet,
1992; Ducrocq, 1994). Monte-Carlo techniques have also been suggested in order to
obtain the marginal posterior distributions of the hyperparameters (Clayton, 1991;
Dellaportas and Smith, 1993; Korsgaard, 1996) but their use on large data sets with
complex models (eg, with time-dependent covariates) may be very tedious.

The objective of this paper is to present a general Bayesian approach to
the analysis of mixed survival models, with (but without being restricted to)
typical animal breeding situations in mind. The framework will be presented for
a simple Weibull model with two types of priors for the frailty term (gamma or
log-normal). Straightforward generalization to other models (with stratification
and time-dependent covariates, Cox models) will follow. A particular strategy
for estimation of the hyperparameters suitable for large applications, complex
models and situations where a relationship matrix is used will be presented and
its performance will be studied on simulated data.



METHODS

In the Weibull regression case, the baseline hazard function has the Weibull form
Ao(t) = A/9(A!!. For the time being, we will assume that all covariates are time-
independent and that only one baseline is defined (no stratification). The vector 0
includes fixed and random effects. For clarity, and unless specified otherwise, only
one random effect in the model, eg, a sire effect s is considered here. Using the
classical linear mixed-model notation:

where 13 is the vector of fixed effects.
The hazard function A(t) for animal m is:

and p log A can be incorporated in a grand mean (or any factor) in w! 0.
For simplicity, we will write from now on:

using the same notation but keeping in mind that a component of w£ 0 (represent-
ing an intercept) now includes p log A. 

m

If the record comes from a daughter m of sire q, with observed failure at Tm:

Here, vq = esq is the frailty term. The usual relationship f (t) = A(t)S(t) where

S(t) = J 0 A(u) du can be used to show that [3] is a particular case of a log-linear

model of the form (Kalbfleisch and Prentice, 1980):

where um follows an extreme value distribution (Kalbfleisch and Prentice, 1980;
Lawless, 1982) whose variance is equal to !r2/6. Note that here um implicitly
includes three-quarters of the additive genetic variance. With this presentation,
a natural definition of the heritability of the survival trait on the logarithmic scale
is:



Formula [6] solves the problem of a proper definition of heritability for survival
traits indicated in Ducrocq (1987) and Ducrocq et al (1988b).

Prior distributions

Gamma frailty model

Assume:

vq N gamma(T, 7)
ie,

sq - (generalized) log-gamma(-/,-y)
The log-gamma distribution (Bartlett and Kendall, 1946, according to Lawless

(1982), p 21) corresponds to the distribution of logx when x follows a gamma
distribution. Note however that the suffix ’log-’ (eg, in ’log-normal’) is often given
to the distribution of x when log x has a known form (eg, normal). Again, the
choice of this prior distribution is mainly related to its flexibility and mathematical
convenience (see also Klein, 1992, and Klein et al, 1992). Then:

Log-normal frailty model

In quantitative genetics, due to the infinitesimal polygenic model usually assumed,
it is more natural to consider the following prior distribution for the frailty term:

and if sires are related:

where A is the relationship matrix between sires, we have

Hyperparameters

In order to simultaneously consider the two previous cases, we will denote the
dispersion parameter of the random effect distribution by T (with T = y or T = os 2)
and we will assume a flat prior for T as well as for (3 and p:



Likelihood construction

Conditionally on 0 and p, the contribution to the likelihood of animal m which fails
(8m = 1) or is censored (6&dquo;, = 0) at time ym, is:

where S(t) is the survivor function at time t. For the Weibull model, these two
components are:

Combining all these contributions (for m = 1, ... , N) which are conditionally
independent, we obtain:

where {unc} and {cens} represent the sets of indices m corresponding to uncensored
and censored records, respectively.

Joint posterior density

Applying Bayes’ theorem, we obtain:

and taking the logarithm on both sides:



Inference on 0 and p

If we assume that T is known, the logarithm of the joint posterior density of

Using the same notation as in Tempelman and Gianola (1993), let 8r be the
mode of this joint posterior density:

At the mode, the gradient vector is null:

For latter use, we also need to define the negative Hessian matrix:

Joint inference on (3, p and T

Consider here the particular case of the gamma frailty model, where the ran-
dom effect s has a log-gamma distribution (T = &dquo;y; this implies that the genetic
relationship between sires is ignored). Then the marginal posterior density of
0, p and T is obtained by integrating out s from the joint posterior density
p(e,p,T I Y) = P((), P, 7 1 y):

Grouping the contributions to the likelihood of all daughters of each sire q:
- - - 1



where now func, q} and {cens, q} are the sets of indices m of the nq uncensored
and the censored daughters of sire q, respectively.

Writing e!’1° = ex;&dquo;{3eSq for all daughters of sire q, one can factor out the terms
which do not depend on sq, which leads to:

with:

and:

Each of these products, for q = 1, ... N9, is of the form:

The term under the integral can be recognized as the kernel of a log-gamma
distribution with parameters (n9 + &dquo;Y) and (Qq + -!). Therefore,

Hence, the integration of the random effects sq out of the joint posterior density
can be done algebraically:

or:

Expressions [28] and [29] are essentially those used in Ducrocq (1987), Ducrocq
et al (1988b) and Ducrocq (1994) for the estimation of the sire variance of the
length of productive life of dairy cows. Follmann and Goldberg (1988) referred to
the distribution in [28] as a multivariate Burr distribution. Again, (3, p and q can



be estimated as the mode of this posterior distribution:

with associated negative Hessian matrix H.

Inference on T

Inferences on the dispersion parameter T should be based on its marginal posterior
distribution, after integrating out the nuisance parameters 0 and p (Berger, 1985;
Robert, 1992):

or:

J J

Except in trivial cases, this integration cannot be performed algebraically. To
obtain the marginal posterior distribution of the dispersion parameter T, one can
either simulate random samples from it (Clayton, 1991; Dellaportas and Smith,
1993; Korsgaard, 1996), compute the integral numerically (Smith et al, 1985) or find
an approximation. We will choose the third alternative, using a technique known
as Laplacian integration (Tierney and Kardane, 1986; Achcar and Bolfarine, 1986;
Tierney and Kardane, 1986; Tierney et al, 1989; Tempelman and Gianola, 1993;
Goutis and Casella, 1996). For any given value T* of T, we want to approximate:

Intuitively, ifp(0,p ! y,r) = p(6T-*) is unimodal, the value of the integral will
heavily depend on the value of the density at its mode 6r* . Then, using the first
terms of a Taylor series expansion of logp(6!*) around this mode and noticing that
,7p,. (%r* ) = 0, we have:

The determinant part in the last equation is obtained by recognizing the kernel of
a multivariate normal density of mean È>r* and variance HT* under the integral sign.



This results in an approximation of the marginal posterior density which is similar
to what is described in the statistical literature as a saddlepoint approximation of
this density (Daniels, 1954; Reid, 1988; Kolassa, 1994; Goutis and Casella, 1996).
Taking the logarithm on both sides, we get the following approximation:

An obvious point estimate of T is T at the mode of this approximate marginal
posterior density:

However, the use of [34] is not limited to the computation of its mode. Other
point estimates or other types of inferences (credible sets or hypothesis testing, etc
(Berger, 1985; Robert, 1992)) can be derived from the knowledge of the full marginal
posterior density. Repeated computations of (34!, and in particular of the negative
Hessian matrix H, for many different values of T may quickly become too heavy,
though. We propose to summarize the general characteristics of the distribution [34]
through the computation of its first three moments by unidimensional numerical
integration based on Gauss-Hermite quadrature. To obtain a more precise estimate
of these moments after quadrature, the iterative strategy proposed by Smith et
al (1985) is implemented. Using initial values of the mean and the variance of
the distribution of log T (to force the integration domain to be (&mdash;00,+00)), the
integration variable is standardized. New estimates are obtained by quadrature
and the standardization is repeated. After a few iterations, this strategy ensures
that the quadrature rules are applied in an appropriate region of the function to
integrate. Details are given in the Appendix. The results can be used to obtain
a second approximation of the marginal posterior density based on its first three
moments. Using an expression known as the Gram-Charlier series expansion of a
function f (!) of a variable x with moments p, 0&dquo;2 and !c, we have (McCullagh, 1987):

where §(z) is the density of a normal distribution with mean !, and variance Q2 2
and z = (x - p)lo,.

Other situations

Cox model

The application of the saddlepoint approximation to obtain the marginal posterior
density of the dispersion parameter of the random effect is not restricted to the
Weibull regression model. It can be applied, at least in theory, to any joint posterior
density. For example, in the case of a Cox mixed model, for which the baseline
hazard function Ao (t) is assumed to be completely arbitrary, p(0,-* !, y, T*) and the
corresponding negative Hessian matrix H7* in [34] can be derived replacing the



likelihood function in [16] by the partial likelihood function initially proposed by
Cox (1972):

where the T!2!’s are the distinct observed failure times and Risk(T!Z! ) is the set of
individuals at risk at time T[i], ie, alive just prior to 7!. Then, assuming that T
is known, the estimate of 0 to be used in [34] is obtained from the joint posterior
density as:

Stratification. Time-dependent covariates

Stratification and the use of time-dependent covariates are common approaches
to accommodate situations for which the proportional hazards is not valid for all
effects or throughout the whole time range. As for the Cox model, the main changes
with respect to the situation described so far occur in the computation of the
likelihood and its derivatives and do not interfere with the validity of the saddlepoint
approximation. For example, if the covariates in b f mw.&dquo;,, are step-functions of time
with changes at times cp,&dquo;,,,i, i = 0, ...I with W,,,o = 0 and <!m,7 = Ym, then wm is

piecewise constant on intervals (cp,,&dquo;,,i, cp&dquo;,,,i+1 and the expressions to use in [12] are:

In the case of stratification, the hazard function A(y,,,) and the survivor function
S(Ym) include parameters p and p log A (the ’intercept’ in w£0 in !1!) specific to
the relevant stratum.

ILLUSTRATION

In order to illustrate the approach described above for the estimation of dispersion
parameters of the random effects in frailty models, simulated data were generated
based on a Weibull model with a random effect (that will be referred to as a
sire effect) and mimicking the data structure that is often encountered in animal
breeding situations. The objective was to assess the quality of the saddlepoint
approximation by comparing the exact marginal posterior distribution of the
variance parameter of the sire effect ( !28! obtained via algebraic integration) with its
approximation (!34! after Laplacian integration). This comparison was done under
the following conditions: a log-gamma distribution [8] was considered as a prior for
the sire effect (which is a prerequisite for possible algebraic integration); only one



fixed effect (13 = ft the grand mean ) was included; and it was assumed that in !28!,
we have:

Preliminary examination of [43] showed that in all cases studied, the density [43]
was virtually identical to the approximate density p(-y y) after integrating out /t
and p by Laplacian integration. In other words, what was actually compared here
are two approximate densities obtained after Laplacian integration of /-t, p and Nq
sire effects s9 in one case, of p and p (with algebraic integration of the sq’s) in the
other case.

The general behavior of the saddlepoint approximation of the marginal posterior
density of the sire variance was also examined under a variety of situations (different
types of censoring, of unbalanced structure, with a multivariate normal prior, with
relationships between sires, using a Cox model, etc).

Simulation strategy

In all situations (unless specified otherwise), 5 000 records were generated using the
following Weibull hazard function:

where Ajkq (t) represents the hazard at time t of the jth animal (j = 1, ... 5 000/Nq)
under the influence of the kth level of a fixed effect, hereafter referred to as the ’herd’
effect (k = 1,... K) and daughter of the qth sire (q = 1,... NQ). Values p, _ -11 1
and p = 1.5 were used in all cases described here, corresponding to an average
failure time of about 1800. For the comparison between Laplacian and algebraic
integrations, it was assumed that K = 0, ie, !3! = 0 and the sire effects sq were
generated from a log-gamma distribution with parameter ’Y = 50. This corresponds
to a variance of sq equal to 1}i(1) C’Y) ! 0.02, where

is the trigamma function evaluated at y. Using expression !6!, we get:

which is in the typical range of heritability values encountered for this kind of trait.
When a normal distribution was assumed, a sire variance of 0&dquo; = 0.02 was retained

to generate the sire effects. When herd effects were used in model [44] (K > 0),
these were arbitrarily generated from a uniform !-2, 2! distribution.
Two different censoring schemes were simulated. In censoring type A, all gen-

erated records greater than a given value CA were considered as censored at CA.
The value of CA was chosen by trial and error in order to obtain a given proportion
of censored records. Censoring type B tried to mimic an overlapping generations
scheme. The daughters of a first batch (10%) of sires had a censored record equal



to CB when their simulated failure time was greater than CB. The daughters of the
following batch (also 10%) of sires were considered as censored when their failure
time was greater that 2CB, and so on. The censoring time for the last 10% was
lOCB. Therefore, the daughters of the first group of sires were heavily censored
(’young daughters of young sires’) while the proportion of censored records for the
last group was small (’daughters of old sires’). Again, CB was determined by trial
and error.

Different unbalanced situations were also simulated. In scheme U1, the daughters
of 100 sires (with 50 daughters each) were distributed over 505 herds, five with 500
animals and 500 with five daughters. In scheme U2, half of the animals (2 500) were
assumed to be daughters of five sires with 500 daughters each while the other half
were daughters of 500 sires with five daughters each. These animals were randomly
distributed over 100 herds. Finally, in scheme U3, the daughters of the 50 ’best’
sires (with 50 daughters each) were raised in the ’best’ 50 herds (where ’best’ means
lowest relative culling rate) while the daughters of the ’worst’ 50 sires were raised
in the ’worst’ herds.

To study the impact of the existence of genetic relationships between individuals,
data were generated according to a model slightly different from [44]. First,
the effects sg, of ten grandsires (’sires of sires’) were generated from a normal
distribution with mean 0 and variance a 2/4 (with 0&dquo;; = 0.02). For each of them,
ten sire effects sq were obtained by adding to sg, a normally distributed random
effect with variance 3o!/4. Finally, 50 records of daughters of each of these sires
were simulated according to the model:

where rj represents the remaining additive genetic effect for the jth animal and
was generated from a normal distribution with mean 0 and variance 3Q9, leading
to records with a global additive genetic variance equal to Qa = 4cr!. These data
were analyzed and the marginal posterior density of the sire variance component
was obtained under three different genetic models: two sire models identical to
[44] assuming no relationships between sires (case Sl) or including the relationship
matrix between sires (case S2), and an ’animal’ model (case An), describing the
individual additive genetic effect aj of each animal j and including the complete
relationship matrix between the 5 110 animals (5 000 with records + 100 sires + 10
grand-sires):

All computations were done using the ’Survival Kit’, a set of Fortran programs
developed by Ducrocq and S61kner (1994). The ’Survival Kit’ was specifically
written to efficiently analyze the very large field data sets encountered by animal
breeders and implements all the features described in this paper with Weibull and
Cox models, possibly with strata, time-dependent covariates and random effects.
In particular, the maximization of the expressions [18] or [29] is based on a limited
memory quasi-Newton method (Liu and Nocedal, 1989) which only requires the
computation of the vector of first derivatives of [18] or !29!. If required (for example,
in [36] or when computing asymptotic standard errors), the negative Hessian is
computed but only at convergence. Sparse matrix subroutines (Perez-Enciso et al,



1994) are used to compute the determinant or the inverse of this negative Hessian
in the Weibull case.

Results

Laplacian integration vs Algebraic integration

Figure 1 represents the marginal posterior distribution obtained after integrating
out the sire effects s9 from the joint posterior distribution, either algebraically
or using the Laplacian approximation. All records were uncensored. In the three
samples presented here, the true value q = 50 is obviously included in any
reasonable HPD credible set. When there were few sires with many daughters
each, the two computed forms of the marginal posterior distribution were virtually
indistinguishable. When little information was available for each sire effect (ten
daughters each in the 500 sires case), the marginal posterior distributions were
rather flat, with a long tail towards large values of q (ie, small sire variances). The
agreement between Laplacian and algebraic integration was not as good, although
the modes of the two distributions were close. With even less information per
sire (five daughters or less per sire), neither of the two marginalization techniques
worked in most of the cases: the mode of the distribution or its first moments could
not be computed.



Effect of censoring

Figure 2 presents again the result of the same two marginalization approaches, for
100 sires with 50 daughters each but under censoring schemes A and B, with in both
cases a proportion of 50% censored records (CA = 1200 and CB = 270). Clearly,
censoring had little effect on the quality of the approximation when the Laplacian
integration was used. However, because the amount of information available to
estimate a rather small sire variance was drastically reduced, it was not always
possible to obtain a well-defined posterior density (see Breslow and Clayton (1993)
for similar results in the context of generalized linear mixed models). For example, in
figure 2, the posterior density in the case of censoring scheme A does not integrate to
1. The same phenomenon also occurred for some samples with censoring scheme B.
Interestingly, when sire effects with a larger variance 7 = 10 were simulated, which
corresponds to an heritability of 0.24, even extreme situations with more than
80% censored records (with CA = 520) led to well-defined, very peaked posterior
densities.

Normally distributed random effects

Having shown the validity of the saddlepoint approximation of the marginal
posterior density, other samples were generated with normally distributed sire



effects and with 100 (fixed) ’herd’ effects. Figure 3 displays the marginal posterior
density for ten such samples, with 100 sires and no censoring. The obtained
distributions were not as skewed as in the case of a log-gamma distribution. At
least in the examples studied, the true value 0.02 was always in any HPD credible
set. Note however that the variance of these densities were quite large (standard
deviations between 0.0049 and 0.0079 for a true parameter value of 0.02).

Effect of unbalancedness

When unbalancedness was induced by simulating both very large and small herds
(case Ul), the effect on the marginal posterior density appeared to be minimal
(fig 4). When a large heterogeneity was created in the number of daughters per sire
(case U2), the main consequence was a less precise estimation of the sire variance.
The most negative impact was observed when the animals were not randomly
distributed across herds (case U3). It seems that a part of the favorable influence of
the best sires on the survival of their daughters was attributed to the herd effects,
resulting in a sire variance strongly biased downwards.

Including a relationship matrix

The two marginal posterior densities obtained under a sire model with or without
inclusion of the true relationship matrix between sires were very similar (fig 5).
As may have been expected, the inclusion of the relationship matrix slightly in-
creased the variance of this posterior density, because it accounts for the fact that





the records of related animals are more similar, hence globally less variable. In all
the samples simulated, the animal model consistently led to a slight overestimation
of the sire variance: the marginal posterior density in the case of the animal model
was systematically to the right of those for the two sire models. This may be
attributed, at least in part, to the fact that a much larger number of parameters
have to be integrated out with an animal model than with a sire model. Such a
problem has been pointed out for example by Mayer (1995) in the context of a
threshold model. The Laplacian integration probably does not perform as well in
such a case. Note, however, that this may be worsened by the fact that only a
very simple pedigree structure was simulated here. In particular, no information at
all was assumed to be available on the female side. The sire model used does not
account for the overdispersion implicitly created by the effect rj, which represents
three-quarters of the total additive genetic variance. An attempt to fit a model

similar to [46] assuming a log-gamma prior distribution for rj and performing the
algebraic integration of rj led to a marginal posterior density of the sire variance
similar to that obtained with the two sire models and a very large estimate (q > 400
at the mode) for the gamma parameter, synonymous of a very small variance for the
rj’s. This is likely the result of the lack of information available for the estimation
for q that was already illustrated in figure 1.

Cox model vs Weibull model

When a parametric (Weibull) or semi-parametric (Cox) model was used in the
construction of the likelihood function, it was repeatedly observed that the resulting
marginal posterior densities of a were very similar (fig 6), with often a slightly
larger variance in the case of the Cox model. It is not known if similar results
would have been obtained had the data been generated assuming a baseline hazard
function different from the Weibull hazard.

Approximation of the marginal posterior density of T based on its first
three moments

The first three moments of the marginal posterior density of the parameter T
were computed by numerical integration of [34] using a five-point Gauss-Hermite
quadrature formula and after standardization of the function to integrate. New
standardization factors were obtained and the procedure was repeated until the
computed moments stabilized, which usually occurred after only three iterations.
Figure 7 illustrates the fact that the knowledge of these moments leads to a
reasonable approximation of the marginal posterior density of T

DISCUSSION AND CONCLUSION

Bayesian analysis offers a coherent framework for the otherwise unclear problem of
variance components estimation in mixed nonlinear models (Ducrocq, 1990): all the
elements for inferences on dispersion parameters are contained in the marginal pos-
terior distribution of these parameters and the construction of the latter is based
on general principles. Particular applications to animal breeding situations were





proposed for categorical data (Foulley et al, 1987; H65chele et al, 1987; Foulley
et al, 1989) and for Poisson mixed models (Tempelman and Gianola, 1993). In
this paper, a general approach for genetic evaluation and estimation of dispersion
parameters for Weibull and Cox mixed models was described. Its main attractive
features are its generality and its computational feasability, even for very large
applications. As an example of the latter, the largest analysis that we have carried
out involved the estimation of the mode and the first three moments of the marginal
posterior distribution of the sire variance component for the length of productive
life of 633 516 Holstein cows, daughters of 3 613 related sires. The Weibull mixed
model used was quite complex and included time-dependent effects such as a herd-
year-season effect (with 82 713 levels, assumed to be randomly distributed with a
log-gamma distribution), a lactation number x stage of lactation effect, a herd size
effect and a year-to-year variation in herd size effect as well as continuous linear
and quadratic effects of covariates such age at first calving, milk, fat and protein
yield.

Popular extensions of proportional hazards models such as stratification or the
use of time-dependent covariates complicate the actual likelihood computations but
do not interfere with the marginalization procedures described here. The inclusion
of genetic relationships between individuals is straightforward through the use of
an appropriate prior distribution. Other prior distributions (including informative
priors) or other parametric baseline hazard functions could have been incorporated.
More complex genetic structures (eg, with maternal effects) can be fitted. When
more than one random effect is considered in the model, the approximation
described here leads to the joint marginal posterior of all the dispersion parameters
for all random effects. Further marginalization can be performed numerically along
the lines described in the Appendix for the calculation of the moments of the
marginal posterior distribution but this may be considered too costly. In the case of
a Weibull mixed model with two random effects, one of them having a log-gamma
distribution, the possibility of integrating out the latter algebraically avoids this
difficulty.

Laplacian integration can be applied to other situations too. For example, Tier-
ney and Kadane (1986) and Tierney et al (1989) suggested the direct computation
of the mean of the marginal posterior density using second-order approximation
formulae. These formulae were derived applying Laplacian integration to both the
numerator and the denominator of a ratio of integrals. However, this requires the
maximization of the joint posterior density for the dispersion parameters, the fixed
effects and the random effects. This approach failed when we attempted it as the
maximization procedure led to dispersion parameters estimates corresponding to
random effects with null variance. The same phenomenon had been described pre-
viously in similar situations (Tempelman and Gianola, 1993).

At least in theory, Laplacian integration could have been used to obtain the
marginal posterior distribution of parameters other than the dispersion parameters.
However, this may be considered far too demanding, because each application of the
Laplace expansion requires the maximization of one particular function involving
all parameters except the one of interest. This is in contrast with some Monte-
Carlo methods, such as Gibbs sampling, where the marginal distributions for all
parameters can be obtained simultaneously. However, in practical animal breeding



situations, the separate consideration of all marginal densities is often not required,
because estimated breeding values are point estimates mainly used to rank animals:
when little information is available for the genetic evaluation, an accurate ranking of
the candidates to selection is unrealistic. In the opposite case (precise estimation),
the rankings based on, say, the mode or the mean of either the marginal or the joint
posterior distribution are likely to be very similar. Marginal posterior densities of
nonlinear functions of parameters can also be calculated (Wong and Li, 1992).

Marginalization based on Laplacian integration has been shown to give excellent
results in standard situations. For many nonlinear applications, the quality of the
saddlepoint approximation would have to rely on the comparison of the approximate
marginal distribution of the dispersion parameters with the actual distribution
obtained via Monte-Carlo simulations. The exceptional situation studied here where
an exact algebraic integration of a log-gamma random effect is possible permits
a more straightforward comparison. It was found that the designs for which the
two marginal posterior distributions (exact and approximate) depart from each
other correspond to situations where the quantity of information available for the
estimation of genetic parameters is quite limited. This means, in particular, that
the saddlepoint approximation is likely to be unsuccessful for the estimation of the
parameters of a frailty term used to describe an extra variation (overdispersion).
However, one can still use algebraic integration of the random effects in the case of
a gamma frailty component in a Weibull model.
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APPENDIX: MOMENTS OF THE MARGINAL POSTERIOR
DENSITY OF T

Define g(T) = exp{J(T) - f (T)!. Expressions [36] or [37] imply:

for some integration constant

Knowing hn(r), ! = 0, ... , 3, one can compute k and the first three moments of the
approximate marginal posterior density of T:

with jMg = h3(&dquo;). Adapting the approach of Smith et al (1985) to our particularh0(T)
case, the expressions [A3], [A4], [A5] and [A6] are computed iteratively using the
following algorithm:
- Reparameterize T in such a way that the new variables take values between -oo
and +00. Here, this can be done with the change of variable ! = log T

- Let pi and O&dquo;l be the (approximate) marginal posterior mean and variance of !.
By definition:



Let ¡..t!0) and cl! (0) be initial estimates of these moments. Standardize ! using the
_ (o)transformation v = ç - (!r’ (0) Then, we get a first estimate of the moments in !A2!:!

and new estimates for pi and OIZ by computing:

2
Finally, factoring out the expression e- 2 in the integrand, we get:

Similar expressions exist for J.L!1) and <7!’. They are of the form required for the

application of the Gauss-Hermite quadrature rules. For example, hn (T) will be
evaluated as:

where vi and c.!2, for i = 1, ...1, are the roots and the associated weights of the
Hermite polynomial of order I (Abramowitz and Stegun, 1964). Again, similar
formulae apply to !!11 and !!!11. Once those new values of pi and U2 have been
computed, they can replace the initial values a(O) and O&dquo;!O) and the procedure can
be iterated until convergence.

It is important to note that the main work involved is the computation of g(e(&dquo;) )
at I points vi and that the resulting values are used repeatedly in the computation
of hn(T), J.l! (1) and 0&dquo; ! 2(1) .


