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Summary - A residual maximum likelihood method, implemented with a derivative-free
algorithm, was derived for estimating position and variance contribution of a single QTL
together with additive polygenic and residual variance components. The method is based
on a mixed linear model including random polygenic effects and random QTL effects,
assumed to be normally distributed a priori. The method was developed for QTL mapping
designs in livestock, where phenotypic and marker data are available on a final generation
of offspring, and marker data are also available on the parents of the final offspring and
on additional ancestors. The coefficient matrix of mixed model equations, required in the
derivative-free algorithm, was derived from a reduced animal model linking single records
of final offspring to parental polygenic and QTL effects. The variance-covariance matrix
of QTL effects and its inverse were computed conditional on incomplete information from
multiple linked markers. The inverse is computed efficiently for designs where each final
offspring has a different dam and sires of the final generation have many genotyped progeny
such that their marker linkage phase can be determined with a high degree of certainty.
Linkage phases of ancestors of sires do not need to be known. Testing for a QTL at any
position in the marker linkage group is based on the ratio of the likelihood estimating
QTL variance to that with QTL variance set to zero.

quantitative trait loci / residual maximum likelihood / mapping

Résumé - La cartographie de locus de caractère quantitatif dans des populations
en ségrégation à l’aide du maximum de vraisemblance résiduelle. I. Méthodologie.
Une méthode de maximum de vraisemblance résiduelle, appuyée sur un algorithme sans
dérivation, a été établie pour estimer la position et la part de variance d’un locus
de caractère quantitatif (QTL) et simultanément les variances polygéniques additives
et résiduelles. La méthode est basée sur un modèle mixte linéaire incluant des effets
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polygéniques et de QTL, supposés a priori suivre une distribution normale. La méthode a
été établie en vue de plans expérimentaux de cartographie de QTL chez les animaux, où des
données phénotypiques et de marquage sont disponibles sur la génération des descendants,
et des marquages connus chez les parents et des ancêtres supplémentaires. La matrice des
coefficients des équations du modèle mixte, requise dans l’algorithme sans dérivation, a été
déduite d’un modèle animal réduit qui relie les performances individuelles des descendants
aux effets polygéniqués ou de QTL parentaux. La matrice de variance-covariance des effets
de QTL et son inverse ont été calculées conditionnellement à l’information incomplète
relative à des ensembles de marqueurs liés. L’inverse est calculée e,!cacement pour des
dispositifs où chaque descendant a une mère différente et les pères ont de nombreux
descendants génotypés permettant de déterminer la phase des marqueurs liés avec un haut
degré de certitude. Il n’est pas nécessaire de connaître la phase des marqueurs liés chez les
ancêtres des pères. Le test de la position d’un marqueur au sein d’un groupe de liaison est
basé sur le rapport de la vraisemblance correspondant à la variance QTL estimée, relative
à une variance QTL nulle
locus de caractère quantitatif / maximum de vraisemblance résiduelle / cartographie

INTRODUCTION

Traditional methods for the statistical mapping of quantitative trait loci (QTL)
include ANOVA and (multiple) linear regression (eg, Cowan et al, 1990; Weller
et al, 1990; Haley et al, 1994; Zeng, 1994), maximum likelihood (ML) interval
mapping (eg, Lander and Botstein, 1989; Knott and Haley, 1992), or a combination
of ML and multiple regression interval mapping (eg, Zeng, 1994). These methods
were developed mainly for line crossing and, hence, cannot fully account for the
more complex data structures of outcross populations, eg, data on several families
with relationships across families, unknown linkage phases in parents, unknown
number of QTL alleles in the population, and varying amounts of data information
on different QTLs or in different families. The gene effects near markers selected
based on a linkage test tend to be overestimated increasingly with decreasing family
size and true effect (Georges et al, 1995). Random treatment of QTL effects would
cause shrinkage of estimates toward a prior mean in small families and for (aTLs
accounting only for a small portion of genetic variance.

Fernando and Grossman (1989) derived best linear unbiased prediction (BLUP)
of QTL allelic effects, which are assumed to be normally distributed. For simple
designs (eg, (grand)daughter designs with unrelated sires), BLUP reduces to
random linear regression (Goddard, 1992). Fernando and Grossman (1989) showed
how to obtain BLUP estimates of additive allelic effects (v) at a QTL linked to a
single marker and of residual polygenic effects (u), assuming that all individuals in
a population are genotyped and that markers are fully informative. Subsequent
developments allowed for multiple linked markers with a QTL in each marker
bracket (Goddard, 1992), for multiple unlinked markers each associated with a
QTL (van Arendonk et al, 1994a), for incomplete marker information (Hoeschele,
1993; van Arendonk et al, 1994a; Wang et al, 1995), and for reductions in the
number of equations by using a reduced animal model (RAM) (Cantet and Smith,
1991; Goddard, 1992), by including QTL gene effects only for genotyped animals
and their tie ancestors (Hoeschele, 1993), or by estimating the sum of the effects at
several unlinked, marked QTL (van Arendonk et al, 1994a). There are two linearly



equivalent (Henderson, 1985) animal models incorporating marker information, the
first linking an individual’s phenotype to both of its marked QTL allelic effects
and to its polygenic effect (Fernando and Grossman, 1989), and the other linking
phenotypes to the total additive effects and linking total additive effects to QTL
effects via the genetic covariance matrix (Hoeschele, 1993).

All methods described above are concerned with the prediction of genetic effects
and assume that the dispersion parameters are known. These parameters include
the additive polygenic variance, the variance contributed by a QTL, the QTL
position, and the residual variance. A first attempt to estimate these parameters
by residual maximum likelihood (REML) was undertaken by van Arendonk et al
(1994b) using a granddaughter design with unrelated sires and a single marker.
These authors found that for this situation, QTL position and contribution to
additive genetic variance were not separately estimable. Grignola et al (1994)
showed that for the same type of design these parameters were estimable when
performing interval mapping with flanking markers, known linkage phases in the
sires and no relationships among sires.
Xu and Atchley (1995) performed interval mapping using maximum likelihood

based on a mixed model with random QTL effects, but these authors fitted one
additive genetic effect at the QTL rather than two allelic effects for each individual
with variance-covariance matrix equal to a matrix of proportions of alleles identical-
by-descent (IBD) shared by any two individuals at the QTL and assumed that this
matrix was known. These authors applied their analysis to unrelated full-sib pairs.

In this paper, we (i) apply the theory of Wang et al (1995) for a single marker
to compute the variance-covariance matrix among QTL effects conditional on
incomplete information from multiple linked markers, (ii) use this covariance matrix
in the estimation of position and variance contribution of a single QTL along with
polygenic and residual variances and in testing for QTL presence in a marker
linkage group via REML with a derivative-free algorithm, and (iii) include all known
relationships between the parents (sires) of the final offspring in the analysis.

METHODOLOGY

Mixed linear model

The animal model including polygenic and QTL effects of Fernando and Grossman
(1989) is:

where y is an N x 1 vector of phenotypes, [3 is a vector of fixed effects, X is a
design/covariate matrix relating 13 to y, u is an n x 1 vector of residual additive
(polygenic) effects, Z is an incidence matrix relating records in y to animals, v
is a 2n x 1 vector of QTL allelic effects, T is an incidence matrix relating each
animal to its two QTL alleles, e is a vector of residuals, A is the additive genetic
relationship matrix, Qu is the polygenic variance, Qufl is the variance-covariance
matrix of the QTL allelic effects conditional on marker information, ufl is half the



additive genetic variance explained by the QTL (also referred to as the QTL allelic
variance), R is a known diagonal matrix, and Qe is the residual variance.

Matrix Q depends on one unknown parameter, the map position of the QTL
relative to the origin of the marker linkage group (dQ). For notational convenience,
this dependency is suppressed in model [1] and below. Parameters related to the
marker map (marker distances and allele frequencies) are assumed to be known.

The model is parameterized in terms of the unknown parameters heritability
(h2 = 0&dquo;;/0&dquo;;) with U2 being additive genetic and Q2 phenotypic variance, fraction
of the additive genetic variance explained by the Q!L allelic variance or half of the
additive variance due to the QTL (v2 = cr!/<7!), residual variance U2 and QTL
location dQ.

Let there be phenotypes only on nonparents or final offspring which have single
records. Furthermore, recurrence equations linking u and v effects of nonparents
(n) to those of parents (p) are

where the matrix W consists of rows with zero, one or two elements equal to 0.5 for
none, one or two parents known, respectively, and each row of the matrix F contains
up to four nonzero coefficients explained below. With single records, Z = I, where
I is an identity matrix. Then, model [1] can be rewritten as

The reduced animal model is obtained from [3] by combining the last three terms
into the residual. Mixed model equations (MME) for the RAM (Cantet and Smith,
1991) can be formed based on the RAM directly or by first forming MME based
on [3] and subsequently absorbing the equations in e and m. The resulting MME
for the RAM are

It can be easily verified that matrix Dv is diagonal even if Av is not, ie, TAVT/
is always diagonal. Inbreeding and unknown parental origin of marker alleles can



give rise to some nonzero offdiagonal elements in A, (Hoeschele, 1993; Wang et al,
1995). With Dv diagonal, matrix Duv is also diagonal, hence, the MME are easily
computed.

REML analysis

The REML analysis was performed by maximizing the likelihood of error contrasts
(LEC) (Patterson and Thompson, 1971) with respect to the parameters h2,V2,0&dquo;;,
and dQ. The LEC was obtained under the assumption of a joint multivariate normal
distribution of y, u, and v. For the full animal model (AM), the logarithm of the
LEC (LLEC) can be expressed as (Meyer, 1989):

where 0 is the vector of parameters, G is the variance-covariance matrix of the
random effects (here, u and v), NF = rank(X), NR = dimension(G), and C is the
coefficient matrix of the MME for the AM (model [1] or (3!) reparameterized to fullrank and with 0&dquo;; factored out. The estimate of o,; maximizes the likelihood for a
given set of values for the other parameters (Graser et al, 1987). The terms y’Py
and log ICI are computed as in Meyer (1989) via Gaussian elimination applied to
the augmented MME, and log I G is obtained as - log !G-1! with G-1 computed
directly. In the following, it is shown how to compute the AM likelihood in [5] when
working with MME for the RAM.
When equation [5] is applied directly to the RAM, the result is

where all parts different from the AM LLEC are subscripted RAM. Let G be
the variance-covariance matrix of the genetic effects (u, v) of the parents and of
the Mendelian sampling effects for u and v of the nonparents or finals. Let G be
partitioned accordingly. Then

where A is blockdiagonal with blocks of size < 2. Similarly, partition the coefficient
matrix of the MME for model [3], C, according to all other (1: (3, up, vp) and
Mendelian sampling effects (2: m, e). Then,



where C22 is diagonal or blockdiagonal with blocks of size x 2. Hence, the RAM
LLEC can easily be modified to yield the AM LLEC, or

LLECRAM oc LLECRAM - 0.5 log JAI - 0.5 log !22! + 0.5 (NR - NRRAM) log(,9,!,!)
[9]

where NR is total number of random genetic effects while NRRAM is number of

genetic effects pertaining to parents.
The analysis was conducted in the form of interval mapping as in Xu and Atchley

(1995), where dQ was fixed at a number of successive positions (every centimorgan)
along the chromosome, and at each position the likelihood was maximized with
respect to h2, V2 and U2

Calculation of Qp’ and 0&dquo;

These matrices were computed by applying the theory presented in Wang et
al (1995) to marker information consisting of multiple linked rather than single
markers. At a given QTL position, different markers were allowed to flank the QTL
in different families due to some parents being homozygous at the closest flanking
markers.

Notation

Let Q! denote QTL allele k (k = 1, 2) in individual i and v! the additive effect of
this allele. Let - denote IBD, let « stand for ’inherited from’, let Gobs represent
the marker information observed on the pedigree, and let MT denote a possible
marker haplotype ( !1) of individual i at the closest pair of marker loci bracketing
the QTL for which the parent of i is heterozygous. Furthermore, let M be a set of
complete multi-locus marker genotypes for the entire pedigree. Finally, p denotes
parent (p = s, d), s sire, d dam, and Lp denotes the linkage phase of the alleles at
the narrowest marker bracket for which parent p is heterozygous.

Variance-covariance matrix of v effects Qp

In the presence of missing marker data and/or unknown linkage phases for parents,
the variance-covariance matrix of the v effects is of the form

where QM is conditional on a particular set of multi-locus marker genotypes (M).
Equation [10] was given in Hoeschele (1993) and in Wang et al (1995). The
calculation of [10] is computationally very demanding for large pedigrees. The
probability of a QTL allele in individual i being IBD to a QTL allele in individual j
(with j not being a direct descendant of i) in general cannot be computed recursively
using IBD probabilities pertaining to the alleles in i and the parents of j when
parental marker genotypes and/or linkage phases are unknown (Wang et al, 1995),
hence there is no simple method to compute the inverse directly. A method for



computing the inverse, which is more efficient than standard inversion, was derived
by Van Arendonk et al (1994a).

The variance-covariance matrix in [10] can, however, be computed by using
Monte Carlo. The Monte-Carlo approximation of [10] is

where Mk is a particular realization of M from the probability distribution of M
given Gobs, and S is sample size. Note that !11! yields the exact variance-covariance
matrix if sample size S is large. Samples from this distribution can be obtained by
Gibbs sampling, which was implemented using blocking of the genotypes of parents
and final offspring (finals) as in Janss et al (1995). For a half-sib design (daughter
or granddaughter design) with large family sizes (eg, 50-100) and no relationships
among final offspring (daughters or sons) through dams, the linkage phases of the
parents of final offspring are ’known’, as always or most frequently (near 100%) the
correct phase is sampled. Then, the inverse of the variance-covariance matrix of
the QTL effects can be computed exactly (up to Monte-Carlo error due to use of
!11!) as follows. Equation [11] is employed to compute the submatrix pertaining to
QTL effects of parents of finals and ancestors using marker information on the entire
pedigree including final offspring. This submatrix is then inverted, and contributions
of final offspring, computed with known parental linkage phases, are added into the
inverse. Note that in the RAM in [4], offspring contributions appear in the least-
squares part of the MME rather than in the inverse variance-covariance matrix of
the QTL effects.

Recurrence equations for v effects

Recurrence equations for the v effects of the finals were required to compute the
elements of F and A, in !4!. The general recurrence equation for a QTL effect is

where

[XOJ

The most likely linkage phase is assumed to be the true phase for the parents
of final offspring. This assumption reduces the joint probability of parental linkage
phase and offspring haplotype in [13] to the probability of the marker haplotype of
an offspring. This probability is computed using the parental phase and the marker
genotypes of an offspring at all linked markers. Alternatively, [13] could be used
when parental linkage phases are not known by computing the joint probability of
parent linkage phase and offspring haplotype for each interval as a frequency count
across all Gibbs cycles after burn-in, using information from the entire marker



linkage group and from all relatives in the pedigree. However, this approach would
only be an approximation to calculating the variance-covariance matrix and its
inverse based on [10] for the entire pedigree including the final offspring.

In [13], the Pr(Q!‘ = Q!MJ&dquo; 4= p, Lp) are tll = (1 - rL)(1 - rR)/(l - rM) and
t12 = rLrR/(1- rM) if Mm is a nonrecombinant haplotype, or t21 = (1- rL)rR/rM
and t22 = rL(l - rR)/rM if Mm is recombinant, where rM is recombination rate
for the marker bracket, rL(rR) is recombination rate between the QTL and the left
(right) marker, and Haldane’s no interference map function is employed. Here, we
allow for double recombination while Goddard (1992) assumed it to be zero.
QTL alleles in final offspring are identified by parental origin, ie, the two QTL

alleles in an offspring are distinguished as the allele inherited from the sire (s) and
the allele coming from the dam (d). This definition can be employed even if the
parental origins of the alleles at the flanking markers are unknown, but it can be
used only in the final generation. For illustration, consider a single parent p (here,
p = s = sire) with genotype 12/12, linkage phase 1 - 1, and the worst case of
an offspring with genotype 12/12 (inheritance unknown at both flanking markers).
The possible marker haplotypes inherited from p are 1 - 1, 1 &mdash; 2, 2 - 1, and 2 - 2.
Then, if the QTL alleles in i are identified by the alleles at the left marker (1,2)

whereas if the QTL alleles in i are identified by parental origin,

Note that summing the vi and v2 equations yields the same result for both QTL
identifications. Note also that the advantage of the identification by parental origin
is that only v? is linked to the v effects of the dam (d), instead of linking both v!
and v? to the dam effects requiring to include dam effects in the MME.

Hypothesis test

The likelihood under the null hypothesis is evaluated at v2 = 0. The distribution
of the likelihood ratio statistic is not known exactly, regardless of the method used
to locate QTL (Churchill and Doerge, 1994). For the null hypothesis postulating
the absence of a QTL in a particular interval rather than in the entire genome,
Xu and Atchley (1995) found the distribution to be in between two chi-square
distributions with degrees of freedom of one and two, respectively. Several factors
may influence the distribution of a test statistic for QTL presence, eg, the length
of the genome, the marker density, the extent to which marker data are missing,



segregation distortion, and the distribution of the phenotypes. Self and Liang (1987)
derived analytical results for the asymptotic distribution of the likelihood ratio
statistic for cases where the true parameter value may be on the boundary of the
parameter space. However, with finite sample sizes and several factors influencing
the distribution of the statistic, it is questionable whether their results can be
utilized in QTL mapping.
When analyzing real data, the threshold value for significance can be determined

empirically using data permutation (Churchill and Doerge, 1994). To obtain the
threshold value for a genome-wide search, in the order of 10 000 to 100 000

permutations are necessary. As these computations are unfeasible with the method
presented here (see the companion paper by Grignola et al, 1996), one may resort
to estimating thresholds for a number of less stringent significance levels and obtain
the desired threshold by extrapolation (Uimari et al, 1996b).

CONCLUSIONS

The REML analysis described in this paper may be a useful alternative to other
methods for the statistical mapping of QTL. The REML method is generally known
to be quite robust to deviations from normality. When applied to QTL mapping,
the REML analysis requires fewer parametric assumptions than ML (eg, Weller,
1986) and Bayesian analyses (Hoeschele et al, 1996; Thaller and Hoeschele, 1996a,b;
Uimari et al, 1996a) postulating a biallelic QTL with unknown gene frequency and
substitution effect.

While Xu and Atchley (1995) estimate QTL, polygenic and residual variances by
ML, we perform REML estimation. While REML should be preferred over ML in
the presence of many fixed effects relative to the number of observations (Patterson
and Thompson, 1971), a model for the analysis of QTL mapping experiments may
only need to include an overall mean. In this case, the difference between the ML
and REML analyses is negligible.

As the true nature of (aTLs is unknown, it is important to evaluate the
performance of this REML analysis and of other methods with data simulated under
different genetic models (eg, biallelic and multiallelic QTL models). In a companion
paper (Grignola et al, 1996), we apply the REML analysis to granddaughter designs
simulated with different models for the additive variance at the QTL. Hoeschele et al
(1996) apply Bayesian analyses based on biallelic and multiallelic QTL models to
data simulated under both models.

The REML analysis incorporates an expected variance-covariance matrix of the
QTL allelic effects, which is equal to a weighted average of variance-covariance
matrices conditional on all possible sets of multi-locus marker genotypes given
the observed marker data. Schork (1993) alternatively formulated a likelihood
for a mixture distribution which is a weighted average of REML likelihoods
conditional on all possible sets of multi-locus marker genotypes given the observed
marker data. He pointed out, however, that simulation results indicated that his
modification may lead to a loss of power. In both approaches, the one considered in
this paper and in equivalent form by Xu and Atchley (1995), and the approach
of Schork (1993), probabilities of multi-locus marker genotypes are computed
from the observed marker information. However, if markers are linked to QTLs,



phenotypes also contain information about marker genotypes, and this information
is ignored here (Van Arendonk, personal communication). In this regard, the REML
analysis can be viewed as an approximation to the Bayesian analysis based on a
multiallelic QTL model with QTL variance and allelic effects having a prior normal
distribution (Hoeschele et al, 1996). The Bayesian analysis takes into account the
joint distribution of the QTL and marker genotypes conditional on the phenotypic
information.
We are currently extending our REML analysis to account for multiple linked

QTLs. One way of approaching this problem was presented by Xu and Atchley
(1995) and consisted of fitting variances associated with next-to-flanking markers.
Disadvantages of this approach are that it is approximate as effects associated with
marker alleles identified within founders erode over generations, and that it requires
many additional parameters when the marker polymorphism is limited, causing the
flanking and next-to-flanking markers to differ among families.

Finally, we plan to extend the REML analysis to other designs (eg, full-sib

designs), where the current computation of the inverse of the variance-covariance
matrix becomes approximate due to uncertain linkage phases in parents of final
offspring, and other ways of computing this inverse exactly (eg, Van Arendonk
et al, 1994a) will be implemented.
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