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Summary — A new algorithm for finding maximum likelihood (ML) solutions to variance
components is introduced. This algorithm first treats random effects as fixed, then
expresses the pseudo-fixed effects as linear transformations of a set of standard normal
deviates which eventually are integrated out numerically through Monte-Carlo simulation.
An iterative algorithm is employed to estimate the standard deviation (rather than the
variance) of the random effects. This method is conceptually simple and easy to program
because repeated updating and inverting the variance—covariance matrix of data is not
required. It is potentially useful for handling large data sets and data that are not normally
distributed.

maximum likelihood / restricted maximum likelihood / variance component / Monte-
Carlo / mixed model

Résumé —~ Un algorithme de Monte-Carlo pour estimer des composantes de variance
par le maximum de vraisemblance. Un nouvel algorithme pour résoudre le mazximum de
vraisemblance de composantes de variance est présenté. Cet algorithme traite d’abord les
effets aléatoires comme des effets fizes, puis exprime ces pseudo-effets fizes sous la forme de
transformations linéaires d’un ensemble de variables normales centrées réduites. Celles-ci
sont ensuite éliminées par intégration a l’aide d’un processus numérique de Monte-Carlo.
Un algorithme itératif est employé pour estimer U'écart type (et non la variance) des effets
aléatoires. Cette méthode est simple conceptuellement et facile & programmer parce que des
inversions de la matrice de variance-covariance des données répétées d chaque itération
ne sont plus nécessaires. La méthode peut étre utile pour traiter de grands ensembles de
données et des données qui ne sont pas distribuées normalement.

maximum de vraisemblance / maximum de vraisemblance restreinte / composante
de variance / Monte-Carlo / modéle mixte
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INTRODUCTION

Estimates of variances and covariances have been used extensively in animal breed-
ing (Henderson, 1986). Recently, much attention has been paid to natural popula-
tions (Guo and Thompson, 1991). A thorough knowledge of genetic variances and
covariances is useful in determining genetic variability of a population, interpret-
ing the genetic mechanism of quantitative traits and estimating heritabilities and
genetic correlation of quantitative traits. Those genetic parameters are necessary
in planning breeding programs, constructing selection indices, estimating breeding
values of candidate breeders and predicting selection responses (Henderson, 1986).

Various methods for estimation of variance components have been developed. A
general review can be found in Henderson (1984) and Searle (1989). Among these,
the maximum likelihood (ML) of Hartley and Rao (1967) and restricted maximum
likelihood (REML) of Patterson and Thompson (1971) are the most popular
methods. With the ML-related methods, large computer resources and CPU times
are required due to repeatedly inverting the variance—covariance matrix of the data.
The derivative-free algorithm for REML (DF-REML) has been suggested by Graser
et al (1987) where matrix inversion is not required, rather, Gaussian elimination is
used (Smith and Graser, 1986). With the advent of efficient computer programs for
ML and REML estimation of variance components such as the DFF REML program
of Meyer (1988), large data set (N > 100000) can be handled by utilizing the
sparse matrix technique (see Misztal, 1994; Kriese et al, 1994 for up-to-date REML
programs).

Recently, Guo and Thompson (1991) developed a Monte-Carlo expectation—
maximization (EM) method for variance component estimation which uses jointly
the EM algorithm (Dempster et al, 1977) and the Gibbs sampler (Geman and
Geman, 1984). Their method has avoided repeated inversion of the variance-
covariance matrix.

An alternative algorithm for solving ML and REML solutions, similar to Guo
and Thompson (1991), is reported in this paper. The new method first treats
random effects as fixed and then integrates out these pseudo-fixed effects via Monte-
Carlo simulation. In the case where data are normally distributed, there is an
explicit form of the multiple integral, but the explicit form involves inverse of the
variance—covariance matrix. Instead of using the explicit form of the integral, the
integration is carried out via Monte-Carlo simulation. With this algorithm, the
standard deviation, rather than the variance, of the random effects is estimated
using an iterative algorithm similar to the EM algorithm (Dempster et al, 1977).
This method does not require updating the variance—covariance matrix, thus may
need less computer memory than other methods. As a result, it may potentially
handle large dimensional data sets. For data that are not normally distributed, an
explicit form of the multiple integral is not available, thus the Monte-Carlo method
may be the only appropriate way to solve the problem. In this paper application of
the Monte-Carlo method to normal data for ML (or REML) estimation is reported.
The result serves as a necessary step approaching the application the the new
method to non-normal data.
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THEORY AND METHODS

The mixed model

We will use the simplest mixed model with one class of random effects to demon-
strate the new algorithm. The model is shown below:

y=Xb+Zu+te 1]

where
n X 1 vector of observations or data,
p x 1 vector of fixed effects,
g x 1 vector of random effects with N(0,Io2),
n x 1 vector of residuals with N(0, Io2),
n X p known incidence matrix for the fixed effects with a rank r,
n X q known incidence matrix for the random effects, usually with full column
rank.
It is assumed that E(y|@) = Xb and Var(y|@) = V = ZZ"02 + 102, where
0 = [bo202]T denotes the unknown parameters and the superscript T stands for
matrix transposition. In the genral framework of animal breeding, u may represent
sire effects. If every progeny within each sire has a different dam from each other, the
variance among sires, o2, will account for a quarter of the additive genetic variance
and o2 will contain three-quarters of the additive genetic variance plus the variance
solely due to environmental effects (deviation of phenotype from genotype).

The likelihood function of the mixed model is proportional to

NHO e T«

fv16) = VI~ Bxp { - v - XB)TV 4y — Xb) 2

Note that this likelihood function involves inverting the variance—covariance
matrix of the data (V™1).

Conditional on the random effects (u), equation [1] is a fixed-effect model so
that E(y|@u) = Xb + Zu and Var(y|0u) = Ios2. Furthermore, u can be obtained
by linear transformation of a set of standard normal deviates, ie, u = soy, where
s ~ Ngx1(0,I). Thus, conditional on s, the fixed model is reformulated as

y=Xb+Zso, +e (3]

With such a fixed model, the conditional likelihood function is proportional to
f(y|@s) = ! pepdol(y—Xb-2Zs0,)T(y—Xb-_Z 4
(yl0s) = W Xp @(y sou) (y S0y) 4]

Clearly, matrix inversion is not involved here. However, s is a vector of random
variables which must be integrated out to obtain unconditional estimates of 6 =
[b, oy and 02]. Note that o2 in @ is now replaced by o,.
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The marginal likelihood function

This likelihood function has the form

f(yle) = /+°° /+°° |Gs )q/2 {—%s s} ds (5]

whose explicit form [5] is equivalent to [2]. The reason to reformulate [2] as [5] is
that equation [5] can be approximated by Monte-Carlo simulation, as suggested
by Fahrmeir and Tutz (1994). Because the distribution of s is completely known
(standard normal), we can generate M sets of random normal deviates and denote
the ith set by s;. Then the marginal likelihood function can be approximated by

g9(y|0) = Z (vl6s:) [6]

where f(y|0s;) is given in [4] with s substituted by s;, and it is an exponential
function not the logarithm. Hereafter, M is called the length of the Monte-
Carlo simulation. We can see that as M — o0,¢(y|0) — f(y]|@). Therefore,
maximum likelihood estimators can be obtained by maximizing g(y|0) instead
of f(y|®) provided that M is large. More importantly, when g(y|0) is used,
the maximum likelihood solution of the parameters can be easily solved via an
iteratively reweighted least squares scheme.

The iterative algorithm

When ¢(y|@) is used, the vector of parameters becomes 8 = [bTg,02]T, namely o,

is estimated. As usual, the maximum likelihood solution of 8 is found by maximizing
= log[g(y|0)] instead of ¢g(y|0).

Let us first define the following partial derivatives:

w = _2(172 f(y)8s)(XTy — XTXb — XTZs;0,)
w - —Q%f(ywsi)(s;fz“‘y - sTZ™Xb — 572" Zs,0,)
o 0?2
05(y1os,) _

1
902 = ——QFf(y|9si) n— U—( ~Xb — Zszau) (y — Xb — Zs;0y)

e e
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We then have

M
1 _f(ylesi) [XTy — XTXb - X"Zs;0,

y —s; Z"Xb — 5] Z"Zs;0,]

I
-
on
=
- by
~~~
=
<D
»n
i/
H
N
H

i 1
= 20—2 Z Joi0s) [ — —(y = Xb — Zso,)T(y — Xb — Zsoy,)
=1 Z f y|eSJ) ¢

The maximum likelihood estimators (MLEs) are obtained by setting

oL _, . 0L _ 9L

b Bow 902 0

Dropping the constant —1/202 in the above equations and defining

Gsi
oy = Jv10s)

M
> f(yl0s;)

Jj=1

we have the following ML equations:
Bu M M -1 - M
Zp,-s;rZTZsi Zpis;rZTX Zpis;rZTy
=1 i=1 i=1 7]
- M

(=]

M M
> piXTZs; Y pXTX > pXTy
=1 =1 i=1
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and
Y
G2 = [n sz] >_pily - Xb — Zs;7,)" (y — Xb — Zs;5u) 8]
i=1
Unfortunately, the weight p; is a function of the unknown parameters, therefore,
an iterative scheme must be employed. We can see that the iterative scheme is
essentially an iteratively reweighted least squares approach. The iteration takes the
following steps:
Step 1: set up initials for b, ¢, and o2;
Step 2: evaluate p;;
Step 3: solve for b, o, and o2 using [7] and [8];
Step 4: update b, 0, and 2 which completes one cycle of iteration;
Step 5: repeat Steps 2—4 until convergence.

The MLE of 02 is simply the square of the MLE of o, due to the invariance prop-
erty of the ML method (DeGroot, 1986). The iterative algorithm does not require
inversion of matrix V; rather, it only requires storing the following quantities:

{sTZ%Zs:} \y ) (T2 y )y, and {sTZ7X}, o

These quantities do not involve the unknown parameters, and thus do not need
to be updated; rather, they can be calculated after the random normal deviates are
generated and before the iteration is invoked. In addition, if the starting value of
oy is positive, the solution to o, remains positive at each round of iteration. If o,
starts at a negative value, it remains negative subsequently, but its square is still a
valid ML estimate of o2.

Note that p; is the posterior probability density whose denominator

M
Zf(ywsj)

is constant across ¢, and thus can be dropped without altering the solutions. For
computational conveneince, p; is redefined as p; = f(y|0s;) hereafter. Furthermore,
with a large data set, p; will be very close to zero and may cause the method to
fail due to numerical problems. This can be circumvented by multiplying p; by the
exponential of a very large positive number whose magnitude is comparable to

1

—— — — T —_— —
307 (y — Xb —Zso,) (y — Xb — Zso,)

A candidate of such a number may be

~ 202, 55— (¥ — Xb() — Zs(0)0u() " (y — Xb(o) — Zs(0)0u(0))
e
where 03(0), b(gy and o,(g) are chosen such that they are close to the true parametric

values, and s(g) is an arbitrary Monte-Carlo realization of vector s. The modified
p; has the following form:
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pi = Exp(c) f(y]0s)
1 1 T
= CIRE Exp{—Z—(E(y—Xb—Zsau) (y—Xb—Zsau)—i-c} [9]
It should be warned that the value of ¢ stays the same throughout the iterations
and should not be updated.

The REML

The Monte-Carlo algorithm also works for the REML estimation of variance
components. As in the ML analysis described earlier, we first treat the random
effects as pseudo-fixed effects, then express the model by a linear transformation of
the original data, ie,

KTy = K"Zso, + K e [10]

where s is a ¢ x 1 vector of standard random normal deviates generated via Monte-
Carlo simulation, K is a known matrix with n rows and n — r columns. Matrix
K is chosen such that KTX = 0 (Patterson and Thompson, 1971). One such a
choice is given by Harville (1977) as any n — r independent columns of matrix
I - X(XTX)XT. After the linear transformation, the model does not depend on
the fixed effects, b. Thus, the vector of unknown parameters becomes 8 = [7,,02]7.
Conditional on s, the expectation and variance of KTy are E(KTy|0s) = KT Zso,
and Var(KTy|0s) = KTKo2, respectively, Thus, the conditional likelihood func-
tion is proportional to

f(KTylos) = WExp {—Tig(y - Zso,) TK(K'K) !y - ZSO’u)} [11]

The marginal likelihood function is similarly approximated via Monte-Carlo
simulation and has the following form

M
o(K"[6) = 2>~ f(KTy[6s) 12

where f(KTy|0s;) is given by [11] with s replaced by s;. Setting partial derivatives
of L = log[g(KTy|0)] with respect to 8 equal to zero, we have

M
> pisT ZTK(K'K) 'K Ty
Gy = 1\71 [13]
> pisT Z'K(KTK) 'K Zs;

=1

and

[ ]

g,

M 17'm
{(n -7) sz] sz' (y — Z8:50)"Z"K(K"K) ' K" (y — Zs;5)  [14]

=1 i=1
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where

M
S F(Kyles)

Jj=1

i =

is again the posterior probability density. Iteration is required because the weight
p; is a function of the unknown parameters. Note that the quantities to be stored
are {S;FZTK(KTK)‘1KTy}MX1 and {S;I‘ZTK(KTK)_IKTZsi}M)<1 which do not
involve the unknown parameters, hence updating is not necessary.

The animal model

Under an individual animal model, the genetic value of each animal is included. It
has the form

y=Xb+u+e [15]

where u is an n x 1 vector of additive genetic values for all animals. There is
no Z matrix here and u are correlated through the additive relationship matrix
(matrix A), namely, Var(u) = Ao2 and o2 is the additive genetic variance. Let
Z = A'/2 the lower Choleskey decomposition of A. Now the fixed model version
of [15] becomes

y = Xb+ Zso, + e

This equation is exactly the same as [3] except that Z is an n x n lower triangular
matrix and s is an n x 1 vector of standard normal deviates generated via Monte-
Carlo simulation. Therefore, the Monte-Carlo algorithm works equally well with
an animal model. Note that Var(Zso,) = ZVar(s)ZT02 = ZZ%02 = A 02 because
ZZ" = A and Var(s) = I. The likelihood function for an animal model can be
formulated either as [6] for ML estimation or as [12] for REML estimation.

With an animal model, the typical size of a data set could be very large, making
factorization of A into Z very expensive. In addition, matrix A is dense and storing
it may not be feasible. Here, we introduce a new algorithm that can avoid these
difficulties.

Let u = aoy, then y is equation [15] can be remodeled as
y=Xb+ao,+e [16]

where a is an n x 1 vector with N (0, A) distribution. The vector a can be simulated
as follows: for founder j, a; is sampled from an N(0, 1) distribution; for non-founder
J» @5 = (@m +a5)/2+;, where m and f are the parents of j and ~y; is sampled from
an N(0,+/1/2) distribution. We have now avoided the use of matrix factorization
by directly generating vector a (instead of s) and subsequently replacing Zs by a.
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AN ILLUSTRATION

To demonstrate the Monte-Carlo algorithm, data originally used by Cunningham
and Henderson (1968) were reanalyzed. There were 18 observations classified into
two treatments (fixed) and three blocks (random). No correlation between blocks
was assumed. The data was described by model [1]. The estimates of o2 and o2
were given by Patterson and Thompson (1971), which are ML: 52 = 2.3518 and
72 = 2.5051; REML: 52 = 2.5185 and 52 = 3.9585. The length of the Monte-Carlo
algorithm varied from 10 to 31623, which have a log;¢ scale ranging from 1.0 to
4.5 incremented by 0.5. The experiment was replicated 20 times.

Results of the ML estimates are plotted against the length in log;o scale as
shown in figures 1 and 2. When log1o(M) = 3.5, the MLE of o2 stabilized at
the true maximum likelihood estimate (fig 1), while the estimate of 62 took only
logo(M) = 3.0 to stabilize (fig 2). From these two figures we also observed that
when log;o(M) < 3.0 the Monte-Carlo estimation tends to be biased (downward).
The standard deviation among the 20 replicates are plotted against the length as
shown in figure 3. Similar results were also observed for the REML estimates (see
figs 4-6). Downward baseness may be a general property of the Monte-Carlo method
for small M because biases in both ML, and REML estimates are downward. Further
investigation is necessary to quantify the expected bias for small M.

In conclusion, the Monte-Carlo algorithm does converge to the true ML or REML
estimates for both o2 and o2. Estimate of o2 converges more quickly than that of
o2, For this particular data set, a length of M = 1 000-5 000 seemed to be sufficient.
M = 5000 may also serve as a guideline for other data sets (see Discussion).
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Fig 1. Maximum likelihood estimates of o?, plotted against the length of simulation in
logyq scale. The dashed line represents the true MLE of o2 = 2.5051.
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DISCUSSION

The major advantages of the Monte-Carlo algorithm presented in this paper rely
on its conceptual simplicity and easy programming. There are two strategies to
implement the Monte-Carlo algorithm. One is to generate the random numbers
before invoking the iteration. In ML analysis, this requires storing the following
quantities: {sTZ"Zs;}arx1, {STZTy}arx1 and {s} ZTX} s« k. The number of stor-
age units requlred is ’g +2) x M. In REML analysis, the quantities to be stored are
{sTZ"K(XTK) 'K y}arx1 and {sTZTK(K"K) 'K*Zs;}sx1, where the num-
ber of storage umts is 2M. Although REML needs less computer memory than ML,
additional CPU time is required for evaluating K(KTK)~'KT. Once these quan-
tities are generated, however, ML takes more CPU time than REML for iteration
because ML needs repeated evaluation of equation [7] which is not trivial for a large
number of fixed effects. The second strategy is to generate the random numbers as
needed using a reseed with the same number strategy in the pseudo-random number
generator. This would have a substantial CPU load but does not require storing
those quantities needed by the first strategy. In either case, generating the quan-
tities such as s} ZTK(KTK) 'KTZs; must resort to special techniques for large
data sets (eg, Perez-Enciso et al, 1994).

When applied to large data sets, the Monte-Calro algorithm is powerful
for ML analysis, but inefficient for REML analysis because it involves matrix
K(KTK) KT which looks formidable. The K matrix may be avoided by absortion
of fixed effects using Guassian elimination, but it is still expensive for more than
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one fixed effect. Further investigation is necessary to implement this algorithm to
REML analysis.

Using the first strategy of Monte-Carlo simulation, matrix factorization and
inversion (the latter is required in REML) are done only once, which makes the first
strategy more desirable than the second. For a reasonable number of levels of fixed
effects (eg, k = 10), the number of storage units required is solely determined by
M. For example, if M = 5000, the number of storage units will be (10 4+ 2) x 5000
for ML and 2 x 5000 for REML. Such a number of storage units may be easily
handled by standard PCs. The question becomes whether M = 5000 is sufficient
or not. The example previously described shows that M = 5000 is sufficient. This
number may also serve as a general guideline because it does not depend on the size
of the data set. Fahrmeir and Tutz (1994) state that the computing load of Monte-
Carlo multiple integration increases linearly with the dimension of the integral.
Here, the computing load is not M but M X g (the total number of random normal
deviates generated), where g is the dimension of u. We can see that M x g is already
proportional to q. Thus, we will not expect M to increase with g.

We have demonstrated the Monte-Carlo algorithm under the situation of one
class of random effects. Extension to more classes of random effects is straight-
forward. Suppose that the mixed model has the form

y=Xb+Zu+Wv+e

where W is a known matrix and v is another vector of random effects with
v ~ N(0,I02). Here we assume Cov(u,vT) = 0. Conditional on two independent
sets of random normal deviates, s and z, the fixed model equivalence of the above
model is

y = Xb + Zsoy, + Wzo, + e

To obtain the marginal likelihood function, one simply generates M sets of s;
and z; to approximate the multiple integral. A similar algorithm can be employed
to simultaneously estimate b, oy, 0, and o2.

The Monte-Carlo algorithm presented in this paper should be considered as an
alternative method for estimation of variance components. Similar to the Monte-
Carlo method of Guo and Thompson (1991), the method proposed here is ineffective
for estimating the likelihood under mixed inheritance. In addition, large pedigrees
(say 1000 members) would be needed to demonstrate its effectiveness under
polygenic inheritance. Furthermore, with a normal distribution, the new method
perhaps does not offer too much advantage over the existing algorithms that use the
sparse matrix technique. Therefore, by no means should the Monte-Carlo method
replace those conventional algorithms. For data that are not normally distributed,
however, the Monte-Carlo algorithms is perhaps the only convenient way to solve
the problem. Many economically important traits of animal species are not normally
distributed, such as binary disease resistant traits or ordinal categorical traits.
When analyzing such traits, one usually assumes that there is a continuous latent
variable (liability) controlling the phenotype. The link between the liability and the
discrete phenotype may be described by Wright’s (1934) physiological threshold
model. To estimate the genetic variance of the liability and the thresholds, one
can easily establish a fixed model equivalence of the likelihood function similar to
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equation [4]. The random effects are then integrated out to obtain an integrated
likelihood function. Certainly, there is no explicit form for the multiple integral and
Monte-Carlo method may be the only appropriate way for such a large dimensional
multiple integration. Results from this research (normal data) serve as a necessary
first step approching to application of the new method to non-normal data.
Finally, it is necessary to clarify a potential confusion between this method
and the Gibbs samplers of Guo and Thompson (1991) and Wang et al (1993).
Each method involves maximizing integrated likelihoods and the integration is
numerically approximated by drawing pseudo-random deviates from presumably
known conditional distributions. However, the Monte-Carlo EM method of Guo
and Thompson (1991) generates the joint posterior distribution of the random
effects using the Gibbs sampling. This method generates the same estimates of
variance components as the usual ML method. The Gibbs sampler of Wang et al
(1993) generates the marginal posterior distribution of each variance component.
This method is a Bayesian approach in that it requires prior distributions of the
unknown parameters and then integrates out all other parameters except the one
of interest. Each parameter is then estimated by maximizing its own marginal
likelihood function. The Gibbs sampler of Wang et al (1993) does not produce new
estimators but the Bayesian estimates of the variance components. The Monte-
Carlo algorithm presented in this paper first treats the random effects as fixed and
then generates the marginal distribution of the data via Monte-Carlo sampling.
Similar to the derivative-free algorithm for REML (Graser et al, 1987), our method
is only an alternative algorithm to obtain the ML and REML estimates. It does not
generate new estimates of variance components, provided M is sufficiently large.
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