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Summary - In the standard threshold model, differences among statistical subpopulations
in the distribution of ordered polychotomous responses are modeled via differences in
location parameters of an underlying normal scale. A new model is proposed whereby
subpopulations can also differ in dispersion (scaling) parameters. Heterogeneity in such
parameters is described using a structural linear model and a loglink function involving
continuous or discrete covariates. Inference (estimation, testing procedures, goodness of
fit) about parameters in fixed-effects models is based on likelihood procedures. Bayesian
techniques are also described to deal with mixed-effects model structures. An application to
calving ease scores in the US Simmental breed is presented; the heteroskedastic threshold
model had a better goodness of fit than the standard one.
threshold character / heteroskedasticity / maximum likelihood/ mixed linear model /
calving difficulty

Résumé - Analyse statistique de variables discrètes ordonnées par un modèle à
seuils hétéroscédastique. Dans le modèle à seuils classique, les différences de réponses
entre sous-populations selon des catégories discrètes ordonnées sont modélisées par
des différences entre paramètres de position mesurés sur une variable normale sous-
jacente. L’approche présentée ici suppose que ces sous-populations diffèrent aussi par leurs
paramètres de dispersion (ou paramètres d’échelle). L’hétérogénéité de ces paramètres est
décrite par un modèle linéaire structurel et une fonction de lien logarithmique impliquant
des covariables discrètes ou continues. L’inférence (estimation, qualité d’ajustement, test
d’hypothèse) sur les paramètres dans les modèles à effets fixes est basée sur les méthodes du
maximum de vraisemblance. Des techniques bayésiennes sont également proposées pour le
traitement des modèles linéaires mixtes. Une application aux notes de difficultés de vêlage
en race Simmental américaine est présentée. Le modèle à seuils hétéroscédastiqué améliore
dans ce cas la qualité de l’ajustement des données par rapport au modèle standard.
caractères à seuils / hétéroscédasticité / maximum de vraisemblance / modèle linéaire
mixte / difficultés de vêlage



INTRODUCTION

An appealing model for the analysis of ordered categorical data is the so-called
threshold model. Although introduced in population and quantitative genetics
by Wright (1934a,b) and discussed later by Dempster and Lerner (1950) and
Robertson (1950), it dates back to Pearson (1900), Galton (1889) and Fechner
(1860). This model has received attention in various areas such as human genetics
and susceptibility to disease (Falconer, 1965; Curnow and Smith, 1975), population
biology (Bulmer and Bull, 1982; Roff, 1994), neurophysiology (Brillinger, 1985),
animal breeding (Gianola, 1982), survey analysis (Grosbas, 1987), psychological
and social sciences (Edwards and Thurstone, 1952; McKelvey and Zavoina, 1975),
and econometrics (Kaplan and Urwitz, 1979; Levy, 1980; Bryant and Gerner, 1982;
Maddala, 1983).

The threshold model postulates an underlying (liability) normal distribution
rendered discrete via threshold values. The probability of response in a given
category can be expressed as the difference between normal cumulative distribution
functions having as arguments the upper and lower thresholds minus the mean
liability for subpopulation divided by the corresponding standard deviation.

Usually the location parameter (?7i) for a subpopulation is expressed as a linear
function 77i = t’O of some explanatory variables (row incidence vector ti) (see
theory of generalized linear models, McCullagh and Nelder, 1989; Fahrmeir and
Tutz, 1994). The vector of unknowns (e) may include both fixed and random
effects and statistical procedures have been developed to make inferences about
such a mixed-model structure (Gianola and Foulley, 1983; Harville and Mee, 1984;
Gilmour et al, 1987). In all these studies, the standard deviations (also called the
scaling parameters) are assumed to be known and equal, or proportional to known
quantities (Foulley, 1987; Misztal et al, 1988).

The purpose of this paper is to extend the standard threshold model (S-TM)
to a model allowing for heteroskedasticity (H-TM) with modeling of the unknown
scaling parameters. For simplicity, the theory will be presented using a fixed-effects
model and likelihood procedures for inference. Mixed-model extensions based on
Bayesian techniques will also be outlined. The theory will be illustrated with an
example on calving difficulty scores in Simmental cattle from the USA.

THEORY

Statistical model

The overall population is assumed to be stratified into several subpopulations (eg,
subclasses of sex, parity, age, genotypes, etc) indexed by i = 1, 2, ... , I representing
potential sources of variation. Let J be the number of ordered response categories
indexed by j, and yi+ = {Yij+} be the (J x 1) vector whose element y2!+ is the
total number of responses in category j for subpopulation i. The vector y2+ can be
written as a sum



and (3) I - 1 contrasts among log-scaling parameters (eg, ln(Qi) - ln(<7i) for
i = 2, ... , I) or, equivalently, I - 1 standard deviation ratios (eg, O&dquo;dO&dquo;d, with
one of these arbitrarily set to a fixed value (eg, <7i = 1). This makes a total of
2I + J - 3 identifiable parameters, so that the full H-TM reduces to the saturated
model for J = 3 categories, see examples in Falconer (1960), chapter 18.

More parsimonious models can also be envisioned. For instance, in a two-

way crossclassified layout with A rows and B columns (I = AB), there are 16
additive models that can be used to describe the location (?7i) and the scaling (oj)
parameters. The simplest one would have a common mean and standard deviation
for the I = AB populations. The most complete one would include the main effects
of A and B factors for both the location and dispersion parameters. Here there are
2(A+B)+J-5 estimable parameters, ie, J-1 thresholds plus twice (A-1)+(B-1).
Under an additive model for the location parameters 71i, it is possible to fit the
H-TM to binary data. For the crossclassified layout with A rows and B columns,
there are AB - 2(A + B) + 3 degrees of freedom available which means that we
need A (or B) ! 4 to fit an additive model using all the levels of A and B at both
the location and dispersion levels. Finally, it must be noted that in this particular
case, dispersion parameters act as substitutes of interaction effects for location
parameters.

Estimation

Let T = {7!} for j = 1, 2, ... , J - 1 and a = (T’, (3’, b’)’. In fixed-effects models
with multinomial data, inferences about a can be based on likelihood procedures.
Here, the log likelihood L(a; y) can be expressed, apart from an additive constant,
as: 

T T

with, given !4!, [5] and !6!,

The maximum likelihood (ML) estimator of a can be computed using a second-
order algorithm. A convenient choice for multinomial data is the scoring algorithm,
because Fisher’s information measure is simple here. The system of equations to
solve iteratively can be written as: 

- -

where U(a; y) = <9L((x;y)/<9<x and J(a) _ -E [å2L(a;y)/åaåa’] are the score
function and Fisher’s information matrix respectively; k is iterate number. Analyt-
ical expressions for the elements of U(a; y) and J(a) are given in Appendix 1.

These are generalizations of formulae given by Gianola and Foulley (1983) and
Misztal et al (1988). In some instances, one may consider a backtracking procedure
(Denis and Schnabel, 1983) to reach convergence, ie, at the beginning of the iterative
process, compute a!k+1! as a[k+1] = ark] + ,cJ[k+1]!a[k+1] with 0 < w[k+1] ::::; 1.

A constant value of w = 0.8 has been satisfactory in all the examples run so far
with the H-TM.



(over the ni observations made in subpopulation i) of indicator vectors yir =

(Yilr i Yi2r i... i Yijri ... i YiJr)l such that !r=l 1 or 0 depending on whether a
response for observation (r) in population (i) is in category (j) or not.

Given ni independent repetitions of Yin the sum yi+ is multinomially distributed

j

with parameters ni = ! yij+ and probability vector Iii = {lIij}.
j=l

In the threshold model, the probabilities 1Ijj are connected to the underlying
normal variables Xir with threshold values Tj via the statement

with To = -oo and Tj = +00, so that there are J - 1 finite thresholds.
With Xir rv N(!2,Q2), this becomes:

where !(.) is the CDF of the standardized normal distribution.
The mean liability (?7i) for the ith subpopulation is modeled as in Gianola and

Foulley (1983) and Harville and Mee (1984), and as in generalized linear models
(McCullagh and Nelder, 1989) in terms of the linear predictor

Here, the vector (p x 1) of unknowns (0) involves fixed effects only and xi is the

corresponding (p x 1) vector of qualitative or quantitative covariates.
In the H-TM, a structure is imposed on the scaling parameters. As in Foulley

et al (1990, 1992) and Foulley and Quaas (1995), the natural logarithm of Qi is
written as a linear combination of some unknown (r x 1) real-valued vector of
parameters (6), 1

p’ being the corresponding row incidence vector of qualitative or continuous
covariates.

Identifiability of parameters

In the case of I subpopulations and J categories, there is a maximum of I(J - 1)
identifiable (or estimable) parameters if the margins ni are fixed by sampling. These
are the parameters of the so-called saturated model.
What is the most complete H-TM (or ’full’ model) that can be fitted to the data

using the approach described here? One can estimate: (1) J - 1 finite threshold
values or, equivalently, J - 2 differences among these (eg, Tj - T1 for j = 2, ... , J-1)
plus a baseline population effect (eg, qi - Ti); (2) 1 - 1 contrasts among q< values;



Goodness of fit

The two usual statistics, Pearson’s XZ and the (scaled) deviance D* can be used
to check the overall adequacy of a model. These are

where fig = 77tj((x) is the ML estimate of 1Ij , and

Above, D* is based on the likelihood ratio statistic for fitting the entertained
model against a saturated model having as many parameters as there are alge-
braically independent variables in the data vector, ie, 1(J - 1) here. Data should
be grouped as much as possible for the asymptotic chi-square distribution to
hold in [9] and [10] (McCullagh and Nelder, 1989; Fahrmeir and Tutz, 1994).
The degrees of freedom to consider here are I(J - 1) (saturated model) minus
((J - 1) + rank(X) + rank(P)] (model under study), where X and P are the inci-
dence matrices for (3 and b respectively. It should be noted that [9] and [10] can be
computed as particular cases of the power divergent statistics introduced by Read
and Cressie (1984).

Hypothesis testing

Tests of hypotheses about y = 6’)’ can be carried out via either Wald’s test or
the likelihood ratio (or deviance) test. The first procedure relies on the properties
of consistency and asymptotic normality of the ML estimator.

For linear hypotheses of the form Ho : K’y = m against its alternative Hl = Ho,
the Wald statistic is:

which under Ho has an asymptotic chi-square distribution with rank(K) degrees of
freedom. Above, r(y) is an appropriate block of the inverse of Fisher’s information
matrix evaluated at y = y, where y is the ML estimator.

The likelihood ratio statistic (LRS) allows testing nested hypotheses of the
form Ho : y E no against H1 : y E n - no where no and ,f2 are the restricted and
unrestricted parameter spaces respectively, pertaining to Ho and Ho U Hl. The
LRS is:

where y and y are the ML estimators of y under the restricted and unrestricted
models respectively. The criterion !# also can be computed as the difference in
(scaled) deviances of the restricted and unrestricted models



This is equivalent to what is usually done in ANOVA except that residual sums of
squares are replaced by deviances.

Under Ho, A# has an asymptotic chi-square distribution with r = dim(D)
- dim(Do) degrees of freedom. Under the same null hypothesis, the Wald and LR
statistics have the same asymptotic distribution. However, Wald’s statistic is based
on a quadratic approximation of the loglikelihood around its maximum.

Including random effects

In many applications, the yir ’s cannot be assumed to be independent repetitions due
to some cluster structure in the data. This is the case in quantitative genetics and
animal breeding with genetically related animals, common environmental effects
and repeated measurements on the same individuals.

Correlations can be accounted for conveniently via a mixed model structure on
the ’T7!S, written now as

where the fixed component x!13 is as before, and u is a (q x 1) vector of Gaussian
random effects with corresponding incidence row vector zi.

For simplicity, we will consider a one-way random model, ie, u ! N(O, Ao, u 2)
(A is a positive definite matrix of known elements such as kinship coefficients),
but the extension to several u-components is straightforward. The random part of
the location is rewritten as in Foulley and Quaas (1995) as Z!O&dquo;Ui u* where u* is a
vector of standard normal deviation, and au, is the square root of the u-component
of variance, the value of which may be specific to subpopulation i. For instance, the
sire variance may vary according to the environment in which the progeny of the
sires is raised. Furthermore, it will be assumed that the ratio 0’.,,, /ai, where ai is now
the residual variance, is constant across subpopulations. In a sire by environment
layout, this is tantamount to assuming homogeneous intraclass correlations (or
heritability) across environments, which seems to be a reasonable assumption in
practice (Visscher, 1992). Thus, the argument h2! of the normal CDF in [4] and [7]
becomes

where p = <7u,/<T:.
In the fixed model, parameters T, (3 and b were estimated by maximum

likelihood. Given p, a natural extension would be to estimate these and u* by
the mode of their joint posterior distribution (MAP). To mimic a mixed-model
structure, one can take flat priors on T, 13 and b. The only informative prior is then
on u*, ie, u* rv N(O, A).

Thus

MAP solutions can be computed with minor modifications from [8]. The only
changes to implement are to replace: (i) a = (T’, (3’, 6’)’ by 0 = (T’, 0, 6’, u#’)’
with u# = pu*; (ii) X =J;xi,X2,...,x!,...,x// by S = (S1, · .. , Si, ... , SI)’ with
S’ = (x!, !izi); (iii) add p-2A-1 to the coefficients of the u# x u# block pertaining



to the random effects on the left hand side and _p-2 A -lU[k] to the u#-part of the
right hand side (see Appendix 1). A test example is shown in Appendix 2.
A further step would be to estimate p using an EM marginal maximum likelihood

procedure based on

This may involve either an approximate calculation of the conditional expecta-
tion of the quadratic in u# as in Harville and Mee (1984), Hoeschele et al (1987) and
Foulley et al (1990), or a Monte-Carlo calculation of this conditional expectation
using, for example, a Gibbs sampling scheme (Natarajan, 1995). Alternative pro-
cedures for estimating p might be also envisioned, such as the iterated re-weighted
REML of Engel et al (1995).

NUMERICAL APPLICATION

Material

The data set analyzed was a contingency table of calving difficulty scores (from 1
to 4) recorded on purebred US-Simmental cows distributed according to sex of calf
(males, females) and age of dam at calving in years. Scores 3 and 4 were pooled
on account of the low frequency of score 4. Nine levels were considered for age
of dam: < 2 years, 2.0-2.5, 2.5-3.0, 3.0-3.5, 3.5-4.0, 4.0-4.5, 4.5-5.0, 5.0-8.0, and
> 8.0 years. In the analysis of the scaling parameters, six levels were considered
for this factor: < 2 years, 2.0-2.5, 2.5-3.0, 3.0-4.0, 4.0-8.0, and > 8.0 years. The
distribution of the 363 859 records by sex-age of dam combinations is displayed in
table I, as well as the frequencies of the three categories of calving scores. The
raw data reveal the usual pattern of highest calving difficulty in male calves out of
younger dams. However, more can be said about the phenomenon.

Method

Data were analyzed with standard (S-TM) and heteroskedastic (H-TM) threshold
models. Location and scaling parameters were described using fixed models involv-
ing sex (S) and age of dam (A) as factors of variation. In both cases, inference was
based on maximum likelihood procedures. A log-link function was used for scaling
parameters.

With J = 3 categories, the most highly parameterized S-TM that can be fitted
for the location structure includes J - 1 = 2 threshold values (or, equivalently, the
difference between thresholds (72 - 71) and a baseline population effect /-l), plus sex
(one contrast), age of dam (eight contrasts) and their interaction (eight contrasts)
as elements of (3; this gives r(X) = 17 which yields 19 as the total number of
parameters to be estimated. There were I = 18 sex x age subpopulations so that
the maximum number of parameters which can be estimated (in the saturated
model) is (3 - 1) x 18 = 36. The degrees of freedom (df ) were thus 36 - 19 = 17.



The H-TM to start with was as in the S-TM for location parameters (3. With
respect to dispersion parameters 6, the model was an additive one, with sex (S*:
one contrast) and age of dam (A*: five contrasts) so that r(P) = 6 (Q = 1 in
male calves and < 2.0 year old dams). Thus, the total number of parameters was
19 + 6 = 25 and, the df were equal to 36 - 25 = 11.

RESULTS

All factors considered in the S-TM were significant (P < 0.01), especially the sex
by age of dam interactions (except the first one, as shown in table II). Hence, the
model cannot be simplified further. This means that differences between sexes were
not constant across age of dam subclasses, contrary to results of a previous study
in Simmental also obtained with a fixed S-TM (Quaas et al, 1988). Differences
in liability between male and female calves decreased with age of dam. However
the S-TM did not fit well to the data, as the Pearson statistic (or deviance) was
X2 = 419 on 17 degrees of freedom, resulting in a nil P-value. An examination of
the Pearson residuals indicated that the S-TM leads to an underestimation of the
probability of difficult calving (scores 3 + 4) in cows older than 3 years of age, and
to an overestimation in younger cows.





As shown in table II, fitting the H-TM decreased the X2 and deviance by a
factor of 20 and led to a satisfactory fit. The significance of many interactions
vanished, and this was reflected in the LRS (P < 0.088) for the hypothesis of no
S x A interaction in the most parameterized model. Several models were tried and
tested as shown in table III. The scaling parameters depended on the age of the
dam, the effect of sex being not significant (P < 0.163). Relative to the baseline
population, the standard deviation increased by a factor of about 1.05, 1.15, 1.25,
1.40 and 1.50 for cows of 2.0-2.5, 2.5-3.0, 3.0-4.0, 4.0-8.0, and > 8.0 years of age
at calving respectively (table IV).

The H-TM made differences between sex liabilities across ages of dam practically
constant as the interaction effects were negligible relative to the main effects. The
difference between male and female calves was about 0.5. Eventually, a model
including sex plus age of dam (without interaction) for the location structure and
only age of dam for the scaling part seemed to account well for the variation in the



Logistic heteroskedastic models have been considered by McCullagh (1980) and
Derquenne (1995). Formulae are given in Appendix 1 to deal with this distribution.
When the Simmental data are analyzed with the logistic (table VI), the

homoskedastic model is also rejected although the fit is not as poor as with the



data. Wald’s and deviance statistics were in very good agreement in that respect,
with P values of 0.08 and 0.16 respectively, for the SA interaction. It should be
observed that this heteroskedastic model has even fewer parameters (16) than the
two-way S-TM considered initially (19 parameters). In spite of this, the Pearson’s
chi-square (and also the deviance) was reduced from about 419 (table II) to 32
(table V) with a P-value of 0.04. This fit is remarkable for this large data set
(N = 363859), where one would expect many models to be rejected.

Although the H-TM may have captured some extra hidden variation due to
ignoring random effects, it is unlikely that the poor fit of the S-TM can be attributed
solely to the overdispersion phenomenon resulting from ignoring genetic and other
clustering effects. The large value of the ratio of the observed X2 to its expected
value (419/17 = 25) suggests that the dependency of the probabilities 77,! with
respect to sex of calf and age of dam is not described properly by a model with
constant variance. Whether the poor fit of the S-TM is the result of ignoring random
effects, heterogeneous variance, or both, require further study, perhaps simulation.

These results suggest that in beef cattle breeding the goodness of fit of a constant
variance threshold model for calving ease can be improved by incorporating scale
effects for age of dam either as discrete classes, as in this study, or alternatively Qi
as a polynomial regression of log ai on age.

DISCUSSION

Other distributional assumptions

The underlying distribution was supposed to be normal which is a standard

assumption of threshold models in a genetic context (Gianola, 1982). However,
other distributions might have been considered for modeling 77! in !3!. A classical
choice, especially in epidemiology, would be the logistic distribution with mean 77i
and variance 1f2a’f /3 (Collett, 1991, page 93), where



probit. Interestingly, there is not much difference between the complete (S+A+SA)
and the additive model (S + A), the interaction (SA) being non-significant (P =
0.30). Taking into account the variation in variance in addition to that explained
by the additive model on location parameters does not improve the fit greatly. In
that respect, the main source of variation turned out to be sex rather than age of
dam.

Other options include the t-distribution (Albert and Chib, 1993), the Edgeworth
series distribution (Prentice, 1976) and other non-normal classes of distribution
functions (Singh, 1987). In fact, the t distribution tv(!2, s2) with spread parameter
82 and v degrees of freedom is the marginal distribution of a mixture of a normal
distribution !V(!,<7?), with Q2 randomly varying according to a scaled inverted
X2(v,s2) distribution (Zellner, 1976). Therefore, a threshold model based on such
a t distribution is embedded in our procedure by taking a one-way random model
for Incr?, ie, ln<r? = In 82 + ai with the density function p(ailv) of the random
variable ai as presented in Foulley and (auaas (1995, formulae 21 and 22); see also
Gianola and Sorensen (1996) for a specific study of the threshold model based on
the t-distribution in animal breeding.

Relationships with variable thresholds

Conceptually, heterogeneity of the a§s is viewed here in the same way as in
Gaussian linear models since it applies to an underlying random variable that is
normally distributed. However, the underlying variables are not observable, and
the corresponding real line includes cutoff points, the thresholds, that make the
outcomes discrete. It is of interest to address the question of how changes in
dispersion can be interpreted with respect to the threshold concept.

Let us illustrate this by a simple example involving J = 3 categories, and a one-
way classification model (i = 1, 2, ... , I) as, for example, sex of calf in the Simmental
breed. We will assume that the origin is at the first threshold, and that the unit
of measurement is the standard deviation within males (QM = 1). The difference
between the first and second threshold values in males is expressible as:



where IIM1, lIM2 are the probabilities of response in the first and second categories,
respectively, for male calves. A similar expression is obtained for female calves (F),
so

This is precisely the ratio of the difference between thresholds 1 and 2 that would
be obtained when evaluated separately in each sex. Thus

Formulae [19] and [20] are analogous to expressions given by Wright (1934b) (the
reciprocal of the distance between the thresholds on this scale gives the standard
deviation on the postulated scale on which the thresholds are separated by a unit
distance, p 545) and Falconer (1989, formula 18.5, p 307) except that these authors
set to unity the difference between thresholds in the baseline population, rather
than the standard deviation, which we find more appealing conceptually.

In the case of the Simmental data shown in table I, applying formulae [19] and
[20] using observed frequencies of responses gives:

If more than three categories are observed, this formula also holds for the
differences T3 - 72, T4 - 73,..., 7J-1 - TJ-2, so that the ratio between standard
deviations in subpopulation (i) and a reference population (R) can be expressed as:

which involves (J - 2) algebraically independent equalities.
In the case of three categories and a single classification, the saturated model

has 21 parameters (T2 - Ti , J.L1, U2 -. - ;/!7) <!2/<7’i) - - - ai!a1, ... , arla1). Numerical
values of ai!a1 computed from [20] are also ML estimates (eg, â2/¡h = 0.973).

Formula [21] indicates that there is a link between H-TM and models with
variable thresholds (Terza, 1985). As compared to these, the main features of the
H-TM are:

i) a multiplicative model on ratios of standard deviations or differences between
thresholds, rather than a linear model on such differences;
ii) a lower dimensional parameterization due to the proportionality assumption
made in [18] rather than a category-specific parameterization, ie:

where 6 j is the vector of unknowns pertaining to the difference (T! - Ti).
For J = 3, the two models generate the same number of parameters but they are

still different vis-a-vis to (i).



Further extensions

The H-TM opens new perspectives for the analysis of ordinal responses. Interesting
extensions may include:

i) implementing other inference approaches for mixed models such as Gilmour’s
procedure based on quasi-likelihood, or a fully Bayesian analysis of parameters
using Monte-Carlo Markov-Chain methods along the lines of Sorensen et al (1995);
ii) assessing the potential increase in response to selection by selecting on estimated
breeding values calculated from an H-TM versus an S-TM;
iii) incorporating a mixed linear model on log-variances as described in San
Cristobal et al (1993) and Foulley and Quaas (1995) for Gaussian observations;
iv) carrying out a joint analysis of continuous and ordered polychotomous traits as
already proposed for the S-TM by Foulley et al (1983), Janss and Foulley (1993)
and Hoeschele et al (1995).

Further research is also needed at the theoretical level to look at the sampling
properties of estimators based on mis-specified models. For instance, one may be
interested in the asymptotic properties of the ML estimator of (T’, 0’, 6’l’ derived
under the assumption of independence of the yi,’s when this hypothesis does not
hold. This problem has been discussed in general by White (1982), and it may be
conjectured from the results of Liang et al (1992) that the ML estimators of these
parameters remain consistent. It might also be worthwhile to assess the effect of
departures from independence on testing procedures. The generalized chi-square
procedure for goodness of fit derived by McLaren et al (1994) might be useful in
that respect for analyses based on large samples.
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APPENDIX 1

Expressions for the score function U and the information matrix J

Concerning derivatives with respect to the vector (3 of location parameters, one
has:

T T



Notice the remarkable symmetry in expressions [A.2] and (A.3!.



Finally, U can be expressed as:

with expressions for £&dquo; vp and v8 given in (A.l!, [A.2] and (A.3!.
Elements of the information matrix J(a) include the expectations of minus

the second derivatives. The following derivatives will be considered: threshold-
threshold; (3-threshold; 6-threshold; 13 - 13; (3-6; and S - b.

Threshold-threshold derivatives



(3-Threshold derivatives

The expectation of the first term vanishes because E(yz!) = nj1Ijj.
Moreover,



Again, the expectation of the first term is equal to zero.



where T = {t!!} is a (J - 1) x (J - 1) symmetric band matrix having as elements:
tij = E(-å2L/årJ), and tj,j+1 = E(-å2L/årjårj+1)’ given in [A.4] and (A.5!.

These expressions can be extended to obtain the MAP of parameters in a mixed-
model structure by replacing
(i) 13 by e = ((3!, u#’)’ with u# r- N(0, PZA) (p2 = U2i /0,? = constant);
(ii) X by S = (Sl S2 .... , Si,..., SI)’ with s! = (x!, (JizD;
and making the appropriate adjustments for prior information as shown below:

expressed in [A.2], [A.6ab], [A.9] and [A.10] respectively.



APPENDIX 2

A numerical example for the mixed-model approach of the H-TM




