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Summary - A general strategy is described for the design of more efficient algorithms to
solve the large linear systems Bs = r arising in (individual) animal model evaluations.
This strategy, like Gauss-Seidel iteration, belongs to the family of &dquo;splitting methods&dquo;
based on the decomposition B = B* + (B - B*), but, in contrast to other methods, it
tries to take maximum advantage of the known sparsity structure of the mixed model
coefficient matrix: B* is chosen to be an approximate incomplete Cholesky factor of B.
The resulting procedure requires the solution of 2 triangular systems at each iteration and
2 readings of the data and pedigree file. This approach was applied to an animal model
evaluation on 15 type traits and milking ease score from the French Holstein Association
with 955 288 animals and 4 fixed effects, including group effect for animals with unknown
parents. Its convergence was compared with a standard iterative procedure.
genetic evaluation / animal model / computing algorithm / type trait

Résumé - Résolution des équations du modèle animal à l’aide d’une décomposition de
Cholesky incomplète et approchée. Une stratégie générale est décrite pour l’obtention
d’algorithmes plus efficaces dans le but de résoudre les grands systèmes linéaires Bs =
r, caractéristiques des évaluations de type «modèle animal». Cette stratégie, comme
l’itération de Gauss-Seidel, appartient à la famille des « méthodes d’éclatement» basées sur
la décomposition B = B*+(B-B*), mais contrairement aux autres méthodes, elle tente de
mettre à profit autant que possible la structure creuse (connue) de la matrice des coefficients
des équations du modèle mi!te: B* est prise égale à une approximation de la décomposition
de Cholesky incomplète de B. La procédure résultante nécessite la résolution de 2 systèmes
triangulaires à chaque itération et 2 lectures du fichier de données et de généalogie. Cette
approche a été appliquée à une évaluation de type « modèle animal», sur 15 caractères de
morphologie et une note de facilité de traite provenant de l’Unité pour la Promotion de la
race Prim’Holstein, concernant 955288 animaux et 4 effets fi±>es, y côinpris un effet groupe
pour les animaux issus de parents inconnus. Sa vitesse’de -converge!.ce a été comparée à
une approche itérative courante. .. - 

..

évaluation génétique / modèle animal / algorithme de calcul / caractère de mor-
phologie



INTRODUCTION

In most developed countries and for all major domestic species, joint genetic
evaluations of up to a few millions of animals is routinely computed using Best
Linear Unbiased Prediction (BLUP). When an individual animal model is used,
this supposes the solution of a linear system whose size is larger than the total
number of animals to evaluate. Such a task, repeated a few times a year and for
several traits of economic importance can be a real challenge, even on the most
advanced computers. To reduce this computational burden, algebraic manipulations
of the equations have been proposed with 2 main aims: 1), a decrease of the system
size by absorption of some effects (eg the permanent environment effects) by use
of an equivalent model (eg the reduced animal model of Quaas and Pollak, 1980)
or by use of particular transformations (eg the canonical transformation which
reduces multitrait evaluations to sets of single trait analyses (Thompson, 1977;
Arnason, 1982, 1986); 2), an increase in the sparsity of the coefficient matrix
(eg Quaas’ transformation which makes possible the estimation of group effects
for unknown parents only, with no more difficulties than if they were parents
(Quaas and Pollak, 1981; Quaas, 1988) or the QP transformation which, when traits
are sequentially available, makes the coefficient matrix in a multiple trait analysis
much sparser, (Pollak, 1984). Unfortunately, such tools are not always applicable
either because they are restricted to special data structure or because they are
not always computationally advantageous. Slow convergence is not a real problem
for moderate-size research applications, for which general purpose programs are
available (eg Groeneved et al, 1990). But it can make routine evaluations prohibitive
in the case of large-scale applications.

In any case, with or without algebraic manipulation, the linear system is virtually
always too large to be solved directly and an iterative solution has to be performed.
The algorithms chosen have been in most cases very simple and initially designed
for the solution of general problems, without any particular attention to the type
of problems animal breeders are dealing with. The most frequently used ones are
the Gauss-Seidel, Successive Overrelaxation and Jacobi iterations (Golub and Van
Loan, 1983). Unfortunately, for animal models, these can be extremely slow to
converge (requiring up to several hundreds of iterations) especially when groups of
unknown parents (Quaas, 1988) are added, or when more than one fixed effect is
considered (Ducrocq et al, 1990).
An important breakthrough in the search for an efficient solution of animal

models was the discovery of the possibility to &dquo;iterate on data&dquo;, a strategy proposed
by Schaeffer and Kennedy (1986) which avoids the actual computation and storage
of the whole coefficient matrix. This can be considered as one of the first uses of the
known nonzero structure of the mixed model equations in designing more efficient
algorithms.

Indeed, a careful look at this structure gave birth to new approaches for a fast
solution of some parts of these equations, in a block iterative context: Poivey (1986)
showed that by considering in the inverse A-1 of the relationship matrix, only
the diagonal and the terms relating an animal to its parent of a given sex and by
correcting accordingly the right-hand side for the other terms of A-1 using solutions
from the previous iteration, the resulting system has a very simple and sparse



Cholesky decomposition and can be solved directly. Likewise, Ducrocq et al (1990)
proposed for the solution of the additive genetic value part of the mixed model
equations the use of 2 decompositions of the type described by Poivey (1986) -
considering first the relationship between an animal and its dam and second between
an animal and its sire. They also proposed to absorb the equations for additive
genetic values into the equations for fixed effects after correction of the right-hand
side for all off-diagonal elements of A-1 (&dquo;pseudo-absorption&dquo;). Convergence was
improved, but not as much as might be desired for huge routine applications. The
main drawback to such an approach is the rather tedious programming.

This paper presents a more general procedure for the design of new algorithms
taking maximum advantage of the known sparsity structure of the mixed model
equations. An application to a large animal model evaluation is described and its
performance is compared with a standard iterative procedure.

MATERIAL AND METHODS

Principles for a new algorithm

be the linear system to be solved. If B is very large, system [1] can be solved directly
only if B-1 or C, the Cholesky factor of B(C = CC’, C lower triangular) is sparse
and easy to obtain. If this is not the case, consider B*, a matrix &dquo;close to&dquo; B and
whose inverse or Cholesky factor is sparse and easily computed and write [1] as:

Then, the following functional iterative procedure can be implemented. At
iteration (k + 1), solve:

Expressions [3] is very general and is the base of a family of iterative algorithms
known as Splitting Methods (Coleman, 1984). If B* is simply a diagonal matrix
whose diagonal elements are those of B, [3] is the Jacobi iteration. If B* is the
lower triangular part of B, including the diagonal, [3] is the Gauss-Seidel iteration
(Golub and Van Loan, 1983).

If the starting value for s is taken to be s(°) = 0, expression [3] leads to:



ie, the right-hand side in [4] is updated at each iteration. An even more general it-
erative algorithm is obtained by mimicking the method of successive overrelaxation
(Golub and Van Loan, 1983)

where cv is a relaxation parameter, which corresponds to the splitting of B:

The next paragraph will illustrate how B* can be chosen in a particular situation.
Consider the following animal model:

where: y is a vector of observations;
b is a vector of fixed effects;
ao is an na-vector of additive genetic values for all animals with and without
records;
e is a vector of normally distributed residuals with E(e) = 0;
X and Zo are incidence matrices.

Assume E(ao) = Qg where g is an ng-vector of group effects, defined only for the
animals with unknown parents. Q is a matrix relating animals in ao with groups
(Westell, 1984; Robinson, 1986; Quaas, 1988).

The mixed model equations used to compute Best Linear Unbiased Estimates of
b and g and BLUP’s of ao can be written (Quaas, 1988):



and, accordingly, Z = [Zo 0]
Then [7] is:

If model [6] includes only one fixed effect (which, for clarity, will be called a
herd-year effect), X’X is diagonal with hth diagonal element equal to the number
of observations in herd-year h. There is at most one nonzero element per row j of
Z’X (or column of X’Z). This nonzero element is in column h and is always equal
to 1 when animal j has its record in herd-year h. Z’Z is diagonal with diagonal
element equal to 1 for rows corresponding to animals with one record and 0 for
animals without record and groups. Finally, if equations are ordered in such a way
that progeny precede parents, and such that parents precede groups in a, A* is of
the form A* = Ln-1L’ (Quaas, 1988) where L is a (na + ng) x nd matrix with 3
non zero elements per column. If js and jd represent the indices of the sire (or the
sire’s group) and the dam (or the dam’s group) of animal j, column j has a 1 in
row j (= the jth diagonal element of L) and a - 0.5 in rows js and jd ! n-1 is a

(na x na) diagonal matrix with jth element equal to 8j = 4/(mj + 2) where !rt! is
the number of known parents of j(rri! = 0, 1 or 2).

Given this rather simple structure for B, the coefficient matrix in [81, the
following choice of B* in [5] is suggested: take B* = T*T*’, where T* is the

incomplete Cholesky factor of B, ie, the matrix obtained by setting tij to zero in

the Cholesky factorization of B each time the corresponding element b2! in B is zero
(Golub and Van Loan, 1983, p 376). Equivalently, B* = TDT’ where T = {tij}
is lower triangular with unit diagonal elements and D is diagonal with positive
diagonal elements d!, and T and D are computed using the algorithm sketched in
figure 1. The TDT’ factorization has an important advantage over the standard
Cholesky factorization: it does not require computation of square roots. 

’

A few remarks need to be made at this stage. First, it is known that in the

general case, the incomplete Cholesky factorization of a positive definite matrix is



not always possible (negative numbers appear in D ie, the computation of diagonal
elements in T* requires square roots of negative numbers). It will be shown that
this is never the case here.

Secoild, the coefficient matrix in [8] can be rewritten as:

and it clearly appears that column h corresponding to herd-year effect h has
nh + 1 nonzero elements: a 1 on the diagonal, and 1/nh on each of the nh rows

corresponding to animals with records in herd-year h. Hence, the incomplete TDT’
factorization can be applied to the lower right part of the product in !9!, ie, on

QPQ’ = (Z’Z + oA* ) - Z’X(X’X)-1X’Z, which is also the lower right part of [8]
after absorption of the fixed effect equations.

Third, a strict application of the algorithm in figure 1 would lead to nonzero
elements relating mates, as in A*. Given the particular structure of A* = LA-’L’,
we would like to have these elements being 0 too, such that the lower right part of T
has the same nonzero structure as L. However, L is a (na +ng) x na matrix whereas
the lower right part of T is supposed to be a (na + n.) x (na + ng) square matrix.
We will assume (or choose) that the lower right part of T corresponding to groups
is dense. Consequently, TDT’ is only an approximation of the true incomplete
Cholesky decomposition.

Algorithm

The computation of T and D does not require the coefficient matrix B to be
explicitly set up. For animal j, bjj in B is equal to:

with xi = 1 - 1 if j has its record in herd-year hand Xj = 0 otherwise.
nh

Given the structure imposed on T, the only elements that are nonzero in column
j are taj, a = js or a = jd where js and jd are the indices of the sire (or sire
group) and the dam (or dam group) or j. Henderson’s rules (Henderson, 1976) of
construction of A* imply: 

-

Another consequence of the chosen structure for T is that the product t.z&dquo;,t!&dquo;,, in
figure 1 is always 0 except when m is the herd-year effect where i and j have their
records or m is a progeny of i and j. Since tij is computed only for i = a = js and
i = a = jd, timtjm is nonzero only: 1), when j and its parent have their record in
the same herd-year; and 2), when j is mated to its own sire or dam. Both events
are sufficiently rare to be ignored (as B* is not exact, anyway) and then:



The fact that j, or jd may or may not correspond to a group is irrelevant here.
It is also essential to notice that taj need not be stored, as it is easily obtained from
dj.

Replacing tjm by [12] in figure 1 and using (10!, we get:

For columns corresponding to groups, we have, from the structure of A*:

and ti&dquo;,,t!&dquo;! in figure 1 is different from 0 each time m is a progeny of groups i and
J.

Therefore, just before undertaking the dense factorization of G where G is the
current part corresponding to groups, we have:

(minor adaptations for terms corresponding to groups have to be made when the
unknown sire and the unknown dam are in the same group).

Now, by noting that:

and that dj = zj + û8j > û8j for animals without progeny (all assumed to have

a record), it follows by recurrence that C1 - d P J > 0 for all p. Then cp > 0.B dp )
Therefore, from [13] and [15], dj > 0 for all j and also gjj > 0: the incomplete
factorization is always possible.

Equations [12] and [13] lead to the practical algorithm given in figure 2.



Iterative solution

From (5!, [8] and (9!, it appears that the general iterative algorithm involves at each
iteration the following steps:

where fl-hl is the updated right-hand side.ra

Update rb and ra as:

Steps [17] to [20] can be condensed in such a way that only 2 readings of the
date file are necessary at each iteration. Indeed, algebraic manipulation of these
equations leads to the following requirements:



The general sketch of the resulting algorithms is given in Appendix 1.

Dealing with several fixed effects

In many instances, the routine animal model evaluations involve more than one
fixed effect. To adapt the algorithms to this frequent situation, one can distinguish
between on one hand, a vector of fixed effects b with many levels (like the herd-
year-(season) effects or the contemporary group effects in many applications) and
on the other hand, a vector f of other &dquo;environmental effects&dquo; with fewer levels.
Model [6] becomes:

where X and F are the incidence matrices corresponding to effects in b and f
respectively. The resulting system of mixed model equations can be written:

A block iterative procedure can be implemented involving at each iteration first
the solution of:

using Gauss-Seidel iteration and then, the solution of:

using the algorithm described in this paper.

A LARGE-SCALE APPLICATION

Description

A BLUP evaluation based on an animal model was implemented to estimate cows’
and bulls’ breeding values for 15 linear type traits and milking ease score in the
French Holstein breed. Records were collected by the French Holstein Association
between 1986 and 1991 on 4G21G2 first and second lactation cows. The model
considered in the analyses included an &dquo;age at calving (10 classes) x year (5) x



region (8)&dquo; fixed effect, a &dquo;stage of lactation (15 classes) x year x region&dquo; fixed

effect, a &dquo;herd x round x classifier&dquo; (36420 classes) fixed effect and a random
additive genetic value effect. Tracing back the pedigree of recorded animals, a total
of 955 288 animals were evaluated. Sixty-six groups were defined according to year
of birth, sex and country of origin of the animals with unknown parents. Here, b
in [26] will refer to &dquo;herd x round x classifier&dquo; effects and f to other fixed effects.

The block iterative procedure described in Dealing with several fixed effects was
implemented, using a relaxation parameter cv = 0.9 in all analyses. To compare this
procedure with a standard iterative algorithm, the mixed model equations were
also solved using a program along the lines of Misztal and Gianola (1987), where
the equations for fixed effects were solved using Gauss-Seidel iterations and the
equations for additive genetic values were solved via second-order Jacobi iteration
(see Misztal and Gianola (1987) for details). Group solutions were adjusted to
average 0 at the end of each iteration, as proposed by Wiggans et al (1988). Indeed,
this constraint had very little effect on convergence rate, as the average group effects
solutions tended to a value very close to 0 anyway. Several relaxations parameters
were used for the second-order Jacobi step. The same convergence criteria were
computed in all cases and intermediate solutions were compared to &dquo;quasi-final&dquo;
results.

RESULTS

Figures 3 and 4 illustrate for one of the traits - &dquo;rump width&dquo; (o-p = 1.4, h2 = 0.25)
- the evolution of 2 convergence criteria: the norm of the change in solution between
2 consecutive iterations divided by the norm of the current solution vector (both
considering elements in a only) and the maximum absolute change between 2
iterations. Rump width was considered as a trait representative of the average
convergence rate of the procedure based on the incomplete Cholesky decomposition
(hereafter referred to as ICD) for the 16 analyses: the value of the standardized norm
of the change between 2 iterations obtained for rump width after 40 iterations was
reached after 25 iterations for one trait, 33 to 40 iterations for 10 traits and between
41 and 46 iterations for 5 other traits. For rump width, 200 iterations with ICD and
300 iterations with the standard procedure (GS-J) were carried out and compared
to intermediate solutions. The results are summarized in table I. Figure 5 shows
the distribution of the changes by class of variation between 2 iterations for ICD.

Figures 3-5 and table I clearly show that convergence was much faster with
ICD. Whatever the value of the relaxation parameter used, the evolution of the
convergence criteria in GS-J tends to be very slow after a rather fast decline during
the first iterations. This phenomenon was mentioned by Misztal et al (1987) and
seems to worsen because of the size of the data set and the existence of 3 fixed effects
in the model. The fact that ICD does not exhibit this undesirable characteristic may
prove its robustness to not so well conditioned problems.

For practical purposes, 3 exact figures may be considered satisfactory for a
proper ranking of all animals. Starting from 0 and with no acceleration procedure
implemented (in contrast with eg Ducrocq et al, 1990), this requirement for all
animals was reached for ICD after about 40 to 45 iterations. Even faster convergence
may be achieved when starting from solutions of a previous evaluation or by



optimizing the value of the relaxation parameter used. Figures 3 and 4 and table I
show that the same convergence requirements are reached in about 150 iterations
with GS-J. But the cost of each iteration is not the same: in the case of ICD,
2 copies of the data (+ pedigree) file, sorted in opposite direction, are read at each
iteration, whereas GS-J requires one reading of the data file per fixed or random
effect included in the model ( ie, a total of 4 per iteration here) and one reading of
the pedigree file. CPU time per iteration with optimized I/O operations was 12 s on
an IB1VI 3090-17T computer for ICD and 24 s for GS-J: in both cases, the limiting
factor for computation speed remains the I/O operations. Note however that a
better &dquo;standard&dquo; strategy could have been designed: for example, it is possible
to treat the first 2 fixed effects together in a block-iterative way as in [28] and
solve for the herd-round-classifier (HRC) effect at the same time as the additive
genetic value effect by reading a data file sorted by HRC, as proposed in Wiggans
et al (1988). This reduces to 2 the number of copies of the data file read at each
iteration. The fact that the first 2 fixed effects are not defined within HRC effects
or vice-versa prevents any further reduction, as in the case described by Wiggans
et al (1988). In conclusion, ICD appears to be at least 3 to 4 times faster than a
standard procedure in the particular situation studied here.

For ICD, the main computing requirements in terms of core storage can be
divided into 2 independent parts: 1), for the computation of d7l (fig 2): a vector
of length p, where p is the size of the coefficient matrix in !8! ; 2), for the iterative



solution (Appendix 1): the nonzero blocks of matrices F’F and F’X (otherwise, 2
supplementary readings of the data file are necessary, in [28] and [29] and 3 vectors
of length p (the right-hand side, and the current and previous vectors of solutions).
This can be further reduced by noting that the previous vector of solutions for a



is required only to compute convergence criteria and that current solutions for a
need not to be stored for nonparent animals.

DISCUSSION AND CONCLUSIONS

It has been shown that in the context defined here the approximate incomplete
Cholesky factor of the coefficient matrix always exists. However, this does not guar-
antee that B* will be very close to B. In fact, when a large number of generations
are considered, the terms from the true Cholesky factor of B which are ignored
in the incomplete factorization may become large and one may wonder whether
the proposed algorithm converges at all. Indeed, in the application presented here
where pedigrees were traced up to 12 generation back in some cases, the algorithm
diverges when no relaxation parameter is used: convergence seemed faster at first
but about 300 estimates of genetic value (0.03%) did not stabilize and led to diver-
gence first, of groups of unknown parents and then, of all animals’ genetic values. In
contrast, for a research run with a smaller data set and tracing pedigrees back for
only 4 generations, the same standardized convergence criteria as in the example
described here were obtained after nearly 3 times fewer iterations. This illustrates
that the discrepancy between B and B* increases with the number of generations
considered. A modification of the algorithm in order to make B* closer to B while

keeping a similar sparsity structure should be investigated. For example, mate con-
tributions to the inverse of the relationship matrix could be no longer ignored.
However, this may not be necessary as it is shown in Appendix 2 that there always
exists a relaxation parameter w such that convergence is guaranteed. Quite unfor-
tunately, as for successive over-relaxation and second order Jacobi procedures, the
optimal w is data dependent.



The model presented in [6] and which led to the form of the incomplete
Cholesky factor described in figure 2 is rather restrictive. In particular, it assumes
the existence of only one fixed effect. The section Dealing with several fixed
effects showed a way to treat models with more than one fixed effect. For more
complex situations, a simple procedure would be to apply the incomplete Cholesky
factorization only to the block (Z’Z + aA*). The remaining part of the system
can be solved using a more standard procedure. But then, convergence is likely
to be somewhat slowed down. A trade-off is to increase the amount of information
available to estimate fixed effects at each iteration by &dquo;pseudo-absorption&dquo; of genetic
value equations, as described in Ducrocq et al (1990). Whatever the alternative
chosen, it seems quite apparent that faster and more efficient algorithms from
a computational viewpoint need to take larger advantage of the known sparsity
structure of the mixed model equations than simpler, general-purpose algorithms.
Of course, the final practical choice between competing algorithms should take into
account other considerations such as programming costs and computer availability.
Then, rather specialized algorithms such as the one proposed here may be attractive
only for huge routine evaluations based on animal models.

APPENDIX 1

Practical algorithm sketch for the solution of the system B*s = r

In the following section, indices related to fixed and random effects (eg, b and a
in rb and ra) will be dropped for clarity. The indices j, js, jd and h will refer to

animal j, its sire (or sire’s group), its dam (or dam’s group) and the herd-year in
which it was recorded. n = {nh} will be the vector of number of records in each

herd-year . Define s = ! . Index g will refer to all groups of unknown parents.a

Then, the whole algorithm for the solution de B*s = r, including steps [21] to (25!,
can be detailed as follows:

1) Initialize r, n, s to zero
2) Read the data file

9 For each j with record: yj, add (wyj) to rh and rj
add 1 to nh

3) Compute vh = rh/nh for h = 1, ... rh = rh - wnhsh

4) Initialize vj as vj = r! for j = 1, ...
Read the data file with progeny preceding parents
For each j:



6) Read the data file with parents preceding progeny
For each j:

8) Go to (3) until convergence.
Note that at each iteration, the computation of Sh, h = 1, ... is completed only

after reaching the end of the second data file. Therefore, the update of r in [25]
- which requires sh - would make necessary a third reading of the data file. This
can be avoided by transferring this part of the updating (-wZ’Xb in [25] to the
beginning of the next iteration. This explains the term (vj - wSh) in (4).

APPENDIX 2

Proof that the splitting method based on an incomplete Cholesky
decomposition of the coefficient matrix always converges

The following section shows that there always exist a value of the relaxation
parameter w such that the general algorithm proposed in [5] converges for all

starting values. For splitting methods, a necessary and sufficient condition for this
is - with the notation used in [3] and [5] - that p (I &mdash; wB*-’B) < 1 where p(M)
is the spectral radius of M, ie, the largest absolute value of the eigenvalues of
M (Golub and Van Loan, 1983; Coleman, 1984). Indeed, if Ai is an eigenvalue of
B*-1B, then Ai is also an eigenvalue of T*-1BT*-T where B* = T*T*’. Obviously,
this matrix is nonnegative definite, so all its eigenvalues are nonnegative. Let À1
be the largest one. The eigenvalues of the matrix I &mdash; wB*-1B are all of the form

(I - wAi) and if one chooses 0 < w < &mdash; then p (I &mdash; wB*-1B) ! 1. Equality holdsAl
when B is singular, which is indeed the case when groups of unknown parents
and another fixed effect are considered simultaneously. A constraint on solutions
for groups (or the other fixed effects) can be added to avoid this problem. But is
was found that convergence is faster when no constraint is included. As for Gauss-
Seidel iteration, it seems that there is a built-in constraint in the iterative system
preventing problems from occurring.
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