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Summary —~ The Haseman-Elston (HE) sib—pair linkage test in its original form is
computationally simple but suffers from low power. With the advent of highly polymorphic
markers, the exclusive use of fully informative matings (ie matings where the number of
genes identical by descent for any sib pair can be inferred without error) for the HE test
becomes feasible. This article examines the influence of highly polymorphic marker systems
(5 alleles), large family sizes (6 full-sibs) and hierarchical breeding structures (mating
ratio of 25) on the power of the HE test by means of simulation studies. Simulations are
performed under the assumption that the costs of marker genotyping are a limiting factor
for marker-QTL linkage studies. Consequently, the total number of individuals (parents
and offspring) typed is fixed at 5000 in each of the situations compared. The results show
that the power of the HE test is considerably increased when both highly polymorphic
markers and large full-sib families are available. For example, for a locus explaining 8%
of the phenotypic variance the power of the test increases from 14 to 74% if the locus has
5 alleles instead of 2 and sibship size is 6 instead of 2. Hierarchical breeding structures
tend to further increase the power of the test, for the example given from 74 to 79%.

linkage / marker gene / quantitative trait locus / Haseman—Elston test / power

Résumé — Aspects théoriques de ’application du test de liaison génétique par les cou-
ples de germains aux espéces animales domestiques. Dans sa forme originelle, le test de
liaison génétique de Haseman—Elston (HE), basé sur les couples de germains, est simple
¢ calculer, mais statistiguement peu puissant. Avec des marqueurs hautement polymor-
phes, Vutilisation exclusive d’accouplements totalement informatifs (ie des accouplements
permettant d’établir avec certitude le nombre de génes d’origine identique pour n’importe
quel couple de germains) peut étre envisagée. Cet article examine, & U'aide de simulations,
Veffet d’un systéme génétique hautement polymorphe (5 alléles également fréquents), d’une
grande taille de fratrie (6 germains) et d’une structure d’élevage polygynique (25 femelles
accouplées a chaque mdle) sur la puissance du test HE. Les simulations sont faites en
supposant que le coit des typages généliques est le facteur limitant des études de liaisons
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entre génes marqueurs et locus de caractéres quantitatifs. En conséquence, le nombre to-
tal d’individus typés (parents et descendants) est fizé & 5 000 dans chacune des situations
comparées. Les résultats monirent que la puissance du test HE est considérablement accrue
quand on dispose d la fois de marqueurs hautement polymorphes et de grandes fratries.
Ainsi, pour un locus expliquant 8% de la variance phénotypique du caractére, la puissance
du test au seuil de 5% est de 0,74 au lieu de 0,14 quand on passe de 2 & 5 alléles au locus
marqueur et de 2 d 6 fréres par fratrie. Les structures d’élevage polygyniques tendent d
accroitre encore la puissance du test, qui, dans Uexemple ci-dessus, passe de 0,74 & 0,79
avec une structure de 25 fratries issues du méme pére, par rapport & des couples de parents
indépendants.

liaison génétique / géne marqueur / locus quantitatif / test de Haseman-Elston /
puissance

INTRODUCTION

The sib-pair linkage method of Haseman and Elston (1972) is a tool for the
detection of linkage between markers and quantitative trait loci (QTLs). The major
advantage of the Haseman-Elston method is its computational ease, allowing fast
screening of a large number of marker loci and traits. Further, the method is robust
for a large variety of continuous distributions of the quantitative trait (Blackwelder
and Elston, 1982). However, in its original form the method suffers from low power
(Robertson, 1973), except when the effect of the QTL is very high and linkage
between marker and QTL is tight (Blackwelder and Elston, 1982).

In typical animal breeding situations, the possibilities for the estimation of
effects are often more advantageous than in human populations. Usually one
has larger families, complete pedigree information and markers are available for
parents and offspring. The advent of new, highly polymorphic markers such as
minisatellites (Jeffreys et al, 1985) and microsatellites (Weber and May, 1988 ; Soller
and Beckmann, 1990) increases the probability of informative matings and because
of that also the probability for the detection of given linkage relationships.

The objective of this paper is to examine the power of the Haseman—Elston test
in animal breeding situations under the assumption of the availability of highly
polymorphic marker systems.

THEORY
The Haseman—Flston test

The linkage test of Haseman and Elston (1972) is based on the idea that the greater
the number of alleles a pair of full-sibs shares identical by descent (ibd) at a marker
locus which is linked to a QTL, the smaller the difference in the values of the
quantitative trait which is affected by the QTL. A generalized description of the
method is given by Elston (1990). The number of genes ibd at the trait locus for 2
full-sibs can either be 0, 1 or 2 but inference on this number depends on the parents’
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and sibs’ genotypes at the marker locus. The proportion of genes ibd at the marker
-locus for sib pair j(7;n) is estimated from the parents’ and offspring’s genotypes
and the regression of the squared difference of the sibs’ phenotypic values on 7;m
is calculated. If linkage between the marker and a QTL exists, this regression is
expected to be negative.

Haseman and Elston (1972) assume random mating with respect to the marker
locus, linkage equilibrium and no effect of the marker on the trait locus. The
phenotypic value of the ith sib of the jth sib pair is assumed to be of the form:

Tij = p+ gij + €ij 1]

where p is the overall mean, g;; is the genotypic value at the trait locus and e;;
is the residual effect including genetic effects due to all loci other than the linked
QTL. It is assumed that e; = e;; — ey; is a random variable with zero mean and
variance 2.

In a random mating population with a trait locus showing a given additive
genetic variance (¢2) and no dominance, the expectation of the squared difference
of the 2 sibs’ phenotypic values (Y; = [r1; — z2;]2) given the proportion of genes
ibd at the trait locus (7;;) is shown by Elston (1990) to be:

E(Yj|mje) = 202 + 02 — 20274 2]

In practice m;; is not known but has to be estimated by the number of genes ibd
at the marker locus (7). Elston (1990) shows the expectation of Y; to be:

E(Y;lmjm) = Y E(Y;]mj0) P(nj4mjm)

Tt

=2(1 - 20(1 — 8))o? + 02 — 2(1 — 20)%027jm 3]

if there are only 2 alleles at the trait locus, where 0 is the recombination frequency
between the marker locus and the QTL. This expectation can be written in the
form:

E(Yl?’l’jm) = a+ﬁ7rjm [4]
Blackwelder (1977 ; cited in Blackwelder and Elston, 1982) has shown that despite
the non-normal distribution of Y, the distribution of the estimated regression
coefficient () is asymptotically normal so that it is possible to use standard normal
theory to test the hypothesis Hy: § = 0 against the one-sided alternative Hj:
B < 0. Amos et al (1989) showed that the estimator of 3 is unbiased even if there
is dominance at the trait locus, provided that information on the marker genotype
of the parents is available.

Effect of marker polymorphism
Elston (1990) gives formulae for the estimation of m;, from the parents’ and

sibs’ genotypes at the marker locus. Since this study deals mainly with highly
polymorphic markers, it is assumed here that a large number of informative matings
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is available. In animal populations there are usually large full-sib families which
makes it worthwhile to type the parents first and, according to these results, only
the offspring of fully informative matings.

A fully informative mating in this sense is a mating where both parents are
heterozygous and have at least 3 different alleles at the codominant marker locus
which corresponds to mating types VI and VII in table II of Haseman and Elston
(1972). Thus, the number of genes ibd for a sib pair can be inferred without error.
The frequency of these matings in a given population depends on the number of
alleles at the marker locus and their frequencies. In the general case of n alleles and
unequal gene frequencies (p;), the expected proportion of fully informative matings
under random mating (PFIM) can be written as:

PFIM = P(AzAJ X AkAl) -+ P(A,A] X A,Ak) + P(AzAJ) X AkAj)

= E: i 2pip; [(i Xn: 2Pkpl) - QPiPJ] [5]

i=1 j=i+1 k=1i=k+1

Taking into account the number of animals usually tested in mapping experi-
ments, it is unlikely for a system to be declared as highly polymorphic if one or two
of the alleles show extreme frequencies. Therefore, the case of equal allelic frequen-
cies (p = 1/n) is considered here and the proportion of informative matings is then
given by:

PFIM=(n 1) (n 1~%> _ (n—1(n 32)(n+1) 6
n n n n
Table I gives the expected PFIMs for various values of n. This proportion
increases with increasing number of alleles. For loci with 9 alleles or more, less
than 25% of the matings have to be rejected. For more than 15 alleles, the further
increases in the proportion of fully informative matings are only small.

Table I. Expected proportion of fully informative matings (PFIM) in a random mating
population with n alleles of equal frequencies.

n PFIM n PFIM
3 0.296 9 0.768
4 0.469 10 0.792
5 0.576 15 0.863
6 0.648 20 0.898
7 0.699 30 0.932
8 0.738 40 0.949
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Effect of breeding structure

Most animal populations have a very different structure from the human popula-
tions for whom this test was originally designed. In general the breeding structure
for poultry, pigs and fish is favorable for effective testing because large full-sib fam-
ilies are available. Sheep and goat populations have an intermediate value for the
application of the test whereas cattle populations show a very unfavorable structure.

Blackwelder and Elston (1982) show that, under the null hypothesis of no linkage,
the s(s — 1)/2 sib pairs from a sibship of size s can be treated as independent
without affecting the type I error rate, so that treating sib pairs as independent
should provide a test with good power, and a correct nominal value. In addition to
increased power, the study of large full-sib families requires typing of fewer parents
resulting in a reduction of overall costs. Here, comparisons will be made for a
given overall cost of typing, assuming that there is no limitation of the number of
individuals measured for the trait of interest. In that case, if a proportion PFIM
can be selected among the families available, the number of sibships (f) of size s
which can be measured given a total number N of typed animals is:

fo—— 7

(s+ 5Frar)

Table II gives the numbers of parents and offspring for the 3 variants which
will be considered in the simulations. For the first variant (“standard”), for which
all types of matings are used, 1250 sib pairs from 1250 families are generated,
giving a total of 5000 typed animals. From these 5000 animals 2 500 have to be
measured for the quantitative trait. The second variant has a PFIM of 0.576 (see
table I for n = 5). From 1587 typed couples f = 914 show a fully informative
mating type. These 914 couples have a total of 1 828 progeny, resulting in a total
of 5002 (2 « (1587 + 914)) typed animals. In the case of families with 6 sibs, 3 168
offspring from f = 528 families can be measured, an increase of 75% in the number
of offspring as compared to the second variant.

Table II. Number of animals in the different categories with constant number of animals
typed (N = 5000).

Variant Sibs/ Parents Families off- Total

Sfamily typed selected spring typed
Standard 2 2500 1250 2 500 5000
Polymorphic 2 3174 914 1828 5002
Polymorphic 6 1834 528 3168 5002

Up to now, the families were assumed to be unrelated. However, in animal
breeding populations one male is usually mated to several females. This gives rise
to genetic covariances between families for the polygenic part of the genotype. Since
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the variable Y; is derived from the difference of the phenotypic values of 2 full-sibs,
it is clear that there are no covariances between the Y!s of half-sib families that
have one parent in common. Thus, the power of the I—faseman—Elston test is not
directly influenced by the genetic structure of animal populations.

However, if the cost of marker genotyping is a limiting factor and the families to
be genotyped are selected in a 2-stage procedure, the number of measured offspring
given a fixed number of assays can be considerably increased. We consider again
the case of a population from which fully informative matings are selected for
genotyping of the offspring with a fixed overall number of typed animals (N). In a
first step only sires are typed and the heterozygotes are selected for genotyping of
their mates. In a second step, heterozygous dams with at least one allele different
from their mate’s are selected and have their offspring genotyped. Then, the final
number of families ( f) measured for quantitative traits depends on: sibship size (s);
mating ratio (r = number of dams per sire) ; selection rate of sires (m,); selection
rate of dams given heterozygous sires (m2).

The number of families is then:

N

f= (8]
s+ i(1 + L)
ma rmi

With n equally frequent alleles [6] can be written as PFIM = mymg with
my = (n—1)/n and my = [(n — 1)/n] — 2/n%. Note that [8] does not reduce to
[7) when r = 1, because of the 2-step selection implied in [8]. Table III gives an
example of the values of f for different mating ratios (r). For low values of r, the
number of measured families increases rapidly with increasing mating ratio. The
largest effect of this strategy can be observed for the case of a polymorphic marker
in 2 sib-families. Beyond a ratio of 10 the value of f converges rapidly towards the
limit for r equal to infinity, which is appropriate if only one male is used.

Table III. Number of families selected, given a total of 5 000 animals typed for different
marker polymorphisms and mating ratios (r).

Sibship No of marker Matings r=1 r=10 r=25 r =00
size alleles considered

2 2 All 1250 1613 1644 1 666
2 5 Informative 976 1403 1445 1475
6 2 All 625 704 710 714
6 5 Informative 606 661 670 678

Simulation studies

Simulations were performed to examine the impact of 4 factors on the power of
the Haseman-Elston test: i) fully informative matings; ii) family size of 6 full-sibs;
ili) within-family environmental correlation (c?); and iv) a typical pig breeding
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structure. Other factors varied were: 1) variance due to the linked QTL (relative to

phenotypic variance) and 2) recombination frequency between the marker and the

QTL.

METHODS

Data were simulated according to the following model in which e;; of model (1) is
developed in 5 terms:

1
Tijg =p+gi; + 5(bvsj + bvgj) + dij + cej + €45 9]
where
x;; = phenotypic value of the ith sib in the jth sibship
i = overall mean

gi; = effect of the QTL-genotype of sib ¢

bus; = polygenic breeding value of the sire

bvg; = polygenic breeding value of the dam

¢;; = effect of Mendelian sampling on polygenic value
ce; = effect of common environment for the jth sibship
€;; = random error

Table IV gives the range of variation for the different parameters. Each simulation
was replicated 500 times. The sizes of the examined sibships were 2 and 6,
respectively. For the larger sibship size the test was based on all possible sib pairs
within the sibship, as proposed by Blackwelder and Elston (1982), resulting in 15
comparisons per sibship. The gene frequencies at the trait locus were p = ¢ = 0.5
and additive gene action was assumed. At the marker locus the gene frequencies
were 0.5 for the the standard method (assuming 2 alleles) and 0.2 (corresponding
to 5 alleles) for the case of fully informative matings. In the polyallelic case only
the offspring of fully informative matings as defined above were considered as being
typed and thus included in the analyses. All simulations were calculated for a total
of 5000 assays.

Table IV. Simulation parameters.

Parameter From To Step
0! 0.0 0.1 0.05
QTL? 0.02 0.16 *2

23 0.0 0.25 0.25

1 Recombination frequency; 2 variance of quantitative trait locus effect relative to
phenotypic variance; 3 variance of common family environment relative to phenotypic
variance; h2: heritability (excluding QTL effect) assumed to be 0.25.
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To check the significance level, simulations were performed under the null
hypothesis (no effect of QTL or recombination frequency = 0.5) for all of the
variants presented here. The empirical significance level was determined as the
percentage of replications that, under the null hypothesis, exceeded the critical value
of a 1-sided t-test with type I error of 5%. In none of the cases was this percentage
significantly different from 5%, in a test based on the binomial distribution. The
SAS univariate procedure (SAS, 1989) indicated no significant departure of the
regression coeflicients from normality.

RESULTS

In this section the impact of fully informative matings arising from highly polymor-
phic markers and of sibships of size 6 on the power of the Haseman-Elston test is
examined. Columns 3 and 4 of table V show the effect of using only fully informative
matings on the power of the Haseman-Elston test. The column for the standard
version of the test shows the poor power of this method for the QTL effects con-
sidered here. When the QTL contributes 16% to the phenotypic variance, which is
“equivalent to 1.1 phenotypic standard deviations between the 2 homozygotes, the
power is only 33%. The use of fully informative matings hardly increases power,
except for higher QTL effects. However, even for the largest QTL effect the power
of the test is below 50%.

_ Table V. Effect of standard vs fully informative matings and effect of family size on the
power (in %) of the Haseman-Elston test, assuming a constant number of typed animals

(N = 5000, k% = 0.25,a = 0.05, 500 replications).

QTL1 0! Standard Fully informative

2 sibs 2 sibs 6 sibs

1250 families 914 families 528 families

0.02 0.0 7 6 13
0.02 0.05 6 7 13
0.02 0.1 6 5 10
0.04 0.0 8 8 30
0.04 0.05 7 12 23
0.04 0.1 8 6 17
0.08 0.0 14 17 74
0.08 0.05 12 13 57
0.08 0.1 8 14 38
0.16 0.0 33 47 99
0.16 0.05 27 39 99
0.16 0.1 18 27 90
SE?2 1-2 1-2 0.4-2

V' QTL, 9, h?, see footnotes to table IV; 2 for an estimated power p (in %), SE =
(p(100 — p)/500)*°.

For lower QTL effects the power shows more or less erratic fluctuations with
increasing recombination rate, while for a QTL effect of 16% the power is reduced
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between 15 and 20 percentage points when the recombination rate increases from
0 to 0.1.

The use of larger families leads to a major increase in the power of the Haseman—
Elston test. QTL effects of 8% can be detected with more than 50% power if the
recombination rate is 0 or 0.05 (column 5, table V).

The effect of a within-family environmental component on the power of the test
is given in table VI. This component reduces the within-family variance and thus
increases the power of the test. The average increase is 59% of power for the 2-sib
and 40% for the 6-sib families. In the latter situation, a QTL effect of 4% can be
detected with nearly 50% power if a common environmental component is present
and there is no recombination between the marker and the QTL.

Table VI. Effect of common environment on the power (in %) of the Haseman-Elston
test (fully informative matings, N = 5000, h? =0.25,a = 0.05, 500 replications).

QTL g 2-sib families 6-sib families
(N =914) (N = 528)
. =0 =025 Z=0 *=025

0.02 0.0 6 9 13 22
0.02 0.05 7 6 13 17
0.02 0.1 5 10 10 12
0.04 0.0 8 15 30 48
0.04 0.05 12 8 23 38
0.04 0.1 6 11 17 29
0.08 0.0 17 30 74 94
0.08 0.05 13 23 57 84
0.08 0.1 14 18 38 68
0.16 0.0 47 79 99 100
0.16 0.05 39 68 99 100
0.16 0.1 27 48 90 100
SE 1-2 1-2 04-2 04-2

QTL, 6, h2, c?: see footnotes to table IV.

In the simulations of hierarchical breeding structures the numbers of families for
r = 25 were used. The results are given in table VII. It can be seen that in this
situation the test based on 2-sib families is still not competitive. In the case of 6-sib
families one should be able to detect a QTL effect of 8% with power between 48
and 79%. For smaller QTL effects power is not sufficient unless there is additional
“support” from common environmental effects.

Soller and Genizi (1978) using the method of Jayakar (1970) presented calcu-
lations for half- and full-sib designs. The method of Soller and Genizi (1978) for
a QTL contributing 4% of the phenotypic variance of the population has been
compared to our simulation results, as summarized in table VIII. The base of the
comparisons is an equal number of preselected matings for both tests {fully infor-
mative for Haseman-Elston, intercross for Soller and Genizi). The test of Soller
and Genizi (1978) always has less power than the Haseman—Elston test for the two
heritabilities that have been tested.
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Table VII. Comparison of the powers (in %) of 3 different variants of the Haseman-—
Elston test for a total of 5000 typed animals and a mating ratio of 25 (N = 5000, h? =
0.25,c? = 0,a = 0.05, 500 replications).

QTL g Standard Fully informative Fully informative
2 sibs 2 sibs 6 sibs
1644 families 1 445 families 670 families
0.02 0.0 6 7 16
0.02 0.05 6 7 12
0.02 0.1 6 7 12
0.04 0.0 9 12 37
0.04 0.05 8 10 27
0.04 0.1 7 11 21
0.08 0.0 13 29 79
0.08 0.05 13 19 66
0.08 0.1 13 17 48
0.16 0.0 40 64 100
0.16 0.05 26 53 _ 100
0.16 0.1 22 37 100
SE 1-2 1-2 04-—-2

QTL, 6, h2, ¢?: see footnotes to table IV.

Table VIII. Comparison of simulated powers of the Haseman-Elston test (fully informa-
tive matings) with calculated powers for the intercross design of Soller and Genizi (1978)

(standard errors in brackets, 500 replications), assuming QTL = 0.04,0 = 0 and 2 =0.

Haseman—Elston Soller and
(fully informative matings) Genizi
No families (intercross
(6 offspring) R =02 h? =04 design)
125 12 (1.4) 18 (1.7) 10
250 21 (1.8) 23 (1.9) 12
500 28 (2.0) 37 (2.1) 17
1000 40 (2.2) 63 (2.2) 24

QTL, 6, h2, c?: see footnotes to table IV.

DISCUSSION

The present study confirms the findings of Robertson (1973) that the Haseman-—
Elston sib—pair linkage method in its original form has very low power. This is
especially true if the variance explained by the QTL is small as compared to the
residual variance, since the variance of Y; is proportional to the fourth power of o,
(Robertson, 1973). As a consequence, measures to increase the power of the test
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should aim at a reduction of the residual variance. On the other hand, systematic
environmental and sex effects that affect the difference between full-sibs would
have to be eliminated. This, as well as the increase in power due to common
environmental effects, leads to the recommendation that full-sib families should
be reared together, as long as no competition effects occur.

Preselection of fully informative matings leads to an increase of the power of
the test, especially for higher QTL effects. Furthermore, the power estimates found
by simulation agree well with the values calculated according to the asymptotic
formulae given by Blackwelder and Elston (1982) and Amos and Elston (1989).
Thus, for a given mating structure and marker polymorphism, the necessary size of
experiments for the detection of marker—-QTL linkage can be calculated in advance
for a given QTL effect. Power could also be increased by selective genotyping.
Instead of selecting informative matings one would rather select sibships with at
least one extreme individual for the trait investigated (see the 2-sib case recently
analysed by Carey and Williamson (1991)).

Blackwelder and Elston (1982) concluded that a significance level of 5% as chosen
in this study, would not be strong evidence for linkage in view of the low prior odds
in favor of 2 genes being on the same chromosome. However, since this method is
a preliminary instrument for the scanning of segregating populations, a relatively
high type I error could be accepted in order to reduce the risk of rejecting possible
QTLs.

A crucial question is whether power is influenced by using non-independent
comparisons in large families. Results of Hodge (1984) suggest that the information
contained in a sibship of size s approaches 2s — 3 for s > 4. However, these findings
could not be confirmed in simulation studies of Blackwelder and Elston (1982) and
Amos et al (1989), who treated sibships of sizes 3 and 5 as in the present study.
Their results indicate that neither type I error nor power are affected by treating
all the comparisons in a sibship as independent. The same was true for the present
study.

Furthermore, family sizes would not be equal in field studies. This is advanta-
geous with respect to power since the expected number of comparisons per sibship
increases with the variance of sibship size. A random variation of family size (s)
in pig populations may be approximated by a Poisson distribution with parameter
5= E(s) = V(s). Thus, as E[s(s —1)/2] = [5(z — 1) + V(5)]/2 = 32/2, the average
number of comparisons per family is always greater than with constant family size
and twice as much for § = 2. For pig populations, an average family size of 6 is a
rather pessimistic assumption; in practice it would rather be between 8 and 9 and
one such family would on average be equivalent to 32-40 families of 2 sibs.

The extension to hierarchical breeding structures increases the power if the
families to be typed are selected in a 2-stage procedure. Relationships between
families do not induce covariances between the Y; and therefore need not be
considered.

In a typical pig breeding situation the method can be used to detect QTLs of
effects between 4 and 8% of the phenotypic variance with about 50% power for a
total of 5 000 assays. This should include all economically interesting QTLs because
in the supposed situation (linkage equilibrium) the phases must be determined
for each sire in each generation if marker assisted selection is applied. Since the
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determination of linkage phases causes additional cost, only QTLs with large effects
are of interest.

Another question is whether the preselection of fully informative matings may
give rise to false linkage. Preselection is made only with regard to the marker
genotype. Therefore, false linkage should not occur as long as there is linkage
equilibrium between the marker and the QTL. However, this cannot be proven
until the QTL genotype can be determined directly. As suggested by an anonymous
referee, inferences suggesting evidence in favor of linkage in the case of linkage
disequilibrium should be correct. Furthermore, falsely positive evidence should not
occur for unlinked loci which are in linkage disequilibrium when data for the parents
are available. However, this has never been studied for sib-pair methods. The main
reason for linkage disequilibrium in animal populations is hybridization between
subpopulations that have been kept separate for several generations (Lande and
Thompson, 1990). If this should be the case in the population considered, one
would rather use the standard methodology of multiple regression which exploits
the existing linkage disequilibria.

A comparison of the present results with those from other workers is difficult
since only few investigations deal with the problem of detecting linkage within
segregating populations. The comparison with the method of Soller and Genizi
(1978) showed that the power of this method is inferior to the Haseman-FElston
test. The reason is that the Soller and Genizi method favours half-sib families in
the order of 1500 animals and is thus better suited to dairy cattle populations.

Weller et al (1990) introduced the granddaughter design which leads to a
considerable increase of power for a given number of assays compared with the
Soller and Genizi (1978) design. It also depends on highly polymorphic markers
and its range of application is limited to dairy cattle populations because this
method requires large numbers of sons per sire and granddaughters per son to be
effective.

Beckmann and Soller (1988) considered crosses between segregating populations.
Their method is based on F, crosses and thus requires additional testing of Fy
individuals, with at least 2 generations and a special experimental design. It also
implies 2 parental populations close to fixation (p > 0.8) for alternative QTL-alleles
and a difference between the 2 homozygotes of at least 0.4 standard deviations. The
authors suggest that this is more likely for traits like disease resistance than for the
traditional performance traits.

CONCLUSIONS

With the advent of multiallelic markers, the Haseman-Elston sib-pair linkage
method becomes more powerful for the detection of linkage between markers and
QTLs. However, the marker should at least have 5 or more alleles at intermediate
frequencies in order to reduce the number of parent animals to be typed. The
method allows the detection of linkage within any segregating population. It can
serve to indicate whether more sophisticated methods, that estimate recombination
frequency and allele effects but require special mating plans, are appropriate. The
method can also make use of multivariate data as shown by Amos et al (1990).
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The power of the method increases considerably with increasing family size and
with hierarchical breeding structures. Thus, it is especially useful for species with
high reproductive rates such as pigs and poultry. Amos and Elston (1989) extended
the test to any type of non-inbred relative pair. Thus, it could also be applied to
dairy cattle where large half-sib families are available. However, on average twice as
many half-sib pairs are needed as compared to full-sibs and at present there exists
no possibility of combining different types of relatives in one analysis.
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